Commit 12183920 by Kim Nguyễn

Typos 1,2 → 0,1

parent b8f74c00
 ... ... @@ -94,7 +94,7 @@ values. We write $v\in t$ if the most specific type of $v$ is a subtype of $t$ ( The dynamic semantics is defined as a classic left-to-right call-by-value reduction for a $\lambda$-calculus with pairs, enriched with specific rules for type-cases. We have the following notions of reduction:\vspace{-1.2mm} $\begin{array}{rcll} (\lambda^{\wedge_{i\in I}s_i\to t_i} x.e)v &\reduces& e\subst x v\\[-.4mm] (\lambda^{\wedge_{i\in I}s_i\to t_i} x.e)\,v &\reduces& e\subst x v\\[-.4mm] \pi_i(v_1,v_2) &\reduces& v_i & i=1,2\\[-.4mm] \tcase{v}{t}{e_1}{e_2} &\reduces& e_1 &v\in t\\[-.4mm] \tcase{v}{t}{e_1}{e_2} &\reduces& e_2 &v\not\in t\\[-1.3mm] ... ... @@ -291,7 +291,7 @@ root of the tree). Let e be an expression and \varpi\in\{0,1,l,r,f,s\}^* a \emph{path}; we denote \occ e\varpi the occurrence of e reached by the path \varpi, that is (for i=1,2, and undefined otherwise)\vspace{-.4mm} the path \varpi, that is (for i=0,1, and undefined otherwise)\vspace{-.4mm} %% \[ %% \begin{array}{l} %% \begin{array}{r@{\downarrow}l@{\quad=\quad}l} ... ... @@ -307,8 +307,8 @@ the path \varpi, that is (for i=1,2, and undefined otherwise)\vspace{-.4mm} %%$ $\begin{array}{r@{\downarrow}l@{\quad=\quad}lr@{\downarrow}l@{\quad=\quad}lr@{\downarrow}l@{\quad=\quad}l} e&\epsilon & e & (e_0,e_1)& l.\varpi & \occ{e_0}\varpi &\pi_1 e& f.\varpi & \occ{e}\varpi\\ e_0e_1& i.\varpi & \occ{e_i}\varpi \quad\qquad& (e_0,e_1)& r.\varpi & \occ{e_1}\varpi \quad\qquad& e&\epsilon & e & (e_1,e_2)& l.\varpi & \occ{e_1}\varpi &\pi_1 e& f.\varpi & \occ{e}\varpi\\ e_0\,e_1& i.\varpi & \occ{e_i}\varpi \quad\qquad& (e_1,e_2)& r.\varpi & \occ{e_2}\varpi \quad\qquad& \pi_2 e& s.\varpi & \occ{e}\varpi\\[-.4mm] \end{array}$ ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!