typer.ml 55 KB
Newer Older
1
(* TODO:
2
 - rewrite type-checking of operators to propagate constraint
3
 - check whether it is worth using recursive hash-consing internally
4
5
*)

6
7
8
open Location
open Ast
open Ident
9

10
11
12
13
14
15
let (=) (x:int) y = x = y
let (<=) (x:int) y = x <= y
let (<) (x:int) y = x < y
let (>=) (x:int) y = x >= y
let (>) (x:int) y = x > y

16
17
let debug_schema = false

18
let warning loc msg =
19
  let v = Location.get_viewport () in
20
  let ppf = if Html.is_html v then Html.ppf v else Format.err_formatter in
21
22
23
  Format.fprintf ppf "Warning %a:@\n" Location.print_loc (loc,`Full);
  Location.html_hilight (loc,`Full);
  Format.fprintf ppf "%s@." msg
24

25
26
27
28
29
30
31
32
33
exception NonExhaustive of Types.descr
exception Constraint of Types.descr * Types.descr
exception ShouldHave of Types.descr * string
exception ShouldHave2 of Types.descr * string * Types.descr
exception WrongLabel of Types.descr * label
exception UnboundId of id * bool
exception UnboundExtId of Types.CompUnit.t * id
exception Error of string

34
35
36

exception Warning of string * Types.t

37
38
39
40
let raise_loc loc exn = raise (Location (loc,`Full,exn))
let raise_loc_str loc ofs exn = raise (Location (loc,`Char ofs,exn))
let error loc msg = raise_loc loc (Error msg)

41

42
43
type item =
  | Type of Types.t
44
  | Val of Types.t
45

46
47
48
49
50
type ext =
  | ECDuce of Types.CompUnit.t   (* CDuce unit *)
  | EOCaml of string             (* OCaml module *)
  | ESchema of string            (* XML Schema *)

51
52
module UEnv = Map.Make(U)

53
type t = {
54
  ids : item Env.t;
55
  ns: Ns.table;
56
  cu: ext UEnv.t;
57
}
58

59
60
61
62
63
let hash _ = failwith "Typer.hash"
let compare _ _ = failwith "Typer.compare"
let dump ppf _ = failwith "Typer.dump"
let equal _ _ = failwith "Typer.equal"
let check _ = failwith "Typer.check"
64

65
66
67

let load_schema_fwd = ref (fun x uri -> assert false)

68
let enter_schema ?prefix x uri env =
69
70
71
72
73
74
75
  let sch = !load_schema_fwd x uri in
  { env with 
      cu = UEnv.add x (ESchema uri) env.cu;
      ns = (match prefix with 
	      | Some p -> 
		  Ns.add_prefix p sch.Schema_types.targetNamespace env.ns
	      | None -> env.ns) }
76
77


78
(* TODO: filter out builtin defs ? *)
79
80
81
82
let serialize_item s = function
  | Type t -> Serialize.Put.bits 1 s 0; Types.serialize s t
  | Val t -> Serialize.Put.bits 1 s 1; Types.serialize s t

83
let serialize s env =
84
  Serialize.Put.env Id.serialize serialize_item Env.iter s env.ids;
85
86
87
  Ns.serialize_table s env.ns;

  let schs =
88
89
90
    UEnv.fold (fun name cu accu -> 
		 match cu with ESchema uri -> (name,uri)::accu | _ -> accu) 
      env.cu [] in
91
  Serialize.Put.list (Serialize.Put.pair U.serialize Serialize.Put.string) s schs
92

93
94
95
96
97
let deserialize_item s = match Serialize.Get.bits 1 s with
  | 0 -> Type (Types.deserialize s)
  | 1 -> Val (Types.deserialize s)
  | _ -> assert false

98
let deserialize s =
99
  let ids = Serialize.Get.env Id.deserialize deserialize_item Env.add Env.empty s in
100
  let ns = Ns.deserialize_table s in
101
102
103
104
  let schs = 
    Serialize.Get.list 
      (Serialize.Get.pair U.deserialize Serialize.Get.string) s in
  let env = 
105
    { ids = ids; ns = ns; cu = UEnv.empty } in
106
  List.fold_left (fun env (name,uri) -> enter_schema name uri env) env schs
107
108


109
110
let empty_env = {
  ids = Env.empty;
111
  ns = Ns.empty_table;
112
  cu = UEnv.empty;
113
114
}

115
116
117
let from_comp_unit = ref (fun (cu : Types.CompUnit.t) -> assert false)
let has_comp_unit = ref (fun cu -> assert false)
let has_ocaml_unit = ref (fun cu -> false)
118

119
let enter_cu x cu env =
120
  { env with cu = UEnv.add x (ECDuce cu) env.cu }
121

122
let find_cu loc x env =
123
  try UEnv.find x env.cu
124
125
126
127
  with Not_found ->
    if !has_comp_unit x then (ECDuce (Types.CompUnit.mk x))
    else if !has_ocaml_unit x then (EOCaml (U.get_str x))
    else error loc ("Cannot find external unit " ^ (U.to_string x))
128
129


130
let find_schema x env =
131
132
133
134
135
136
  try 
    (match UEnv.find x env.cu with
      | ESchema s -> s 
      | _ -> raise Not_found)
  with Not_found -> 
    raise (Error (Printf.sprintf "%s: no such schema" (U.to_string x)))
137

138
139
140
141
142
143
144
145
let enter_type id t env =
  { env with ids = Env.add id (Type t) env.ids }
let enter_types l env =
  { env with ids = 
      List.fold_left (fun accu (id,t) -> Env.add id (Type t) accu) env.ids l }
let find_type id env =
  match Env.find id env.ids with
    | Type t -> t
146
    | Val _ -> raise Not_found
147

148

149
let enter_value id t env = 
150
  { env with ids = Env.add id (Val t) env.ids }
151
152
let enter_values l env =
  { env with ids = 
153
      List.fold_left (fun accu (id,t) -> Env.add id (Val t) accu) env.ids l }
154
155
156
let enter_values_dummy l env =
  { env with ids = 
      List.fold_left (fun accu id -> Env.add id (Val Types.empty) accu) env.ids l }
157
158
let find_value id env =
  match Env.find id env.ids with
159
    | Val t -> t
160
    | _ -> raise Not_found
161
162
163
let find_value_global loc cu id env =
  try find_value id (!from_comp_unit cu)
  with Not_found -> raise_loc loc (UnboundExtId (cu,id))
164
	
165
166
167
168
169
170
let value_name_ok id env =
  try match Env.find id env.ids with
    | Val t -> true
    | _ -> false
  with Not_found -> true

171
172
173
174
let iter_values env f =
  Env.iter (fun x ->
	      function Val t -> f x t;
		| _ -> ()) env.ids
175

176

177
let register_types cu env =
178
179
180
  Env.iter (fun x t -> match t with
	      | Type t -> Types.Print.register_global cu (Ident.value x) t
	      | _ -> ()) env.ids
181

182

183
(* Namespaces *)
184

185
let set_ns_table_for_printer env = 
186
  Ns.InternalPrinter.set_table env.ns
187

188
let get_ns_table tenv = tenv.ns
189

190
let enter_ns p ns env =
191
  { env with ns = Ns.add_prefix p ns env.ns }
192

193
194
195
196
197
let protect_error_ns loc f x =
  try f x
  with Ns.UnknownPrefix ns ->
    raise_loc_generic loc 
    ("Undefined namespace prefix " ^ (U.to_string ns))
198

199
200
201
let qname env loc t = 
  protect_error_ns loc (Ns.map_tag env.ns) t
    
202
203
204
205
206
207
208
209
210
211
let ident env loc t =
  let q = protect_error_ns loc (Ns.map_attr env.ns) t in
  Ident.ident q

let has_value id env =
  try match Env.find (Ident.ident (Ns.map_attr env.ns id)) env.ids with
    | Val t -> true
    | _ -> false
  with Not_found | Ns.UnknownPrefix _ -> false

212
let parse_atom env loc t =
213
  Atoms.V.of_qname (qname env loc t)
214
215
 
let parse_ns env loc ns =
216
  protect_error_ns loc (Ns.map_prefix env.ns) ns
217

218
let parse_label env loc t =
219
  let (ns,l) = protect_error_ns loc (Ns.map_attr env.ns) t in
220
  LabelPool.mk (ns,l)
221

222
223
224
225
226
227
228
229
230
231
232
233
234
let parse_record env loc f r =
  let r = List.map (fun (l,x) -> (parse_label env loc l, f x)) r in
  LabelMap.from_list (fun _ _ -> raise_loc_generic loc "Duplicated record field") r

let rec const env loc = function
  | LocatedExpr (loc,e) -> const env loc e
  | Pair (x,y) -> Types.Pair (const env loc x, const env loc y)
  | Xml (x,y) -> Types.Xml (const env loc x, const env loc y)
  | RecordLitt x -> Types.Record (parse_record env loc (const env loc) x)
  | String (i,j,s,c) -> Types.String (i,j,s,const env loc c)
  | Atom t -> Types.Atom (parse_atom env loc t)
  | Integer i -> Types.Integer i
  | Char c -> Types.Char c
235
  | Const c -> c
236
237
238
239
  | _ -> raise_loc_generic loc "This should be a scalar or structured constant"

(* I. Transform the abstract syntax of types and patterns into
      the internal form *)
240

241

242
(* Schema *)
243

244
(* uri -> schema binding *)
245
let schemas = Hashtbl.create 3
246

247
let find_schema_descr uri (name : Ns.qname) =
248
  try
249
250
251
252
253
    let sch = snd (Hashtbl.find schemas uri) in
    fst (Env.find (Ident.ident name) sch)
  with Not_found ->    
    raise (Error (Printf.sprintf "No component named '%s' found in schema '%s'"
		    (Ns.QName.to_string name) uri))
254
255


256
257
258
259
260
261
let find_type_global loc cu id env =
  match find_cu loc cu env with
    | ECDuce cu -> find_type id (!from_comp_unit cu)
    | EOCaml _ -> error loc "OCaml units don't export types" (* TODO *)
    | ESchema s -> find_schema_descr s (Ident.value id)
	
262

263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
module IType = struct
  type node = {
    mutable desc: desc;
    mutable smallhash: int;  (* Local hash *)
    mutable rechash: int;    (* Global (recursive) hash *)
    mutable sid: int;        (* Sequential id used to compute rechash *)
    mutable t: Types.t option;
    mutable tnode: Types.Node.t option;
    mutable p: Patterns.descr option;
    mutable pnode: Patterns.node option;
    mutable fv: fv option
  } 
  and desc =
    | ILink of node
    | IType of Types.descr * int
    | IOr of node * node
    | IAnd of node * node
    | IDiff of node * node
    | ITimes of node * node
    | IXml of node * node
    | IArrow of node * node
    | IOptional of node
    | IRecord of bool * (node * node option) label_map
    | ICapture of id
    | IConstant of id * Types.const

  let rec node_temp = { 
    desc = ILink node_temp;
    smallhash = 0; rechash = 0; sid = 0;
    t = None; tnode = None; p = None; pnode = None;
    fv = None
  }
			
296
(* Recursive hash-consing *)
297

298
299
300
301
302
303
  let hash_field f = function
    | (p, Some e) -> 1 + 17 * f p + 257 * f e
    | (p, None) -> 2 + 17 * f p

  let rec hash f n = match n.desc with
    | ILink n -> hash f n
304
    | IType (t,h) -> 1 + 17 * h
305
306
307
308
309
310
311
312
313
    | IOr (p1,p2) -> 2 + 17 * f p1 + 257 * f p2
    | IAnd (p1,p2) -> 3 + 17 * f p1 + 257 * f p2
    | IDiff (p1,p2) -> 4 + 17 * f p1 + 257 * f p2
    | ITimes (p1,p2) -> 5 + 17 * f p1 + 257 * f p2
    | IXml (p1,p2) -> 6 + 17 * f p1 + 257 * f p2
    | IArrow (p1,p2) -> 7 + 17 * f p1 + 257 * f p2
    | IOptional p -> 8 + 17 * f p
    | IRecord (o,r)->9+(if o then 17 else 0)+
	257*(LabelMap.hash (hash_field f) r)
314
315
316
    | ICapture x -> 10 + 17 * (Id.hash x)
    | IConstant (x,c) -> 11 + 17 * (Id.hash x) + 257*(Types.Const.hash c)

317
318
319
320
321
  let hash0 = hash (fun n -> 1)
  let hash1 = hash hash0
  let hash2 = hash hash1
  let hash3 = hash hash2

322
323
  let smallhash n =
    if n.smallhash !=0 then n.smallhash
324
325
326
327
    else (
      let h = hash2 n in 
      n.smallhash <- h; h
    )
328
329

  let rec repr = function
330
    | { desc = ILink n } as m -> let z = repr n in m.desc <- ILink z; z
331
332
333
334
    | n -> n

  let back = ref []

335
336
337
338
  let rec prot_repr = function
    | { desc = ILink n } -> repr n
    | n -> n

339
340
341
342
343
344
345
346
347
  let link x y = match x,y with
    | { t = None } as x, y 
    | y, ({ t = None } as x) -> back := (x,x.desc) :: !back; x.desc <- ILink y
    | _ -> assert false

  exception Unify

  let rec unify x y =
    if x == y then ()
348
349
350
351
352
    else let x = prot_repr x and y = prot_repr y in if x == y then ()
    else if (smallhash x != smallhash y) then raise Unify 
    else if (x.t != None) && (y.t != None) then raise Unify
      (* x and y have been internalized; if they were equivalent,
	 they would be equal *)
353
    else match x.desc,y.desc with
354
      | IType (tx,_), IType (ty,_) when Types.equal tx ty -> link x y
355
356
357
358
359
      | IOr (x1,x2), IOr (y1,y2)
      | IAnd (x1,x2), IAnd (y1,y2)
      | IDiff (x1,x2), IDiff (y1,y2)
      | ITimes (x1,x2), ITimes (y1,y2)
      | IXml (x1,x2), IXml (y1,y2)
360
361
      | IArrow (x1,x2), IArrow (y1,y2) -> link x y; unify x1 y1; unify x2 y2
      | IOptional x1, IOptional y1 -> link x y; unify x1 y1
362
363
364
365
366
367
368
369
370
371
372
      | IRecord (xo,xr), IRecord (yo,yr) when xo == yo ->
	  link x y; LabelMap.may_collide unify_field Unify xr yr
      | ICapture xv, ICapture yv when Id.equal xv yv -> ()
      | IConstant (xv,xc), IConstant (yv,yc) when
	  Id.equal xv yv && Types.Const.equal xc yc -> ()
      | _ -> raise Unify
  and unify_field f1 f2 = match f1,f2 with
    | (p1, Some e1), (p2, Some e2) -> unify p1 p2; unify e1 e2
    | (p1, None), (p2, None) -> unify p1 p2
    | _ -> raise Unify

373

374
375
  let may_unify x y =
    try unify x y; back := []; true
376
    with Unify ->
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
      List.iter (fun (x,xd) -> x.desc <- xd) !back; back := []; false

  module SmallHash = Hashtbl.Make(
    struct 
      type t = node
      let equal = may_unify
      let hash = smallhash
    end
  )

  let iter_field f = function
    | (x, Some y) -> f x; f y
    | (x, None) -> f x
  let iter f = function
    | IOr (x,y) | IAnd (x,y) | IDiff (x,y)
    | ITimes (x,y) | IXml (x,y) | IArrow (x,y) -> f x; f y
    | IOptional x -> f x
    | IRecord (_,r) -> LabelMap.iter (iter_field f) r
    | _ -> ()

  let minimize ((mem,add) as h) =
    let rec aux n =
      let n = repr n in
400
401
402
403
      if mem n then () else (
	let n = repr n in add n (); 
	if n.t == None then iter aux n.desc
      )
404
405
406
407
408
409
410
    in aux

  let to_clear = ref []
  let sid = ref 0
  let rec rechash n =
    let n = repr n in
    if (n.sid != 0) then 17 * n.sid
411
    else (incr sid; n.sid <- !sid; to_clear := n :: !to_clear; hash rechash n)
412
413

  let clear () =
414
415
    sid := 0; List.iter (fun x -> x.sid <- 0) !to_clear;
    to_clear := []
416
417
418
419
420
421
422
423
424
425
426
427
428
429

  let rechash n =
    let n = repr n in
    if (n.rechash != 0) then n.rechash 
    else (let h = rechash n in clear (); n.rechash <- h; h)

  module RecHash = Hashtbl.Make(
    struct
      type t = node
      let equal = may_unify
      let hash = smallhash
    end
  )

430
431
432

(** Two-phases recursive hash-consing **)
(*
433
434
435
  let gtable = RecHash.create 17577

  let internalize n =
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
    let local = SmallHash.create 17 in
    minimize (SmallHash.mem local, SmallHash.add local) n; 
    minimize (RecHash.mem gtable, RecHash.add gtable) n;
    ()
*)

(** Single-phase hash-consing **)
  let gtable = SmallHash.create 17

  let internalize n =
    minimize (SmallHash.mem gtable, SmallHash.add gtable) n



(*  let internalize n = () *)
451
452
453
454
455
456
457
458
459

(* Compute free variables *)

  let fv n =
    let fv = ref IdSet.empty in
    let rec aux n =
      let n = repr n in
      if (n.sid = 0) then (
	n.sid <- 1;
460
	to_clear := n :: !to_clear; 
461
462
463
464
465
466
	match n.fv, n.desc with
	  | Some x, _ -> fv := IdSet.cup !fv x
	  | None, (ICapture x | IConstant (x,_)) -> fv := IdSet.add x !fv
	  | None, d -> iter aux d
      )
    in
467
    assert(!to_clear == []);
468
469
470
471
    match n.fv with
      | Some x -> x
      | None -> aux n; clear (); n.fv <- Some !fv; !fv

472
473
474
(* optimized version to check closedness *)

  let no_fv = Some IdSet.empty
475
476
477
  exception FoundFv of id
  let peek_fv n =
    let err x = raise (FoundFv x) in
478
479
480
481
482
483
    let rec aux n =
      let n = repr n in
      if (n.sid = 0) then (
	n.sid <- 1;
	to_clear := n :: !to_clear; 
	match n.fv, n.desc with
484
485
	  | Some x, _ when IdSet.is_empty x -> ()
	  | Some x, _ -> err (IdSet.choose x)
486
487
488
489
	  | None, (ICapture x | IConstant (x,_)) -> err x;
	  | None, d -> iter aux d
      )
    in
490
    assert(!to_clear == []);
491
492
    try
      match n.fv with
493
494
	| Some x when IdSet.is_empty x -> ()
	| Some x -> err (IdSet.choose x)
495
496
497
498
499
	| None -> aux n; 
	    List.iter (fun n -> n.sid <- 0; n.fv <- no_fv) !to_clear;
	    to_clear := []
    with exn -> clear (); raise exn

500
501
502
503
504
505
506
507
508
509
510
  let check_no_fv loc n =
    try peek_fv n 
    with FoundFv x ->
      raise_loc_generic loc 
	("Capture variable not allowed: " ^ (Ident.to_string x))

  let has_no_fv n =
    try peek_fv n; true
    with FoundFv _ -> false


511
(* From the intermediate representation to the internal one *)
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536


  let rec typ n =
    let n = repr n in
    match n.t with
      | Some t -> t
      | None -> let t = compute_typ n.desc in n.t <- Some t; t
  and compute_typ = function
    | IType (t,_) -> t
    | IOr (s1,s2) -> Types.cup (typ s1) (typ s2)
    | IAnd (s1,s2) ->  Types.cap (typ s1) (typ s2)
    | IDiff (s1,s2) -> Types.diff (typ s1) (typ s2)
    | ITimes (s1,s2) -> Types.times (typ_node s1) (typ_node s2)
    | IXml (s1,s2) -> Types.xml (typ_node s1) (typ_node s2)
    | IArrow (s1,s2) -> Types.arrow (typ_node s1) (typ_node s2)
    | IOptional s -> Types.Record.or_absent (typ s)
    | IRecord (o,r) ->  Types.record' (o, LabelMap.map compute_typ_field r)
    | ILink _ -> assert false
    | ICapture _ | IConstant (_,_) -> assert false
  and compute_typ_field = function
    | (s, None) -> typ_node s
    | (s, Some _) -> 
	raise (Patterns.Error "Or-else clauses are not allowed in types")

  and typ_node n =
537
    let n = repr n in
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
    match n.tnode with
      | Some t -> t
      | None ->
	  let x = Types.make () in
	  n.tnode <- Some x;
	  Types.define x (typ n);
	  x
      
  let rec pat n =
    let n = repr n in
    if IdSet.is_empty (fv n)
    then Patterns.constr (typ n)
    else match n.p with
      | Some p -> p
      | None -> let p = compute_pat n.desc in n.p <- Some p; p

  and compute_pat = function
    | IOr (s1,s2) -> Patterns.cup (pat s1) (pat s2)
    | IAnd (s1,s2) -> Patterns.cap (pat s1) (pat s2)
    | IDiff (s1,s2) when IdSet.is_empty (fv s2) ->
	let s2 = Types.neg (typ s2) in
	Patterns.cap (pat s1) (Patterns.constr s2)
    | IDiff _ ->
	raise (Patterns.Error "Differences are not allowed in patterns")
    | ITimes (s1,s2) -> Patterns.times (pat_node s1) (pat_node s2)
    | IXml (s1,s2) -> Patterns.xml (pat_node s1) (pat_node s2)
    | IOptional _ -> 
	raise (Patterns.Error "Optional fields are not allowed in record patterns")
    | IRecord (o,r) ->
	let pats = ref [] in
	let aux l = function
	  | (s,None) ->
	      if IdSet.is_empty (fv s) then typ_node s
	      else
		( pats := Patterns.record l (pat_node s) :: !pats;
		  Types.any_node )
	  | (s,Some e) ->
	      if IdSet.is_empty (fv s) then
		raise (Patterns.Error "Or-else clauses are not allowed in types")
	      else
		( pats := Patterns.cup 
		    (Patterns.record l (pat_node s))
		    (pat e) :: !pats;
		  Types.Record.any_or_absent_node )
	in
	let constr = Types.record' (o,LabelMap.mapi aux r) in
	List.fold_left Patterns.cap (Patterns.constr constr) !pats
	  (* TODO: can avoid constr when o=true, and all fields have fv *)
    | ICapture x -> Patterns.capture x
    | IConstant (x,c) -> Patterns.constant x c
    | IArrow _ ->
	raise (Patterns.Error "Arrows are not allowed in patterns")
    | IType _ | ILink _ -> assert false
      
  and pat_node n =
593
    let n = repr n in
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
    match n.pnode with
      | Some p -> p
      | None ->
	  let x = Patterns.make (fv n) in
	  try
	    n.pnode <- Some x;
	    Patterns.define x (pat n);
	    x
	  with exn -> n.pnode <- None; raise exn

(* From AST to the intermediate representation *)

  type penv = {
    penv_tenv : t;
    penv_derec : node Env.t;
  }

  let penv tenv = { penv_tenv = tenv; penv_derec = Env.empty }

  let mk d = { node_temp with desc = d }
  let mk_delayed () = { node_temp with desc = ILink node_temp }
  let itype t = mk (IType (t, Types.hash t))
  let iempty = itype Types.empty

  let ior p1 p2 =
619
620
    if p1.desc == iempty.desc then p2 
    else if p2.desc == iempty.desc then p1 
621
622
623
    else mk (IOr (p1,p2))

  let iand p1 p2 =
624
    if (p1.desc == iempty.desc) || (p2.desc == iempty.desc) then iempty 
625
626
627
628
629
    else mk (IAnd (p1,p2))

  type regexp =
    | PElem of node
    | PGuard of node
630
631
    | PSeq of regexp list
    | PAlt of regexp list
632
633
634
    | PStar of regexp
    | PWeakStar of regexp

635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
  let rec nullable = function
    | PElem _ -> false
    | PSeq rl -> List.for_all nullable rl
    | PAlt rl -> List.exists nullable rl
    | PStar _ | PWeakStar _ | PGuard _ -> true

  let eps = PSeq []
  let emp = PAlt []

  let seq r1 r2 =
    let r1 = match r1 with PSeq l -> l | x -> [ x ] in
    let r2 = match r2 with PSeq l -> l | x -> [ x ] in
    match r1 @ r2 with
      | [ x ] -> x
      | l -> PSeq l

  let alt r1 r2 =
    let r1 = match r1 with PAlt l -> l | x -> [ x ] in
    let r2 = match r2 with PAlt l -> l | x -> [ x ] in
    match r1 @ r2 with
      | [ x ] -> x
      | l -> PAlt l

  let rec merge_alt = function
659
    | PElem p::PElem q::l -> merge_alt (PElem (ior p q) :: l)
660
661
    | r::l -> r::(merge_alt l)
    | [] -> []
662
663
664
665
666
667
668
669
670

(* Works only for types, not patterns, because
   [ (x&Int|_) R' ] is possible *)
  let rec simplify_regexp = function
    | PSeq l -> PSeq (List.map simplify_regexp l)
    | PAlt l -> PAlt (merge_alt (List.map simplify_regexp l))
    | PStar r | PWeakStar r -> PStar (simplify_regexp r)
    | x -> x

671
672
673
674
675
676
677
678
679
  let rec print_regexp ppf = function
    | PElem _ -> Format.fprintf ppf "Elem"
    | PGuard _ -> Format.fprintf ppf "Guard"
    | PSeq l -> Format.fprintf ppf "Seq(%a)" print_regexp_list l
    | PAlt l -> Format.fprintf ppf "Alt(%a)" print_regexp_list l
    | PStar r -> Format.fprintf ppf "Star(%a)" print_regexp r
    | PWeakStar r -> Format.fprintf ppf "WStar(%a)" print_regexp r
  and print_regexp_list ppf l =
    List.iter (fun x -> Format.fprintf ppf "%a;" print_regexp x) l
680

681
682
  let rec remove_regexp r q = 
    match r with
683
684
685
686
    | PElem p ->
	mk (ITimes (p, q))
    | PGuard p ->
	iand p q
687
688
689
690
    | PSeq l ->
	List.fold_right (fun r a -> remove_regexp r a) l q
    | PAlt rl ->
	List.fold_left (fun a r -> ior a (remove_regexp r q)) iempty rl
691
692
693
    | PStar r ->
	let x = mk_delayed () in
	let res = ior x q in
694
	x.desc <- ILink (remove_regexp_nullable r res iempty);
695
696
697
698
	res
    | PWeakStar r ->
	let x = mk_delayed () in
	let res = ior q x in
699
	x.desc <- ILink (remove_regexp_nullable r res iempty);
700
	res
701
702
703
704
705

  and remove_regexp_nullable r q_nonempty q_empty =
    if nullable r then remove_regexp2 r q_nonempty q_empty
    else remove_regexp r q_nonempty

706
  and remove_regexp2 r q_nonempty q_empty =
707
708
    (* Assume r is nullable *)
    if q_nonempty == q_empty then remove_regexp r q_nonempty
709
    else match r with
710
      | PSeq [] ->
711
712
          q_empty
      | PElem p ->
713
	  assert false
714
715
      | PGuard p ->
	  iand p q_empty
716
717
718
719
720
721
722
723
      | PSeq (r::rl) ->
          remove_regexp2 r
            (remove_regexp (PSeq rl) q_nonempty)
            (remove_regexp2 (PSeq rl) q_nonempty q_empty)
      | PAlt rl ->
	  List.fold_left 
	    (fun a r -> ior a (remove_regexp_nullable r q_nonempty q_empty))
	    iempty rl
724
725
      | PStar r ->
 	  let x = mk_delayed () in
726
          x.desc <- ILink (remove_regexp_nullable r (ior x q_nonempty) iempty);
727
728
729
          ior x q_empty
      | PWeakStar r ->
 	  let x = mk_delayed () in
730
          x.desc <- ILink (remove_regexp_nullable r (ior q_nonempty x) iempty);
731
732
733
734
735
736
737
738
739
          ior q_empty x


  let cst_nil = Types.Atom Sequence.nil_atom
  let capture_all vars p = 
    IdSet.fold (fun p x -> iand p (mk (ICapture x))) p vars
  let termin b vars p = 
    if b then p 
    else IdSet.fold 
740
      (fun p x -> seq p (PGuard (mk (IConstant (x,cst_nil))))) p vars
741
742
743

  let rexp r = remove_regexp r (itype Sequence.nil_type)

744
745
  let all_delayed = ref []

746
747
  let clean_on_err () = all_delayed := []

748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
  let delayed loc =
    let s = mk_delayed () in
    all_delayed := (loc,s) :: !all_delayed;
    s

  let check_one_delayed (loc,p) =
    let rec aux q = if p == q then raise Exit; aux2 q.desc
    and aux2 = function
      | IOr (q1,q2) | IAnd (q1,q2) | IDiff (q1,q2) -> aux q1; aux q2
      | ILink q -> aux q
      | _ -> ()
    in
    try aux2 p.desc
    with Exit -> error loc "Ill-formed recursion"
    
  let check_delayed () =
    let l = !all_delayed in
    all_delayed := []; 
    List.iter check_one_delayed l
    
768
  let rec derecurs env p = match p.descr with
769
    | PatVar (cu,v) -> derecurs_var env p.loc cu v
770
(*
771
772
773
774
    | SchemaVar (kind, schema_name, component_name) ->

	let name = qname env.penv_tenv  p.loc component_name in
	itype (find_schema_descr env.penv_tenv kind schema_name name)
775
*)
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792

    | Recurs (p,b) -> derecurs (derecurs_def env b) p
    | Internal t -> itype t
    | NsT ns -> 
	itype (Types.atom (Atoms.any_in_ns (parse_ns env.penv_tenv p.loc ns)))
    | Or (p1,p2) -> mk (IOr (derecurs env p1, derecurs env p2))
    | And (p1,p2) -> mk (IAnd (derecurs env p1, derecurs env p2))
    | Diff (p1,p2) -> mk (IDiff (derecurs env p1, derecurs env p2))
    | Prod (p1,p2) -> mk (ITimes (derecurs env p1, derecurs env p2))
    | XmlT (p1,p2) -> mk (IXml (derecurs env p1, derecurs env p2))
    | Arrow (p1,p2) -> mk (IArrow (derecurs env p1, derecurs env p2))
    | Optional p -> mk (IOptional (derecurs env p))
    | Record (o,r) -> 
	let aux = function
	  | (p,Some e) -> (derecurs env p, Some (derecurs env e))
	  | (p,None) -> derecurs env p, None in
	mk (IRecord (o, parse_record env.penv_tenv p.loc aux r))
793
794
    | Constant (x,c) -> mk (IConstant (ident env.penv_tenv p.loc x,
				       const env.penv_tenv p.loc c))
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
    | Cst c -> itype (Types.constant (const env.penv_tenv p.loc c))
    | Regexp r ->
	let r,_ = derecurs_regexp IdSet.empty false IdSet.empty true env r in
	rexp r
	  
  and derecurs_regexp vars b rvars f env = function
      (* - vars: seq variables to be propagated top-down and added
	 to each captured element
	 - b: below a star ?
	 - rvars: seq variables that appear on the right of the regexp
	 - f: tail position
	 
	 returns the set of seq variable of the regexp minus rvars
	 (they have already been terminated if not below a star)
      *)
    | Epsilon -> 
811
	PSeq [], IdSet.empty
812
813
814
815
816
817
818
    | Elem p -> 
	PElem (capture_all vars (derecurs env p)), IdSet.empty
    | Guard p ->
	PGuard (derecurs env p), IdSet.empty
    | Seq (p1,p2) -> 
	let (p2,v2) = derecurs_regexp vars b rvars f env p2 in
	let (p1,v1) = derecurs_regexp vars b (IdSet.cup rvars v2) false env p1 in
819
	seq p1 p2, IdSet.cup v1 v2
820
821
822
    | Alt (p1,p2) -> 
	let (p1,v1) = derecurs_regexp vars b rvars f env p1
	and (p2,v2) = derecurs_regexp vars b rvars f env p2 in
823
	alt (termin b (IdSet.diff v2 v1) p1) (termin b (IdSet.diff v1 v2) p2),
824
825
826
827
828
829
830
	IdSet.cup v1 v2
    | Star p -> 
	let (p,v) = derecurs_regexp vars true rvars false env p in
	termin b v (PStar p), v
    | WeakStar p -> 
	let (p,v) = derecurs_regexp vars true rvars false env p in
	termin b v (PWeakStar p), v
831
832
    | SeqCapture (loc,x,p) -> 
	let x = ident env.penv_tenv loc x in
833
834
835
836
837
	let vars = if f then vars else IdSet.add x vars in
	let after = IdSet.mem rvars x in
	let rvars = IdSet.add x rvars in
	let (p,v) = derecurs_regexp vars b rvars false env p in
	(if f 
838
	 then seq (PGuard (mk (ICapture x))) p 
839
840
841
842
	 else termin (after || b) (IdSet.singleton x) p), 
	(if after then v else IdSet.add x v)
	  
	  
843
844
845
846
847
  and derecurs_var env loc cu v =
    let v = ident env.penv_tenv loc v in
    match cu with
      | None ->
	  (try Env.find v env.penv_derec 
848
849
850
	   with Not_found -> 
	     try itype (find_type v env.penv_tenv)
	     with Not_found -> mk (ICapture v))
851
852
853
854
855
856
      | Some cu ->
	  (try itype (find_type_global loc cu v env.penv_tenv)
	   with Not_found ->
	     raise_loc_generic loc 
	       ("Unbound external type " ^ (U.get_str cu) ^ "." ^ 
		  (Ident.to_string v)))
857
858
	      
  and derecurs_def env b =
859
860
861
862
863
864
865
866
867
868
869
870
871
    let seen = ref IdSet.empty in
    let b = 
      List.map 
	(fun (loc,v,p) -> 
	   let v = ident env.penv_tenv loc v in
	   if IdSet.mem !seen v then 
	     raise_loc_generic loc
	       ("Multiple definitions for the type identifer " ^ 
		  (Ident.to_string v));
	   seen := IdSet.add v !seen;
	   (v,p,delayed loc))
	b in

872
873
874
875
876
877
    let n = 
      List.fold_left (fun env (v,p,s) -> Env.add v s env) env.penv_derec b in
    let env = { env with penv_derec = n } in
    List.iter (fun (v,p,s) -> s.desc <- ILink (derecurs env p)) b;
    env

878
879
880
881
882
  let derec penv p =
    let d = derecurs penv p in
    check_delayed ();
    internalize d;
    d
883
884


885
(* API *)
886
887
888
889

  module Ids = Set.Make(Id)
  let type_defs env b =
    let penv = derecurs_def (penv env) b in
890
891
892
893
894
895
    let aux t =
      let d = derec penv t in
      check_no_fv t.loc d;
      try typ d
      with Patterns.Error s -> raise_loc_generic t.loc s
    in
896
897
    let b = 
      List.map 
898
	(fun (loc,v,p) ->
899
	   let t = aux p in
900
901
902
903
	   if (loc <> noloc) && (Types.is_empty t) then
	     warning loc 
	       ("This definition yields an empty type for " ^ (U.to_string v));
	   let v = ident env loc v in
904
	   (v,t)) b in
905
906
    List.iter (fun (v,t) -> Types.Print.register_global 
		 (Types.CompUnit.get_current ()) (Id.value v) t) b;
907
908
    b

909
910
911
912
  let type_defs env b =
    try type_defs env b
    with exn -> clean_on_err (); raise exn

913

914
  let typ_descr d =
915
916
    try internalize d; typ d
    with exn -> clean_on_err (); raise exn
917

918
  let typ env t = 
919
920
921
922
923
924
    try
      let d = derec (penv env) t in
      check_no_fv t.loc d;
      try typ_node d
      with Patterns.Error s -> raise_loc_generic t.loc s
    with exn -> clean_on_err (); raise exn
925
926

  let pat env t = 
927
928
929
930
931
    try
      let d = derec (penv env) t in
      try pat_node d
      with Patterns.Error s -> raise_loc_generic t.loc s
    with exn -> clean_on_err (); raise exn
932
end
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948

let typ = IType.typ
let pat = IType.pat
let type_defs = IType.type_defs

let dump_types ppf env =
  Env.iter (fun v -> 
	      function 
		  (Type _) -> Format.fprintf ppf " %a" Ident.print v
		| _ -> ()) env.ids

let dump_ns ppf env =
  Ns.dump_table ppf env.ns



949

950
951
(* II. Build skeleton *)

952

953
type type_fun = Types.t -> bool -> Types.t
954

955
module Fv = IdSet
956

957
958
959
type branch = Branch of Typed.branch * branch list

let cur_branch : branch list ref = ref []
960

961
let exp loc fv e =
962
963
  fv,
  { Typed.exp_loc = loc;
964
    Typed.exp_typ = Types.empty;
965
    Typed.exp_descr = e;
966
  }
967

968
let ops = Hashtbl.create 13
969
970
let register_op op arity f = Hashtbl.add ops op (arity,f)
let typ_op op = snd (Hashtbl.find ops op)
971

972
973
974
975
976
let fun_name env a =
  match a.fun_name with
    | None -> None
    | Some (loc,s) -> Some (ident env loc s)

977
let is_op env s = 
978
979
980
981
982
983
984
985
986
987
  if (Env.mem s env.ids) then None
  else
    let (ns,s) = Id.value s in
    if Ns.equal ns Ns.empty then
      let s = U.get_str s in
      try 
	let o = Hashtbl.find ops s in
	Some (s, fst o)
      with Not_found -> None
    else None
988

989
990
let rec expr env loc = function
  | LocatedExpr (loc,e) -> expr env loc e
991
  | Forget (e,t) ->
992
      let (fv,e) = expr env loc e and t = typ env t in
993
      exp loc fv (Typed.Forget (e,t))
994
995
  | Check (e,t) ->
      let (fv,e) = expr env loc e and t = typ env t in
996
      exp loc fv (Typed.Check (ref Types.empty,e,t))
997
  | Var s -> var env loc s
998
  | Apply (e1,e2) -> 
999
1000
1001
1002
1003
1004
1005
1006
      let (fv1,e1) = expr env loc e1 and (fv2,e2) = expr env loc e2 in
      let fv = Fv.cup fv1 fv2 in
      (match e1.Typed.exp_descr with
	 | Typed.Op (op,arity,args) when arity > 0 -> 
	     exp loc fv (Typed.Op (op,arity - 1,args @ [e2]))
	 | _ ->
	     exp loc fv (Typed.Apply (e1,e2)))
  | Abstraction a -> abstraction env loc a
1007
  | (Integer _ | Char _ | Atom _ | Const _) as c -> 
1008
      exp loc Fv.empty (Typed.Cst (const env loc c))
1009
  | Pair (e1,e2) ->
1010
      let (fv1,e1) = expr env loc e1 and (fv2,e2) = expr env loc e2 in
1011
1012
      exp loc (Fv.cup fv1 fv2) (Typed.Pair (e1,e2))
  | Xml (e1,e2) ->
1013
      let (fv1,e1) = expr env loc e1 and (fv2,e2) = expr env loc e2 in
1014
      exp loc (Fv.cup fv1 fv2) (Typed.Xml (e1,e2))
1015
  | Dot (LocatedExpr (_,Var cu), id) when not (has_value cu env) ->
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
      (match find_cu loc cu env with
	 | ECDuce cu ->
	     let id = ident env loc id in
	     let t = find_value_global loc cu id env in
	     exp loc Fv.empty (Typed.ExtVar (cu, id, t))
	 | EOCaml cu ->
	     extern loc env (cu ^ "." ^ U.get_str id) []
	       (* TODO: allow nested OCaml modules A.B.C.x *)
	 | ESchema _ ->
	     error loc "Schema don't export values")
1026
  | Dot (e,l) ->
1027
1028
      let (fv,e) = expr env loc e in
      exp loc fv (Typed.Dot (e,parse_label env loc l))
1029
  | RemoveField (e,l) ->
1030
1031
      let (fv,e) = expr env loc e in
      exp loc fv (Typed.RemoveField (e,parse_label env loc l))
1032
1033
  | RecordLitt r -> 
      let fv = ref Fv.empty in
1034
      let r = parse_record env loc
1035
		(fun e -> 
1036
		   let (fv2,e) = expr env loc e 
1037
1038
1039
		   in fv := Fv.cup !fv fv2; e)
		r in
      exp loc !fv (Typed.RecordLitt r)
1040
  | String (i,j,s,e) ->
1041
      let (fv,e) = expr env loc e in
1042
      exp loc fv (Typed.String (i,j,s,e))
1043
  | Match (e,b) -> 
1044
1045
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
1046
      exp loc (Fv.cup fv1 fv2) (Typed.Match (e, b))
1047
  | Map (e,b) ->
1048
1049
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
1050
1051
      exp loc (Fv.cup fv1 fv2) (Typed.Map (e, b))
  | Transform (e,b) ->
1052
1053
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
1054
      exp loc (Fv.cup fv1 fv2) (Typed.Transform (e, b))
1055
  | Xtrans (e,b) ->
1056
1057
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
1058
      exp loc (Fv.cup fv1 fv2) (Typed.Xtrans (e, b))
1059
  | Validate (e,schema,elt) ->
1060
      let (fv,e) = expr env loc e in
1061
      let uri = find_schema schema env in
1062
      exp loc fv (Typed.Validate (e, uri, qname env loc elt))
1063
  | Try (e,b) ->
1064
1065
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
1066
      exp loc (Fv.cup fv1 fv2) (Typed.Try (e, b))
1067
  | NamespaceIn (pr,ns,e) ->
1068
1069
      let env = enter_ns pr ns env in
      expr env loc e
1070
  | Ref (e,t) ->
1071
      let (fv,e) = expr env loc e and t = typ env t in
1072
      exp loc fv (Typed.Ref (e,t))
1073
  | External (s,args) ->
1074
      extern loc env s args
1075
1076
1077
1078
1079
1080
1081
1082
1083
	
and extern loc env s args = 
  let args = List.map (typ env) args in
  try
    let (i,t) = Externals.resolve s args in
    exp loc Fv.empty (Typed.External (t,i))
  with exn -> raise_loc loc exn
    
and var env loc s =
1084
1085
  let id = ident env loc s in
  match is_op env id with