types.mli 6.51 KB
Newer Older
1 2
open Ident

3 4 5 6 7 8 9 10 11
type const = 
  | Integer of Intervals.V.t
  | Atom of Atoms.V.t 
  | Char of Chars.V.t
  | Pair of const * const
  | Xml of const * const
  | Record of const label_map
  | String of U.uindex * U.uindex * U.t * const

12

13
module Const: Custom.T with type t = const
14

15 16 17 18

module CompUnit : sig
  include Custom.T

19
  val get_current: unit -> t
20 21
  val mk: U.t -> t
  val value: t -> U.t
22
  val print_qual: Format.formatter -> t -> unit
23 24 25 26 27 28 29 30 31 32

  val enter: t -> unit
  val leave: unit -> unit
  val close_serialize: unit -> t list

  val pervasives: t

  module Tbl : Inttbl.S with type key = t
end

33
module Abstract : sig
34 35
  module T : Custom.T with type t = string
  type abs = T.t
36 37 38
  type t
  val any: t
  val atom: abs -> t
39
  val compare: t -> t -> int
40 41 42 43 44 45 46 47

  module V : sig
    type t = abs * Obj.t
  end

  val contains: abs -> t -> bool
end

48 49
(** Algebra **)

50 51
include Custom.T
module Node : Custom.T
52

53
type descr = t
54

55 56
val make: unit -> Node.t
val define: Node.t -> t -> unit
57

58 59
val cons: t -> Node.t
val internalize: Node.t -> Node.t
60

61 62
val id: Node.t -> int
val descr: Node.t -> t
63

64 65
(** Boolean connectives **)

66 67 68 69 70 71
val cup    : t -> t -> t
val cap    : t -> t -> t
val diff   : t -> t -> t
val neg    : t -> t
val empty  : t
val any    : t
72

73
val any_node : Node.t
74
val empty_node : Node.t
75

76
val non_constructed : t
77
val non_constructed_or_absent : t
78

79 80
(** Constructors **)

81 82
type pair_kind = [ `Normal | `XML ]

83 84 85 86 87 88
val interval : Intervals.t -> t
val atom     : Atoms.t -> t
val times    : Node.t -> Node.t -> t
val xml      : Node.t -> Node.t -> t
val arrow    : Node.t -> Node.t -> t
val record   : label -> Node.t -> t
89
  (* bool = true -> open record; bool = false -> closed record *)
90 91 92
val record'  : bool * Node.t label_map -> t
val char     : Chars.t -> t
val constant : const -> t
93
val abstract : Abstract.t -> t
94

95 96
(** Helpers *)

97 98
val tuple : Node.t list -> t

99
  (** given a list of descrs create an OR type including all descrs *)
100
val choice_of_list: t list -> t
101 102 103

  (** do it yourself: create an Xml type from three types (tag type, attribute
  type, content type) *)
104
val xml': t -> t -> t -> t
105

106
  (** Build a record from a list of <name,t> pairs. Open defaults to true.
107
  All specified fields are required. *)
108
val rec_of_list: ?opened:bool -> (Ns.qname * t) list -> t
109 110 111

  (** Similiar to rec_of_list, the additional boolean value specify whether the
  specified field is optional (true) or not (false. *)
112
val rec_of_list': ?opened:bool -> (bool * Ns.qname * t) list -> t
113

114 115
val empty_closed_record: t
val empty_opened_record: t
116

117 118 119 120 121 122 123
(** Positive systems and least solutions **)

module Positive :
sig
  type v
  val forward: unit -> v
  val define: v -> v -> unit
124
  val ty: t -> v
125 126
  val cup: v list -> v
  val times: v -> v -> v
127
  val xml: v -> v -> v
128

129
  val solve: v -> Node.t
130 131 132 133 134
end

(** Normalization **)

module Product : sig
135 136
  val any : t
  val any_xml : t
137
  val any_of: pair_kind -> t
138 139
  val other : ?kind:pair_kind -> t -> t
  val is_product : ?kind:pair_kind -> t -> bool
140 141 142

  (* List of non-empty rectangles *)
  type t = (descr * descr) list
143
  val is_empty: t -> bool
144
  val get: ?kind:pair_kind -> descr -> t
145 146
  val pi1: t -> descr
  val pi2: t -> descr
147
  val pi2_restricted: descr -> t -> descr
148 149 150 151 152 153 154
    
  (* Intersection with (pi1,Any) *)
  val restrict_1: t -> descr -> t

  (* List of non-empty rectangles whose first projection
     are pair-wise disjunct *)
  type normal = t
155
  val normal: ?kind:pair_kind -> descr -> normal
156

157 158 159 160
  val constraint_on_2: normal -> descr -> descr
    (* constraint_on_2 n t1:  maximal t2 such that (t1,t2) <= n *)
    (* Assumption: t1 <= pi1(n) *)

161 162
  val need_second: t -> bool
    (* Is there more than a single rectangle ? *)
163 164 165 166


  val clean_normal: t -> t
    (* Merge rectangles with same second component *)
167 168 169
end

module Record : sig
170
  val any : t
171 172
  val absent : t
  val absent_node : Node.t
173 174
  val or_absent: t -> t
  val any_or_absent: t
175
  val any_or_absent_node : Node.t
176

177 178
  val has_absent: t -> bool
  val has_record: t -> bool
179

180 181
  val split : t -> label -> Product.t
  val split_normal : t -> label -> Product.normal
182

183 184 185
  val pi : label -> t -> t
    (* May contain absent *)

186
  val project : t -> label -> t
187 188
    (* Raise Not_found if label is not necessarily present *)

189
  val condition : t -> label -> t -> t
190
    (* condition t1 l t2 : What must follow if field l hash type t2 *)
191 192
  val project_opt : t -> label -> t
  val has_empty_record: t -> bool
193 194


195
  val first_label: t -> label
196
  val all_labels: t -> LabelSet.t
197

198
  val empty_cases: t -> bool * bool
199

200 201
  val merge: t -> t -> t
  val remove_field: t -> label -> t
202

203
  val get: t -> ((bool * t) label_map * bool * bool) list
204 205
end

206
module Arrow : sig
207
  val any : t
208

209
  val sample: t -> t
210

211
  val check_strenghten: t -> t -> t
212 213 214 215 216 217 218
    (* [check_strenghten t s]
       Assume that [t] is an intersection of arrow types
       representing the interface of an abstraction;
       check that this abstraction has type [s] (otherwise raise Not_found)
       and returns a refined type for this abstraction.
    *)

219
  val check_iface: (t * t) list -> t -> bool
220

221
  type t
222
  val is_empty: t -> bool
223 224
  val get: descr -> t
    (* Always succeed; no check <= Arrow.any *)
225

226 227 228
  val domain: t -> descr
  val apply: t -> descr -> descr
    (* Always succeed; no check on the domain *)
229 230 231 232 233 234

  val need_arg : t -> bool
    (* True if the type of the argument is needed to obtain
       the type of the result (must use [apply]; otherwise,
       [apply_noarg] is enough *)
  val apply_noarg : t -> descr
235 236 237
end


238
module Int : sig
239
  val has_int : t -> Intervals.V.t -> bool
240 241
  val get: t -> Intervals.t
  val any : t
242 243
end

244
module Atom : sig
245
  val has_atom : t -> Atoms.V.t -> bool
246 247
  val get: t -> Atoms.t
  val any : t
248 249
end

250
module Char : sig
251
  val has_char : t -> Chars.V.t -> bool
252 253 254
  val is_empty : t -> bool
  val get: t -> Chars.t
  val any : t
255 256
end

257 258
val get_abstract: t -> Abstract.t

259
val normalize : t -> t
260

261
(** Subtyping  **)
262

263 264 265
val is_empty : t -> bool
val non_empty: t -> bool
val subtype  : t -> t -> bool
266
val disjoint : t -> t -> bool
267
val equiv : t -> t -> bool
268

269 270 271 272 273 274 275 276 277
(** Tools for compilation of PM **)

val cond_partition: t -> (t * t) list -> t list
  (* The second argument is a list of pair of types (ti,si)
     interpreted as the question "member of ti under the assumption si".
     The result is a partition of the first argument which is precise enough
     to answer all the questions. *)


278 279
module Print :
sig
280
  val register_global : CompUnit.t -> Ns.qname -> t -> unit
281
  val print_const : Format.formatter -> const -> unit
282
  val print: Format.formatter -> t -> unit
283
  val print_node: Format.formatter -> Node.t -> unit
284 285 286

  (* Don't try to find a global name at toplevel *)
  val print_noname: Format.formatter -> t -> unit
287
end
288

289