boolVar.ml 13.8 KB
Newer Older
1 2 3 4
let (<) : int -> int -> bool = (<)
let (>) : int -> int -> bool = (>)
let (=) : int -> int -> bool = (=)

5
(* this is the the of the Constructor container *)
6
module type E = sig
7
  type elem 
8 9 10 11 12 13 14 15 16 17 18
  include Custom.T

  val empty : t
  val full  : t
  val cup   : t -> t -> t
  val cap   : t -> t -> t
  val diff  : t -> t -> t
  val atom  : elem -> t

end

19
module type S = sig
Pietro Abate's avatar
Pietro Abate committed
20

21
  type s
22
  type elem = s Var.pairvar
23
  include Custom.T
24

25
  (* returns the union of all leaves in the BDD *)
26
  val leafconj: t -> s
27

28
  val get: t -> (elem list * elem list) list
29 30 31

  val empty : t
  val full  : t
Pietro Abate's avatar
Pietro Abate committed
32 33 34
  (* same as full, but we keep it for the moment to avoid chaging 
   * the code everywhere *)
  val any  : t
35 36 37 38
  val cup   : t -> t -> t
  val cap   : t -> t -> t
  val diff  : t -> t -> t
  val atom  : elem -> t
39

40 41
  val trivially_disjoint: t -> t -> bool

42
  (* vars a : return a bdd that is ( Any ^ Var a ) *)
43
  val vars  : Var.var -> t
44

45
  val iter: (elem -> unit) -> t -> unit
46 47 48 49 50 51 52

  val compute: empty:'b -> full:'b -> cup:('b -> 'b -> 'b) 
    -> cap:('b -> 'b -> 'b) -> diff:('b -> 'b -> 'b) ->
    atom:(elem -> 'b) -> t -> 'b

  val is_empty : t -> bool

53
  val pp_print : Format.formatter -> t -> unit
54

55
  val print : ?f:(Format.formatter -> elem -> unit) -> t -> (Format.formatter -> unit) list
56

57
(*
58
  val extractvars : t -> [> `Var of Var.t ] bdd * t 
59
*)
60 61
end

62
module type MAKE = functor (T : E) -> S with type s = T.t
63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
(* ternary BDD
 * where the nodes are Atm of X.t | Var of String.t
 * Variables are always before Values
 * All the leaves are then base types 
 *
 * we add a third case when two leaves of the bdd are of the same
 * kind, that's it Val of t1 , Val of t2
 *
 * This representation can be used for all kinds.
 * Intervals, Atoms and Chars can be always merged (for union and intersection)
 * Products can be merged for intersections
 * Arrows can be never merged
 *
 * extract_var : copy the orginal tree and on one copy put to zero all 
 * leaves that have an Atm on the other all leaves that have a Var
 *
 * *)

82
module Make (T : E) : S with type s = T.t = struct
83 84
  (* ternary decision trees . cf section 11.3.3 Frish PhD *)
  (* plus variables *)
85 86
  (* `Atm are containers (Atoms, Chars, Intervals, Pairs ... )
   * `Var are String
87
   *)
Pietro Abate's avatar
Pietro Abate committed
88

89
  type s = T.t
90
  type elem = s Var.pairvar
91
  module X : Custom.T with type t = elem = Var.Make(T)
92 93 94 95 96 97 98
  type 'a bdd =
    [ `True
    | `False
    | `Split of int * 'a * ('a bdd) * ('a bdd) * ('a bdd) ]
  type t = elem bdd

  let rec equal_aux eq a b =
99 100
    (a == b) ||
    match (a,b) with
101
      | `Split (h1,x1,p1,i1,n1), `Split (h2,x2,p2,i2,n2) ->
102
	  (h1 == h2) &&
103 104
	  (equal_aux eq p1 p2) && (equal_aux eq i1 i2) &&
	  (equal_aux eq n1 n2) && (eq x1 x2)
105 106
      | _ -> false

107 108
  let equal = equal_aux X.equal

109 110 111 112 113 114
(* Idea: add a mutable "unique" identifier and set it to
   the minimum of the two when egality ... *)

  let rec compare a b =
    if (a == b) then 0 
    else match (a,b) with
115
      | `Split (h1,x1, p1,i1,n1), `Split (h2,x2, p2,i2,n2) ->
116 117 118 119 120
	  if h1 < h2 then -1 else if h1 > h2 then 1 
	  else let c = X.compare x1 x2 in if c <> 0 then c
	  else let c = compare p1 p2 in if c <> 0 then c
	  else let c = compare i1 i2 in if c <> 0 then c 
	  else compare n1 n2
121 122 123 124
      | `True,_  -> -1
      | _, `True -> 1
      | `False,_ -> -1
      | _,`False -> 1
125 126

  let rec hash = function
127 128
    | `True -> 1
    | `False -> 0
Pietro Abate's avatar
Pietro Abate committed
129
    | `Split(h,_,_,_,_) -> h
130 131

  let compute_hash x p i n = 
132
	(X.hash x) + 17 * (hash p) + 257 * (hash i) + 16637 * (hash n)
133 134

  let rec check = function
135
    | `True -> ()
136 137
    | `False -> ()
    | `Split (h,x,p,i,n) ->
138
	assert (h = compute_hash x p i n);
139 140 141
	(match p with `Split (_,y,_,_,_) -> assert (X.compare x y < 0) | _ -> ());
	(match i with `Split (_,y,_,_,_) -> assert (X.compare x y < 0) | _ -> ());
	(match n with `Split (_,y,_,_,_) -> assert (X.compare x y < 0) | _ -> ());
142 143 144 145
	X.check x; check p; check i; check n

  let atom x =
    let h = X.hash x + 17 in (* partial evaluation of compute_hash... *)
146
    `Split (h, x,`True,`False,`False)
Pietro Abate's avatar
Pietro Abate committed
147

148
  let vars v =
149 150 151
    let compute_hash x p i n = 
        (Var.hash x) + 17 * (hash p) + 257 * (hash i) + 16637 * (hash n)
    in
152 153 154
    let a = atom (`Atm T.full) in 
    let h = compute_hash v a `False `False in 
    ( `Split (h,v,a,`False,`False) :> t )
155 156

  let rec iter f = function
157
    | `Split (_, x, p,i,n) -> f x; iter f p; iter f i; iter f n
158 159 160
    | _ -> ()

  let rec dump ppf = function
161 162 163 164 165
    | `True -> Format.fprintf ppf "+"
    | `False -> Format.fprintf ppf "-"
    | `Split (_,x, p,i,n) -> 
	Format.fprintf ppf "%a(@[%a,%a,%a@])" 
	X.dump x (*X.hash x*) dump p dump i dump n
166 167

  let rec print f ppf = function
168 169 170
    | `True -> Format.fprintf ppf "Any"
    | `False -> Format.fprintf ppf "Empty"
    | `Split (_, x, p,i, n) ->
171 172 173
	let flag = ref false in
	let b () = if !flag then Format.fprintf ppf " | " else flag := true in
	(match p with 
174 175
	   | `True -> b(); Format.fprintf ppf "%a" f x
	   | `False -> ()
176 177
	   | _ -> b (); Format.fprintf ppf "%a & @[(%a)@]" f x (print f) p );
	(match i with 
178 179
	   | `True -> assert false;
	   | `False -> ()
180 181
	   | _ -> b(); print f ppf i);
	(match n with 
182 183
	   | `True -> b (); Format.fprintf ppf "@[~%a@]" f x
	   | `False -> ()
184
	   | _ -> b (); Format.fprintf ppf "@[~%a@] & @[(%a)@]" f x (print f) n)
185

Pietro Abate's avatar
Pietro Abate committed
186
  let pp_print = print X.dump
187

188
  let print ?(f=X.dump) = function
189
    | `True -> assert false (* [] a bdd cannot be of this type *)
190 191
    | `False -> [ fun ppf -> Format.fprintf ppf "Empty" ]
    | c -> [ fun ppf -> print f ppf c ]
192

193 194 195 196
  (* return a list of pairs, where each pair holds the list
   * of positive and negative elements on a branch *)
  let get x =
    let rec aux accu pos neg = function
197
      | `True -> (List.rev pos, List.rev neg) :: accu
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
      | `False -> accu
      | `Split (_,x, p,i,n) ->
        let accu = aux accu (x::pos) neg p in
        let accu = aux accu pos (x::neg) n in
        let accu = aux accu pos neg i in
        accu
    in aux [] [] [] x

  let leafconj x = 
    let rec aux accu = function
      | `True -> accu
      | `False -> accu
      | `Split (_,`Atm x, `True,`False,`False) -> x :: accu
      | `Split (_,`Atm x, _,_,_) -> assert false
      | `Split (_,`Var x, p,i,n) ->
        let accu = aux accu p in
        let accu = aux accu n in
        let accu = aux accu i in
        accu
    in
    List.fold_left T.cup T.empty (aux [] x)
219 220 221

  let compute ~empty ~full ~cup ~cap ~diff ~atom b =
    let rec aux = function
222 223 224
      | `True -> full
      | `False -> empty
      | `Split(_,x, p,i,n) ->
225 226 227 228 229 230 231 232 233 234
	  let p = cap (atom x) (aux p)
	  and i = aux i
	  and n = diff (aux n) (atom x) in
	  cup (cup p i) n
    in
    aux b
      
(* Invariant: correct hash value *)

  let split0 x pos ign neg =
235
    `Split (compute_hash x pos ign neg, x, pos, ign, neg)
236

237 238 239
  let empty = `False
  let full = split0 (`Atm T.full) `True `False `False
  let any = full
240 241 242 243

  let is_empty t = (t == empty)

(* Invariants:
244
     `Split (x, pos,ign,neg) ==>  (ign <> `True), (pos <> neg)
245 246 247 248
*)

  let rec has_true = function
    | [] -> false
249
    | `True :: _ -> true
250 251
    | _ :: l -> has_true l

252 253 254 255
  let rec has_same a = function
    | [] -> false
    | b :: l -> (equal a b) || (has_same a l)

256 257
  (* split removes redundant subtrees from the positive and negative
   * branch if they are present in the lazy union branch *)
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
  let rec split x p i n =
    if X.equal (`Atm T.empty) x then `False
    (* 0?p:i:n -> 0 *)
    else if i == `True then `True 
    (* x?p:1:n -> 1 *)
    else if equal p n then p ++ i
    else let p = simplify p [i] and n = simplify n [i] in
    (* x?p:i:n when p = n -> bdd of (p ++ i) *)
    if equal p n then p ++ i 
    else split0 x p i n

  (* simplify t l -> bdd of ( t // l ) *)
  and simplify a l =
    match a with
      | `False -> `False
      | `True -> if has_true l then `False else `True
      | `Split (_,`Atm x, `False,`False,`True) ->
          split (`Atm(T.diff T.full x)) `True `False `False
      | `Split (_,x,p,i,n) ->
        if (has_true l) || (has_same a l) then `False
        else s_aux2 a x p i n [] [] [] l
  and s_aux2 a x p i n ap ai an = function
    | [] -> 
      let p = simplify p ap 
      and n = simplify n an
      and i = simplify i ai in
      if equal p n then p ++ i else split0 x p i n
    | b :: l -> s_aux3 a x p i n ap ai an l b 
  and s_aux3 a x p i n ap ai an l = function
    | `False -> s_aux2 a x p i n ap ai an l
    | `True -> assert false
    | `Split (_,x2,p2,i2,n2) as b ->
      if equal a b then `False 
      else let c = X.compare x2 x in
      if c < 0 then s_aux3 a x p i n ap ai an l i2
      else if c > 0 then s_aux2 a x p i n (b :: ap) (b :: ai) (b :: an) l
      else s_aux2 a x p i n (p2 :: i2 :: ap) (i2 :: ai) (n2 :: i2 :: an) l

  (* Inv : all leafs are of type Atm and they are always merged *)
  (* union *)
  and ( ++ ) a b = if a == b then a
  else match (a,b) with
    | `True, _ | _, `True -> `True
    | `False, a | a, `False -> a
302

303 304
    | `Split (_,`Atm x1, `True,`False,`False), `Split (_,`Atm x2, `True,`False,`False) ->
        split (`Atm (T.cup x1 x2)) `True `False `False
305

Pietro Abate's avatar
Pietro Abate committed
306 307
    | `Split (_,`Atm x1, `False,`False,`True), `Split (_,`Atm x2, `False,`False,`True)
    | `Split (_,`Atm x1, `True,`False,`False), `Split (_,`Atm x2, `False,`False,`True)
308 309 310 311 312 313 314 315
    | `Split (_,`Atm x1, `False,`False,`True), `Split (_,`Atm x2, `True,`False,`False) ->
        assert false
    
    | `Split (_,x1, p1,i1,n1), `Split (_,x2, p2,i2,n2) ->
      let c = X.compare x1 x2 in
      if c = 0 then split x1 (p1 ++ p2) (i1 ++ i2) (n1 ++ n2)
      else if c < 0 then split x1 p1 (i1 ++ b) n1
      else split x2 p2 (i2 ++ a) n2
316 317 318 319 320 321

(* seems better not to make ++ and this split mutually recursive;
   is the invariant still inforced ? *)

  (* intersection *)
  let rec ( ** ) a b = if a == b then a else match (a,b) with
322 323
    | `True, a | a, `True -> a
    | `False, _ | _, `False -> `False
324

325 326
    | `Split (_,`Atm x1, `True,`False,`False), `Split (_,`Atm x2, `True,`False,`False) ->
        split (`Atm(T.cap x1 x2)) `True `False `False
327

328 329
    | `Split (_,`Atm x1, `False,`False,`True), `Split (_,`Atm x2, `False,`False,`True) ->
        split (`Atm(T.cap (T.diff T.full x1) (T.diff T.full x2))) `True `False `False
330

331 332
    | `Split (_,`Atm x1, `True,`False,`False), `Split (_,`Atm x2, `False,`False,`True) ->
        split (`Atm(T.cap x1 (T.diff T.full x2))) `True `False `False
333

334 335
    | `Split (_,`Atm x1, `False,`False,`True), `Split (_,`Atm x2, `True,`False,`False) ->
        split (`Atm(T.cap (T.diff T.full x1) x2)) `True `False `False
336

337
    | `Split (_,x1, p1,i1,n1), `Split (_,x2, p2,i2,n2) ->
338 339 340 341 342 343 344 345 346 347
	let c = X.compare x1 x2 in
	if c = 0 then
	  split x1 
	    (p1 ** (p2 ++ i2) ++ (p2 ** i1))
	    (i1 ** i2)
	    (n1 ** (n2 ++ i2) ++ (n2 ** i1))  
	else if c < 0 then split x1 (p1 ** b) (i1 ** b) (n1 ** b)
	else split x2 (p2 ** a) (i2 ** a) (n2 ** a)

  let rec trivially_disjoint a b =
348
    if a == b then a == `False
349
    else match (a,b) with
350 351 352
      | `True, a | a, `True -> a == `False
      | `False, _ | _, `False -> true
      | `Split (_,x1, p1,i1,n1), `Split (_,x2, p2,i2,n2) ->
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
	  let c = X.compare x1 x2 in
	  if c = 0 then
(* try expanding -> p1 p2; p1 i2; i1 p2; i1 i2 ... *)
	    trivially_disjoint (p1 ++ i1) (p2 ++ i2) &&
	    trivially_disjoint (n1 ++ i1) (n2 ++ i2)
	  else if c < 0 then
	    trivially_disjoint p1 b &&
	    trivially_disjoint i1 b &&
	    trivially_disjoint n1 b
	  else
	    trivially_disjoint p2 a &&
	    trivially_disjoint i2 a &&
	    trivially_disjoint n2 a

  let rec neg = function
368 369 370 371 372 373 374 375
    | `True -> `False
    | `False -> `True
    | `Split (_,`Atm x, `True,`False,`False) -> split0 (`Atm(T.diff T.full x)) `True `False `False
    | `Split (_,`Atm x, `False,`False,`True) -> split0 (`Atm(T.diff T.full x)) `True `False `False
    | `Split (_,x, p,i,`False) -> split x `False (neg (i ++ p)) (neg i)
    | `Split (_,x, `False,i,n) -> split x (neg i) (neg (i ++ n)) `False 
    | `Split (_,x, p,`False,n) -> split x (neg p) (neg (p ++ n)) (neg n)  
    | `Split (_,x, p,i,n) -> split x (neg (i ++ p)) `False (neg (i ++ n))
376 377 378
	      
  let rec ( // ) a b =
    let negatm = T.diff T.full in
379
    if a == b then `False 
380
    else match (a,b) with
381 382 383
      | `False,_ | _, `True -> `False
      | a, `False -> a
      | `True, b -> neg b
384

385 386
      | `Split (_,`Atm x1, `True,`False,`False), `Split (_,`Atm x2, `True,`False,`False) ->
          split (`Atm(T.diff x1 x2)) `True `False `False
387

388 389
      | `Split (_,`Atm x1, `False,`False,`True), `Split (_,`Atm x2, `False,`False,`True) ->
          split (`Atm(T.diff (negatm x1) (negatm x2))) `True `False `False
390

391 392
      | `Split (_,`Atm x1, `True,`False,`False), `Split (_,`Atm x2, `False,`False,`True) ->
          split (`Atm(T.diff x1 (negatm x2))) `True `False `False
393

394 395
      | `Split (_,`Atm x1, `False,`False,`True), `Split (_,`Atm x2, `True,`False,`False) ->
          split (`Atm(T.diff (negatm x1) x2)) `True `False `False
396

397
      | `Split (_,x1, p1,i1,n1), `Split (_,x2, p2,i2,n2) ->
398 399
	  let c = X.compare x1 x2 in
	  if c = 0 then
400
	    if (i2 == `False) && (n2 == `False) 
401 402
	    then split x1 (p1 // p2) (i1 // p2) (n1 ++ i1)
	    else 
403
	      split x1 ((p1++i1) // (p2 ++ i2)) `False ((n1++i1) // (n2 ++ i2))
404 405 406
	  else if c < 0 then
	    split x1 (p1 // b) (i1 // b) (n1 // b) 
	  else
407
	    split x2 (a // (i2 ++ p2)) `False (a // (i2 ++ n2))
408 409 410 411 412
	      
  let cup = ( ++ )
  let cap = ( ** )
  let diff = ( // )

413
(*
414
  (* return a couple of trees (v,a)
415 416 417
   * v = only variables as leaves
   * a = only atoms as leaves
   *)
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
  let rec extractvars = function
    (* `True or `False can only be under a variable *)
    | `True -> `True,`False
    | `False -> `False,`False
    | `Split (_,`Atm _, `True,`False,`False) as x -> `False, x
    | `Split (_,`Atm _, _,_,_) -> assert false
    | `Split (_,((`Var y) as x),p,i,n) ->
        let p1,p2 = extractvars p in
        let i1,i2 = extractvars i in
        let n1,n2 = extractvars n in
        (* let v = `Split (compute_hash x p1 i1 n1,x,p1,i1,n1) in   *)
        let v = (fst(gensplit Pervasives.compare (fun x -> x) (fun x -> x) (fun _ -> false)) x p1 i1 n1) in
        let t = split x p2 i2 n2 in
        assert(v <> `True);
        (v,t)
433
*)
Pietro Abate's avatar
Pietro Abate committed
434

435
end