types.ml 26.6 KB
Newer Older
1
2
open Recursive
open Printf
3

4

5
6
let map_sort f l =
  SortedList.from_list (List.map f l)
7

8
9
10
11
12
13
module HashedString = 
struct 
  type t = string 
  let hash = Hashtbl.hash
  let equal = (=)
end
14

15
16
module LabelPool = Pool.Make(HashedString)
module AtomPool  = Pool.Make(HashedString)
17

18
19
type label = LabelPool.t
type atom  = AtomPool.t
20

21
type const = Integer of Big_int.big_int | Atom of atom | Char of Chars.Unichar.t
22

23
24
module I = struct
  type 'a t = {
25
    ints  : Intervals.t;
26
27
28
29
    atoms : atom Atoms.t;
    times : ('a * 'a) Boolean.t;
    arrow : ('a * 'a) Boolean.t;
    record: (label * bool * 'a) Boolean.t;
30
    chars : Chars.t;
31
  }
32

33
  let empty = { 
34
35
36
    times = Boolean.empty; 
    arrow = Boolean.empty; 
    record= Boolean.empty;
37
38
    ints  = Intervals.empty;
    atoms = Atoms.empty;
39
    chars = Chars.empty;
40
  }
41

42
43
44
45
  let any =  {
    times = Boolean.full; 
    arrow = Boolean.full; 
    record= Boolean.full; 
46
    ints  = Intervals.any;
47
48
    atoms = Atoms.any;
    chars = Chars.any;
49
50
  }
	       
51
  let interval i = { empty with ints = i }
52
53
54
  let times x y = { empty with times = Boolean.atom (x,y) }
  let arrow x y = { empty with arrow = Boolean.atom (x,y) }
  let record label opt t = { empty with record = Boolean.atom (label,opt,t) }
55
56
  let atom a = { empty with atoms = a }
  let char c = { empty with chars = c }
57
  let constant = function
58
    | Integer i -> interval (Intervals.atom i)
59
60
    | Atom a -> atom (Atoms.atom a)
    | Char c -> char (Chars.atom c)
61
62
63
64

		   
  let any_record = { empty with record = any.record }

65
  let cup x y = 
66
    if x = y then x else { 
67
68
69
70
71
      times = Boolean.cup x.times y.times;
      arrow = Boolean.cup x.arrow y.arrow;
      record= Boolean.cup x.record y.record;
      ints  = Intervals.cup x.ints  y.ints;
      atoms = Atoms.cup x.atoms y.atoms;
72
      chars = Chars.cup x.chars y.chars;
73
74
75
    }
      
  let cap x y = 
76
    if x = y then x else {
77
78
79
80
81
      times = Boolean.cap x.times y.times;
      record= Boolean.cap x.record y.record;
      arrow = Boolean.cap x.arrow y.arrow;
      ints  = Intervals.cap x.ints  y.ints;
      atoms = Atoms.cap x.atoms y.atoms;
82
      chars = Chars.cap x.chars y.chars;
83
84
85
    }
      
  let diff x y = 
86
    if x = y then empty else { 
87
88
89
90
91
      times = Boolean.diff x.times y.times;
      arrow = Boolean.diff x.arrow y.arrow;
      record= Boolean.diff x.record y.record;
      ints  = Intervals.diff x.ints  y.ints;
      atoms = Atoms.diff x.atoms y.atoms;
92
      chars = Chars.diff x.chars y.chars;
93
94
    }

95
96
97
98
  let neg x = diff any x
		   
  let equal e a b =
    if a.atoms <> b.atoms then raise NotEqual;
99
    if a.chars <> b.chars then raise NotEqual;
100
    if a.ints <> b.ints then raise NotEqual;
101
102
103
104
105
106
107
108
109
110
111
112
    Boolean.equal (fun (x1,x2) (y1,y2) -> e x1 y1; e x2 y2) a.times b.times;
    Boolean.equal (fun (x1,x2) (y1,y2) -> e x1 y1; e x2 y2) a.arrow b.arrow;
    Boolean.equal (fun (l1,o1,x1) (l2,o2,x2) -> 
		     if (l1 <> l2) || (o1 <> o2) then raise NotEqual;
		     e x1 x2) a.record b.record
      
  let map f a =
    { times = Boolean.map (fun (x1,x2) -> (f x1, f x2)) a.times;
      arrow = Boolean.map (fun (x1,x2) -> (f x1, f x2)) a.arrow;
      record= Boolean.map (fun (l,o,x) -> (l,o, f x)) a.record;
      ints  = a.ints;
      atoms = a.atoms;
113
      chars = a.chars;
114
    }
115
    
116
  let hash h a =
117
118
    Hashtbl.hash (map h a)
(*
119
    (Hashtbl.hash { (map h a) with ints = Intervals.empty })
120
    + (Intervals.hash a.ints)
121
*)
122
123
124
      
  let iter f a =
    ignore (map f a)
125
     
126
127
  let deep = 4
end
128

129
	     
130
module Algebra = Recursive_noshare.Make(I)
131
132
include I
include Algebra
133
134
135
136
137
138
139
140
141
142
module DescrHash = 
  Hashtbl.Make(
    struct 
      type t = descr
      let hash = hash_descr
      let equal = equal_descr
    end
  )

module DescrMap = Map.Make(struct type t = descr let compare = compare end)
143

144
145
146
147
148
let check d =
  Boolean.check d.times;
  Boolean.check d.arrow;
  Boolean.check d.record;
  ()
149

150
151
152
(*
let define n d = check d; define n d
*)
153

154
155
156
157
let cons d =
  let n = make () in
  define n d;
  internalize n
158

159

160
161
module Print = 
struct
162
163
  let print_atom ppf a = 
    Format.fprintf ppf "`%s" (AtomPool.value a)
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

  let print_const ppf = function
    | Integer i -> Format.fprintf ppf "%s" (Big_int.string_of_big_int i)
    | Atom a -> print_atom ppf a
    | Char c -> Chars.Unichar.print ppf c

  let named = DescrHash.create 10
  let register_global name d = DescrHash.add named d name

  let marks = DescrHash.create 63
  let wh = ref []
  let count_name = ref 0
  let name () =
    incr count_name;
    "X" ^ (string_of_int !count_name)
(* TODO: 
   check that these generated names does not conflict with declared types *)

  let bool_iter f b =
    List.iter (fun (p,n) -> List.iter f p; List.iter f n) b

  let trivial b = b = Boolean.empty || b = Boolean.full

  let worth_abbrev d = 
    not (trivial d.times && trivial d.arrow && trivial d.record) 

  let rec mark n = mark_descr (descr n)
  and mark_descr d =
    if not (DescrHash.mem named d) then
      try 
	let r = DescrHash.find marks d in
	if (!r = None) && (worth_abbrev d) then 
	  let na = name () in 
	  r := Some na;
	  wh := (na,d) :: !wh
      with Not_found -> 
	DescrHash.add marks d (ref None);
    	bool_iter (fun (n1,n2) -> mark n1; mark n2) d.times;
    	bool_iter (fun (n1,n2) -> mark n1; mark n2) d.arrow;
    	bool_iter (fun (l,o,n) -> mark n) d.record

    
  let rec print_union ppf = function
    | [] -> Format.fprintf ppf "Empty"
    | [h] -> h ppf
    | h::t -> Format.fprintf ppf "@[%t |@ %a@]" h print_union t


  let rec print ppf n = print_descr ppf (descr n)
  and print_descr ppf d = 
    try 
      let name = DescrHash.find named d in
      Format.fprintf ppf "%s" name
    with Not_found ->
      try
      	match !(DescrHash.find marks d) with
      	  | Some n -> Format.fprintf ppf "%s" n
      	  | None -> real_print_descr ppf d
      with
	  Not_found -> Format.fprintf ppf "XXX"
  and real_print_descr ppf d = 
    if d = any then Format.fprintf ppf "Any" else
      print_union ppf 
	(Intervals.print d.ints @
	 Chars.print d.chars @
	 Atoms.print "Atom" print_atom d.atoms @
	 Boolean.print "Pair" print_times d.times @
	 Boolean.print "Arrow" print_arrow d.arrow @
	 Boolean.print "Record" print_record d.record
	)
  and print_times ppf (t1,t2) =
    Format.fprintf ppf "@[(%a,%a)@]" print t1 print t2
  and print_arrow ppf (t1,t2) =
    Format.fprintf ppf "@[(%a -> %a)@]" print t1 print t2
  and print_record ppf (l,o,t) =
    Format.fprintf ppf "@[{ %s =%s %a }@]" 
240
      (LabelPool.value l) (if o then "?" else "") print t
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

	  
  let end_print ppf =
    (match List.rev !wh with
       | [] -> ()
       | (na,d)::t ->
	   Format.fprintf ppf " where@ @[%s = %a" na real_print_descr d;
	   List.iter 
	     (fun (na,d) -> 
		Format.fprintf ppf " and@ %s = %a" na real_print_descr d)
	     t;
	   Format.fprintf ppf "@]"
    );
    Format.fprintf ppf "@]";
    count_name := 0;
    wh := [];
    DescrHash.clear marks

  let print_descr ppf d =
    mark_descr d;
    Format.fprintf ppf "@[%a" print_descr d;
    end_print ppf

   let print ppf n = print_descr ppf (descr n)

end



270
271
272
273
module Positive =
struct
  type rhs = [ `Type of descr | `Cup of v list | `Times of v * v ]
  and v = { mutable def : rhs; mutable node : node option }
274
275


276
277
278
279
280
281
282
283
284
  let rec make_descr seen v =
    if List.memq v seen then empty
    else
      let seen = v :: seen in
      match v.def with
	| `Type d -> d
	| `Cup vl -> 
	    List.fold_left (fun acc v -> cup acc (make_descr seen v)) empty vl
	| `Times (v1,v2) -> times (make_node v1) (make_node v2)
285

286
287
288
289
290
291
292
293
294
  and make_node v =
    match v.node with
      | Some n -> n
      | None ->
	  let n = make () in
	  v.node <- Some n;
	  let d = make_descr [] v in
	  define n d;
	  n
295

296
297
298
299
300
301
302
  let forward () = { def = `Cup []; node = None }
  let def v d = v.def <- d
  let cons d = let v = forward () in def v d; v
  let ty d = cons (`Type d)
  let cup vl = cons (`Cup vl)
  let times d1 d2 = cons (`Times (d1,d2))
  let define v1 v2 = def v1 (`Cup [v2]) 
303

304
305
  let solve v = internalize (make_node v)
end
306

307

308
let get_record r =
309
  let add = SortedMap.add (fun (o1,t1) (o2,t2) -> (o1&&o2, cap t1 t2)) in
310
  let line (p,n) =
311
312
313
314
315
316
317
    let accu = List.fold_left 
		 (fun accu (l,o,t) -> add l (o,descr t) accu) [] p in
    List.fold_left 
      (fun accu (l,o,t) -> add l (not o,neg (descr t)) accu) accu n in
  List.map line r
    

318
319
320
321
322

(* Subtyping algorithm *)

let diff_t d t = diff d (descr t)
let cap_t d t = cap d (descr t)
323
let cup_t d t = cup d (descr t)
324
let cap_product l = 
325
326
  List.fold_left 
    (fun (d1,d2) (t1,t2) -> (cap_t d1 t1, cap_t d2 t2))
327
    (any,any)
328
    l
329
330
331
332
333
let cup_product l = 
  List.fold_left 
    (fun (d1,d2) (t1,t2) -> (cup_t d1 t1, cup_t d2 t2))
    (empty,empty)
    l
334

335

336
module Assumptions = Set.Make(struct type t = descr let compare = compare end)
337

338
339
let memo = ref Assumptions.empty
let cache_false = ref Assumptions.empty
340

341
exception NotEmpty
342

343
344
345
346
347
let rec empty_rec d =
  if Assumptions.mem d !cache_false then false 
  else if Assumptions.mem d !memo then true
  else if not (Intervals.is_empty d.ints) then false
  else if not (Atoms.is_empty d.atoms) then false
348
  else if not (Chars.is_empty d.chars) then false
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
  else (
    let backup = !memo in
    memo := Assumptions.add d backup;
    if 
      (empty_rec_times d.times) &&
      (empty_rec_arrow d.arrow) &&
      (empty_rec_record d.record) 
    then true
    else (
      memo := backup;
      cache_false := Assumptions.add d !cache_false;
      false
    )
  )

and empty_rec_times c =
  List.for_all empty_rec_times_aux c

and empty_rec_times_aux (left,right) =
  let rec aux accu1 accu2 = function
    | (t1,t2)::right ->
        let accu1' = diff_t accu1 t1 in
        if not (empty_rec accu1') then aux accu1' accu2 right;
        let accu2' = diff_t accu2 t2 in
        if not (empty_rec accu2') then aux accu1 accu2' right
    | [] -> raise NotEmpty
375
  in
376
377
  let (accu1,accu2) = cap_product left in
  (empty_rec accu1) || (empty_rec accu2) ||
378
379
380
381
382
383
384
385
386
387
(* OPT? It does'nt seem so ...  The hope was to return false quickly
   for large right hand-side *)
  (
    ((*if (List length right > 2) then
       let (cup1,cup2) = cup_product right in
       (empty_rec (diff accu1 cup1)) && (empty_rec (diff accu2 cup2))
     else*) true)
    && 
    (try aux accu1 accu2 right; true with NotEmpty -> false)
  )
388
389
390

and empty_rec_arrow c =
  List.for_all empty_rec_arrow_aux c
391

392
393
394
and empty_rec_arrow_aux (left,right) =
  let single_right (s1,s2) =
    let rec aux accu1 accu2 = function
395
      | (t1,t2)::left ->
396
397
398
399
400
          let accu1' = diff_t accu1 t1 in
          if not (empty_rec accu1') then aux accu1 accu2 left;
          let accu2' = cap_t accu2 t2 in
          if not (empty_rec accu2') then aux accu1 accu2 left
      | [] -> raise NotEmpty
401
402
    in
    let accu1 = descr s1 in
403
404
    (empty_rec accu1) ||
    (try aux accu1 (diff any (descr s2)) left; true with NotEmpty -> false)
405
  in
406
  List.exists single_right right
407

408
409
410
and empty_rec_record c =
  let aux = List.exists (fun (_,(opt,t)) -> (not opt) && (empty_rec t)) in
  List.for_all aux (get_record c)
411

412
let is_empty d =
413
  let old = !memo in
414
  let r = empty_rec d in
415
  if not r then memo := old; 
416
(*  cache_false := Assumptions.empty;  *)
417
  r
418

419
420
421
let non_empty d = 
  not (is_empty d)

422
let subtype d1 d2 =
423
  is_empty (diff d1 d2)
424

425
426
427
(* Sample value *)
module Sample =
struct
428

429
430
431
432
433
let rec find f = function
  | [] -> raise Not_found
  | x::r -> try f x with Not_found -> find f r

type t =
434
  | Int of Big_int.big_int
435
  | Atom of atom
436
  | Char of Chars.Unichar.t
437
438
439
440
441
442
443
444
  | Pair of t * t
  | Record of (label * t) list
  | Fun of (node * node) list

let rec sample_rec memo d =
  if (Assumptions.mem d memo) || (is_empty d) then raise Not_found 
  else 
    try Int (Intervals.sample d.ints) with Not_found ->
445
446
447
    try Atom (Atoms.sample (fun _ -> AtomPool.dummy_min) d.atoms) with 
	Not_found ->
(* Here: could create a fresh atom ... *)
448
    try Char (Chars.sample d.chars) with Not_found ->
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
    try sample_rec_arrow d.arrow with Not_found ->

    let memo = Assumptions.add d memo in
    try sample_rec_times memo d.times with Not_found ->
    try sample_rec_record memo d.record with Not_found -> 
    raise Not_found


and sample_rec_times memo c = 
  find (sample_rec_times_aux memo) c

and sample_rec_times_aux memo (left,right) =
  let rec aux accu1 accu2 = function
    | (t1,t2)::right ->
        let accu1' = diff_t accu1 t1 in
        if non_empty accu1' then aux accu1' accu2 right else
          let accu2' = diff_t accu2 t2 in
          if non_empty accu2' then aux accu1 accu2' right else
	    raise Not_found
    | [] -> Pair (sample_rec memo accu1, sample_rec memo accu2)
  in
  let (accu1,accu2) = cap_product left in
  if (is_empty accu1) || (is_empty accu2) then raise Not_found;
  aux accu1 accu2 right
473

474
475
and sample_rec_arrow c =
  find sample_rec_arrow_aux c
476

477
478
479
480
481
482
483
484
and check_empty_simple_arrow_line left (s1,s2) = 
  let rec aux accu1 accu2 = function
    | (t1,t2)::left ->
        let accu1' = diff_t accu1 t1 in
        if non_empty accu1' then aux accu1 accu2 left;
        let accu2' = cap_t accu2 t2 in
        if non_empty accu2' then aux accu1 accu2 left
    | [] -> raise NotEmpty
485
  in
486
487
488
489
490
491
492
493
494
  let accu1 = descr s1 in
  (is_empty accu1) ||
  (try aux accu1 (diff any (descr s2)) left; true with NotEmpty -> false)

and check_empty_arrow_line left right = 
  List.exists (check_empty_simple_arrow_line left) right

and sample_rec_arrow_aux (left,right) =
  if (check_empty_arrow_line left right) then raise Not_found
495
496
497
498
499
  else Fun left


and sample_rec_record memo c =
  Record (find (sample_rec_record_aux memo) (get_record c))
500

501
502
503
504
505
and sample_rec_record_aux memo fields =
  let aux acc (l,(o,t)) = if o then acc else (l, sample_rec memo t) :: acc in
  List.fold_left aux [] fields

let get x = sample_rec Assumptions.empty x
506

507
508
509
510
511
512
513
514
  let rec print_sep f sep ppf = function
    | [] -> ()
    | [x] -> f ppf x
    | x::rem -> f ppf x; Format.fprintf ppf "%s" sep; print_sep f sep ppf rem


  let rec print ppf = function
    | Int i -> Format.fprintf ppf "%s" (Big_int.string_of_big_int i)
515
516
517
518
519
    | Atom a ->    
	if a = LabelPool.dummy_min then
	  Format.fprintf ppf "(almost any atom)"
	else
	  Format.fprintf ppf "`%s" (AtomPool.value a)
520
521
522
523
524
525
526
    | Char c -> Chars.Unichar.print ppf c
    | Pair (x1,x2) -> Format.fprintf ppf "(%a,%a)" print x1 print x2
    | Record r ->
	Format.fprintf ppf "{ %a }"
	  (print_sep 
	     (fun ppf (l,x) -> 
		Format.fprintf ppf "%s = %a"
527
		(LabelPool.value l)
528
529
530
531
532
533
534
535
536
537
538
539
540
		print x
	     )
	     " ; "
	  ) r
    | Fun iface ->
	Format.fprintf ppf "(fun ( %a ) x -> ...)"
	  (print_sep
	     (fun ppf (t1,t2) ->
		Format.fprintf ppf "%a -> %a; "
		Print.print t1 Print.print t2
	     )
	     " ; "
	  ) iface
541
542
end

543

544
545
546
547
module Product =
struct
  type t = (descr * descr) list

548
549
550
  let other d = { d with times = empty.times }
  let is_product d = is_empty (other d)

551
552
  let need_second = function _::_::_ -> true | _ -> false

553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
  let normal_aux d =
    let res = ref [] in

    let add (t1,t2) =
      let rec loop t1 t2 = function
	| [] -> res := (ref (t1,t2)) :: !res
	| ({contents = (d1,d2)} as r)::l ->
	    (*OPT*) 
	    if d1 = t1 then r := (d1,cup d2 t2) else
	      
	      let i = cap t1 d1 in
	      if is_empty i then loop t1 t2 l
	      else (
		r := (i, cup t2 d2);
		let k = diff d1 t1 in 
		if non_empty k then res := (ref (k,d2)) :: !res;
		
		let j = diff t1 d1 in 
		if non_empty j then loop j t2 l
	      )
      in
      loop t1 t2 !res
    in
    List.iter add d;
    List.map (!) !res

(*
This version explodes when dealing with
   Any - [ t1? t2? t3? ... tn? ]
==> need partitioning 
*)
  let get_aux d =
585
    let line accu (left,right) =
586
      let debug = List.length right = 28 in
587
588
589
590
591
592
593
594
595
      let rec aux accu d1 d2 = function
	| (t1,t2)::right ->
	    let accu = 
	      let d1 = diff_t d1 t1 in
              if is_empty d1 then accu else aux accu d1 d2 right in
	    let accu =
              let d2 = diff_t d2 t2 in
              if is_empty d2 then accu else aux accu d1 d2 right in
	    accu
596
	| [] -> (d1,d2) :: accu
597
598
599
600
      in
      let (d1,d2) = cap_product left in
      if (is_empty d1) || (is_empty d2) then accu else aux accu d1 d2 right
    in
601
602
    List.fold_left line [] d

603
604
605
606
607
608
609
(* Partitioning:

(t,s) - ((t1,s1) | (t2,s2) | ... | (tn,sn))
=
(t & t1, s - s1) | ... | (t & tn, s - sn) | (t - (t1|...|tn), s)

*)
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633

  let get_aux d =
    let accu = ref [] in
    let line (left,right) =
      let (d1,d2) = cap_product left in
      if (non_empty d1) && (non_empty d2) then
	let right = List.map (fun (t1,t2) -> descr t1, descr t2) right in
	let right = normal_aux right in
	let resid1 = ref d1 in
	let () = 
	  List.iter
	    (fun (t1,t2) ->
	       let t1 = cap d1 t1 in
	       if (non_empty t1) then
		 let () = resid1 := diff !resid1 t1 in
		 let t2 = diff d2 t2 in
		 if (non_empty t2) then accu := (t1,t2) :: !accu
	    ) right in
	if non_empty !resid1 then accu := (!resid1, d2) :: !accu 
    in
    List.iter line d;
    !accu

  let get d = get_aux d.times
634

635
636
  let pi1 = List.fold_left (fun acc (t1,_) -> cup acc t1) empty
  let pi2 = List.fold_left (fun acc (_,t2) -> cup acc t2) empty
637

638
639
640
641
642
643
  let restrict_1 rects pi1 =
    let aux accu (t1,t2) = 
      let t1 = cap t1 pi1 in if is_empty t1 then accu else (t1,t2)::accu in
    List.fold_left aux [] rects
  
  type normal = t
644

645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
  module Memo = Map.Make(struct 
			   type t = (node * node) Boolean.t
			   let compare = compare end)
			   


  let memo = ref Memo.empty
  let normal d = 
    let d = d.times in
    try Memo.find d !memo 
    with
	Not_found ->
	  let gd = get_aux d in
	  let n = normal_aux gd in
	  memo := Memo.add d n !memo;
	  n
661

662
  let any = { empty with times = any.times }
663
  let is_empty d = d = []
664
end
665

666

667
module Record = 
668
struct
669
  type t = (label, (bool * descr)) SortedMap.t list
670
671

  let get d =
672
673
674
675
    let line r = List.for_all (fun (l,(o,d)) -> o || non_empty d) r in
    List.filter line (get_record d.record)

  let restrict_label_present t l =
676
677
678
679
680
681
682
    let restr = function 
      | (true, d) -> if non_empty d then (false,d) else raise Exit 
      | x -> x in
    let aux accu r =  
      try SortedMap.change l restr (false,any) r :: accu
      with Exit -> accu in
    List.fold_left aux [] t
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

  let restrict_label_absent t l =
    let restr = function (true, _) -> (true,empty) | _ -> raise Exit in
    let aux accu r =  
      try SortedMap.change l restr (true,empty) r :: accu
      with Exit -> accu in
    List.fold_left aux [] t

  let restrict_field t l d =
    let restr (_,d1) = 
      let d1 = cap d d1 in 
      if is_empty d1 then raise Exit else (false,d1) in
    let aux accu r = 
      try SortedMap.change l restr (false,d) r :: accu 
      with Exit -> accu in
    List.fold_left aux [] t

  let project_field t l =
    let aux accu x =
      match List.assoc l x with
	| (false,t) -> cup accu t
	| _ -> raise Not_found
705
    in
706
707
    List.fold_left aux empty t

708
709
710
  let project d l =
    project_field (get_record d.record) l

711
712
713
714
715
716
717
718
719
  type normal = 
      [ `Success
      | `Fail
      | `Label of label * (descr * normal) list * normal ]

  let rec merge_record n r =
    match (n, r) with
      | (`Success, _) | (_, []) -> `Success
      | (`Fail, r) ->
720
721
	  let aux (l,(o,t)) n = 
	    `Label (l, [t,n], if o then n else `Fail) in
722
723
724
725
	  List.fold_right aux r `Success
      | (`Label (l1,present,absent), (l2,(o,t2))::r') ->
	  if (l1 < l2) then
	    let pr =  List.map (fun (t,x) -> (t, merge_record x r)) present in
726
727
728
729
	    let t = List.fold_left (fun a (t,_) -> diff a t) any present in
	    let pr = 
	      if non_empty t then (t, merge_record `Fail r) :: pr
	      else pr in
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
	    `Label (l1,pr,merge_record absent r)
	  else if (l2 < l1) then
	    let n' = merge_record n r' in
	    `Label (l2, [t2, n'], if o then n' else n)
	  else
	    let res = ref [] in
	    let aux a (t,x) = 
	      (let t = diff t t2 in 
	       if non_empty t then res := (t,x) :: !res);
	      (let t = cap t t2 in
	       if non_empty t then res := (t, merge_record x r') :: !res);
	      diff a t 
	    in
	    let t2 = List.fold_left aux t2 present in
	    let () = 
	      if non_empty t2 then 
	      res := (t2, merge_record `Fail r') :: !res in
	    let abs = if o then merge_record absent r' else absent in
	    `Label (l1, !res, abs)

750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
  module Unify = Map.Make(struct type t = normal let compare = compare end)

  let repository = ref Unify.empty

  let rec canonize = function
    | `Label (l,pr,ab) as x ->
	(try Unify.find x !repository 
	 with Not_found -> 
	   let pr = List.map (fun (t,n) -> canonize n,t) pr in
	   let pr = SortedMap.from_list cup pr in
	   let pr = List.map (fun (n,t) -> (t,n)) pr in
	   let x = `Label (l, pr, canonize ab) in
	   try Unify.find x !repository
	   with Not_found -> repository := Unify.add x x !repository; x
	)
    | x -> x
766
767

  let normal d =
768
769
770
    let r = canonize (List.fold_left merge_record `Fail (get d)) in
    repository := Unify.empty;
    r
771

772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
  type normal' =
      [ `Success
      | `Label of label * (descr * descr) list * descr option ] option

(* NOTE: this function relies on the fact that generic order
         makes smallest labels appear first *)

  let first_label d =
    let d = d.record in
    let min = ref None in
    let lab (l,o,t) = match !min with 
      | Some l' when l >= l' -> () 
      | _ -> if o && (descr t = any) then () else min := Some l in
    let line (p,n) =
      (match p with f::_ -> lab f | _ -> ());
      (match n with f::_ -> lab f | _ -> ()) in
    List.iter line d;
    match !min with
      | None -> if d = [] then `Empty else `Any
      | Some l -> `Label l

  let normal' (d : descr) l =
    let ab = ref empty in
    let rec extract f = function
      | (l',o,t) :: rem when l = l' -> 
	  f o (descr t); extract f rem
      | x :: rem -> x :: (extract f rem)
      | [] -> [] in
    let line (p,n) =
      let ao = ref true and ad = ref any in
      let p = 
	extract (fun o d -> ao := !ao && o; ad := cap !ad d) p
      and n = 
	extract (fun o d -> ao := !ao && not o; ad := diff !ad d) n
      in
      (* Note: p and n are still sorted *)
      let d = { empty with record = [(p,n)] } in
      if !ao then ab := cup d !ab;
      (!ad, d) in
    let pr = List.map line d.record in
    let pr = Product.normal_aux pr in
    let ab = if is_empty !ab then None else Some !ab in
    (pr, ab)
	    
816

817
818
  let any = { empty with record = any.record }
  let is_empty d = d = []
819
820
821
  let descr l =
    let line l = map_sort (fun (l,(o,d)) -> (l,o,cons d)) l, [] in 
    { empty with record = map_sort line l }
822
823
end

824
825


826
let memo_normalize = ref DescrMap.empty
827
828
829


let rec rec_normalize d =
830
  try DescrMap.find d !memo_normalize
831
832
  with Not_found ->
    let n = make () in
833
    memo_normalize := DescrMap.add d n !memo_normalize;
834
    let times = 
835
836
837
      map_sort
	(fun (d1,d2) -> [(rec_normalize d1, rec_normalize d2)],[])
	(Product.normal d)
838
    in
839
840
841
842
    let record = 
      map_sort
	(fun f -> map_sort (fun (l,(o,d)) -> (l,o,rec_normalize d)) f, [])
	(Record.get d)
843
    in
844
    define n { d with times = times; record = record };
845
846
847
    n

let normalize n =
848
  descr (internalize (rec_normalize n))
849

850
851
module Arrow =
struct
852
853
854
855
  let check_simple left s1 s2 =
    let rec aux accu1 accu2 = function
      | (t1,t2)::left ->
          let accu1' = diff_t accu1 t1 in
856
          if non_empty accu1' then aux accu1 accu2 left;
857
          let accu2' = cap_t accu2 t2 in
858
          if non_empty accu2' then aux accu1 accu2 left
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
      | [] -> raise NotEmpty
    in
    let accu1 = descr s1 in
    (is_empty accu1) ||
    (try aux accu1 (diff any (descr s2)) left; true with NotEmpty -> false)
      
  let check_strenghten t s =
    let left = match t.arrow with [ (p,[]) ] -> p | _ -> assert false in
    let rec aux = function
      | [] -> raise Not_found
      | (p,n) :: rem ->
	  if (List.for_all (fun (a,b) -> check_simple left a b) p) &&
	    (List.for_all (fun (a,b) -> not (check_simple left a b)) n) then
	      { empty with arrow = [ (SortedList.cup left p, n) ] }
	  else aux rem
    in
    aux s.arrow

877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
  let check_simple_iface left s1 s2 =
    let rec aux accu1 accu2 = function
      | (t1,t2)::left ->
          let accu1' = diff accu1 t1 in
          if non_empty accu1' then aux accu1 accu2 left;
          let accu2' = cap accu2 t2 in
          if non_empty accu2' then aux accu1 accu2 left
      | [] -> raise NotEmpty
    in
    let accu1 = descr s1 in
    (is_empty accu1) ||
    (try aux accu1 (diff any (descr s2)) left; true with NotEmpty -> false)

  let check_iface iface s =
    let rec aux = function
      | [] -> false
      | (p,n) :: rem ->
	  ((List.for_all (fun (a,b) -> check_simple_iface iface a b) p) &&
	   (List.for_all (fun (a,b) -> not (check_simple_iface iface a b)) n))
	  || (aux rem)
    in
    aux s.arrow

900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
  type t = descr * (descr * descr) list list

  let get t =
    List.fold_left
      (fun ((dom,arr) as accu) (left,right) ->
	 if Sample.check_empty_arrow_line left right 
	 then accu
	 else (
	   let left =
	     List.map 
	       (fun (t,s) -> (descr t, descr s)) left in
	   let d = List.fold_left (fun d (t,_) -> cup d t) empty left in
	   (cap dom d, left :: arr)
	 )
      )
      (any, [])
      t.arrow

  let domain (dom,_) = dom

  let apply_simple t result left = 
    let rec aux result accu1 accu2 = function
      | (t1,s1)::left ->
          let result = 
	    let accu1 = diff accu1 t1 in
            if non_empty accu1 then aux result accu1 accu2 left
            else result in
          let result =
	    let accu2 = cap accu2 s1 in
            aux result accu1 accu2 left in
	  result
      | [] -> 
          if subtype accu2 result 
	  then result
	  else cup result accu2
    in
    aux result t any left
      
  let apply (_,arr) t =
    List.fold_left (apply_simple t) empty arr

941
942
943
944
945
946
947
948
949
950
951
952
  let need_arg (dom, arr) =
    List.exists (function [_] -> false | _ -> true) arr

  let apply_noarg (_,arr) =
    List.fold_left 
      (fun accu -> 
	 function 
	   | [(t,s)] -> cup accu s
	   | _ -> assert false
      )
      empty arr

953
  let any = { empty with arrow = any.arrow }
954
  let is_empty (_,arr) = arr = []
955
956
957
end
  

958
module Int = struct
959
960
  let has_int d i = Intervals.contains i d.ints

961
962
963
964
965
  let get d = d.ints
  let put i = { empty with ints = i }
  let is_int d = is_empty { d with ints = Intervals.empty }
  let any = { empty with ints = Intervals.any }
end
966

967
968
969
970
module Atom = struct
  let has_atom d a = Atoms.contains a d.atoms
end

971
972
module Char = struct
  let has_char d c = Chars.contains c d.chars
973
  let any = { empty with chars = Chars.any }
974
975
end

976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
(*
let rec print_normal_record ppf = function
  | Success -> Format.fprintf ppf "Yes"
  | Fail -> Format.fprintf ppf "No"
  | FirstLabel (l,present,absent) ->
      Format.fprintf ppf "%s?@[<v>@\n" (label_name l);
      List.iter
        (fun (t,n) ->
	   Format.fprintf ppf "(%a)=>@[%a@]@\n" 
	     Print.print_descr t
	     print_normal_record n
	) present;
      if absent <> Fail then
	Format.fprintf ppf "(absent)=>@[%a@]@\n" print_normal_record absent;
      Format.fprintf ppf "@]" 
*)
992

993

994
995
(* 
let pr s = Types.Print.print Format.std_formatter (Syntax.make_type (Syntax.parse s));;
996

997
998
let pr' s = Types.Print.print Format.std_formatter 
   (Types.normalize (Syntax.make_type (Syntax.parse s)));;
999

1000
1001
1002
BUG:
pr "'a | 'b where 'a = ('a , 'a) and 'b= ('b , 'b)";;
*)
1003

1004

1005
1006
1007
1008
1009
1010
(*
  let nr s =
    let t = Types.descr (Syntax.make_type (Syntax.parse s)) in
    let n = Types.normal_record' t.Types.record in
    Types.print_normal_record Format.std_formatter n;;
*)