### small changes

parent 7fd612cd
 ... ... @@ -502,7 +502,7 @@ We introduce the new syntactic category of \emph{types schemes} which are the te \] Type schemes denote sets of types, as formally stated by the following definition: \begin{definition}[Interpretation of type schemes] We define the function $\tsint {\_}$ that maps type schemes into sets of types.\vspace{-3mm} We define the function $\tsint {\_}$ that maps type schemes into sets of types.\vspace{-2.5mm} \begin{align*} \begin{array}{lcl} \tsint t &=& \{s\alt t \leq s\}\\ ... ... @@ -551,7 +551,7 @@ Finally, given a type scheme $\ts$ it is straightforward to choose in its interp \tsrep t &=& t & \tsrep {\ts_1 \tstimes \ts_2} &=& \pair {\tsrep {\ts_1}} {\tsrep {\ts_2}}\\ \tsrep {\tsfunone {t_i} {s_i}_{i\in I}} &=& \bigwedge_{i\in I} \arrow {t_i} {s_i} \qquad& \tsrep {\ts_1 \tsor \ts_2} &=& \tsrep {\ts_1} \vee \tsrep {\ts_2}\\ \tsrep \tsempty && \textit{undefined} \end{array} \end{array}\vspace{-4mm} \end{align*} \end{definition} ... ... @@ -583,7 +583,7 @@ its domain and the type of the application is more complicated and needs the ope \apply t s & = &\,\min \{ u \alt t\leq s\to u\} \\[-1mm] \worra t s & = &\,\min\{u \alt t\circ(\dom t\setminus u)\leq \neg s\}\label{worra} \end{eqnarray}\vspace{-6mm}\\ \end{eqnarray}\vspace{-7mm}\\ %In short, $\dom t$ is the largest domain of any single arrow that %subsumes $t$, $\apply t s$ is the smallest domain of an arrow type %that subsumes $t$ and has domain $s$ and $\worra t s$ was explained ... ...