Commit 977e2796 by Mickael Laurent

### example for reductions

parent 239fc3d9
 ... @@ -141,7 +141,7 @@ ... @@ -141,7 +141,7 @@ \newpage \newpage \subsection{Full parallel semantics}\label{app:parallel} \subsection{Parallel semantics}\label{app:parallel} \[ \[ \begin{array}{lrcl} \begin{array}{lrcl} ... @@ -205,6 +205,29 @@ ... @@ -205,6 +205,29 @@ \\ \\ \end{mathpar} \end{mathpar} Here is an example of reduction using the parallel semantics: \begin{mathpar} \Infer[TestCtx] { \Infer[Ctx] {\Infer[App] { } {(\lambda x.\ x+1)\ 1\idleadsto 2} {}} {((\lambda x.\ x+1)\ 1, \true)\xleadsto{(\lambda x.\ x+1)1\ \mapsto\ 2} (2, \true)} {} } {\ite {((\lambda x.\ x+1)\ 1, \true)} {\pair \Int \Bool} {(\lambda x.\ x+1)\ 1} {0} \idleadsto \ite {(2, \true)} {\pair \Int \Bool} {2} {0}} {} \end{mathpar} and \begin{mathpar} \Infer[Case] {(2, \true) \in \valsemantic {\pair \Int \Bool}} {\ite {(2, \true)} {\pair \Int \Bool} {2} {0} \idleadsto 2} {} \end{mathpar}\\ All the proofs below will use the parallel semantics instead of the standard semantics (\ref{sec:opsem}). All the proofs below will use the parallel semantics instead of the standard semantics (\ref{sec:opsem}). However, the safety of the type system for the standard semantics can be deduced from the safety of the type system for the parallel semantics, However, the safety of the type system for the standard semantics can be deduced from the safety of the type system for the parallel semantics, using the following lemma: using the following lemma: ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment