typer.ml 27.2 KB
Newer Older
1
2
(* I. Transform the abstract syntax of types and patterns into
      the internal form *)
3
4
5
6

open Location
open Ast

7
8
9
10
module S = struct type t = string let compare = compare end
module StringMap = Map.Make(S)
module StringSet = Set.Make(S)

11
exception NonExhaustive of Types.descr
12
exception MultipleLabel of Types.label
13
exception Constraint of Types.descr * Types.descr * string
14
exception ShouldHave of Types.descr * string
15
exception WrongLabel of Types.descr * Types.label
16
exception UnboundId of string
17
18

let raise_loc loc exn = raise (Location (loc,exn))
19
20
21
22

(* Internal representation as a graph (desugar recursive types and regexp),
   to compute freevars, etc... *)

23
type ti = {
24
  id : int; 
25
  mutable seen : bool;
26
  mutable loc' : loc;
27
  mutable fv : StringSet.t option; 
28
29
30
31
32
  mutable descr': descr;
  mutable type_node: Types.node option;
  mutable pat_node: Patterns.node option
} 
and descr =
33
34
35
36
37
38
39
40
41
42
43
  | IAlias of string * ti
  | IType of Types.descr
  | IOr of ti * ti
  | IAnd of ti * ti
  | IDiff of ti * ti
  | ITimes of ti * ti
  | IXml of ti * ti
  | IArrow of ti * ti
  | IRecord of bool * (Types.label * bool * ti) list
  | ICapture of Patterns.capture
  | IConstant of Patterns.capture * Types.const
44
45
    

46
47
type glb = ti StringMap.t

48
49
let mk' =
  let counter = ref 0 in
50
  fun loc ->
51
    incr counter;
52
53
    let rec x = { 
      id = !counter; 
54
      seen = false;
55
      loc' = loc; 
56
      fv = None; 
57
      descr' = IAlias ("__dummy__", x);
58
59
60
      type_node = None; 
      pat_node = None 
    } in
61
62
63
    x

let cons loc d =
64
  let x = mk' loc in
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
  x.descr' <- d;
  x
    
(* Note:
   Compilation of Regexp is implemented as a ``rewriting'' of
   the parsed syntax, in order to be able to print its result
   (for debugging for instance)
   
   It would be possible (and a little more efficient) to produce
   directly ti nodes.
*)
    
module Regexp = struct
  let defs = ref []
  let name =
    let c = ref 0 in
    fun () ->
      incr c;
      "#" ^ (string_of_int !c)

  let rec seq_vars accu = function
    | Epsilon | Elem _ -> accu
    | Seq (r1,r2) | Alt (r1,r2) -> seq_vars (seq_vars accu r1) r2
    | Star r | WeakStar r -> seq_vars accu r
    | SeqCapture (v,r) -> seq_vars (StringSet.add v accu) r

91
92
  let uniq_id = let r = ref 0 in fun () -> incr r; !r

93
94
95
  type flat =  
    | REpsilon 
    | RElem of int * Ast.ppat  (* the int arg is used
96
					    to stop generic comparison *)
97
98
99
100
    | RSeq of flat * flat
    | RAlt of flat * flat
    | RStar of flat
    | RWeakStar of flat
101

102
103
  let re_loc = ref noloc

104
  let rec propagate vars : regexp -> flat = function
105
106
107
108
109
110
    | Epsilon -> REpsilon
    | Elem x -> let p = vars x in RElem (uniq_id (),p)
    | Seq (r1,r2) -> RSeq (propagate vars r1,propagate vars r2)
    | Alt (r1,r2) -> RAlt (propagate vars r1, propagate vars r2)
    | Star r -> RStar (propagate vars r)
    | WeakStar r -> RWeakStar (propagate vars r)
111
    | SeqCapture (v,x) -> 
112
	let v= mk !re_loc (Capture v) in
113
	propagate (fun p -> mk !re_loc (And (vars p,v))) x
114

115
116
117
118
119
  let dummy_pat = mk noloc (PatVar "DUMMY")
  let cup r1 r2 =
    if r1 == dummy_pat then r2 else
      if r2 == dummy_pat then r1 else
	mk !re_loc (Or (r1,r2))
120

121
122
123
124
125
126
127
(*TODO: review this compilation schema to avoid explosion when
  coding (Optional x) by  (Or(Epsilon,x)); memoization ... *)

  module Memo = Map.Make(struct type t = flat list let compare = compare end)
  module Coind = Set.Make(struct type t = flat list let compare = compare end)
  let memo = ref Memo.empty

128

129
130
  let rec compile fin e seq : Ast.ppat = 
    if Coind.mem seq !e then dummy_pat
131
    else (
132
      e := Coind.add seq !e;
133
134
      match seq with
	| [] ->
135
136
	    fin
	| REpsilon :: rest -> 
137
	    compile fin e rest
138
139
140
	| RElem (_,p) :: rest -> 
	    mk !re_loc (Prod (p, guard_compile fin rest))
	| RSeq (r1,r2) :: rest -> 
141
	    compile fin e (r1 :: r2 :: rest)
142
	| RAlt (r1,r2) :: rest -> 
143
	    cup (compile fin e (r1::rest)) (compile fin e (r2::rest))
144
	| RStar r :: rest -> 
145
	    cup (compile fin e (r::seq)) (compile fin e rest) 
146
	| RWeakStar r :: rest -> 
147
148
	    cup (compile fin e rest) (compile fin e (r::seq))
    )
149
  and guard_compile fin seq =
150
    try Memo.find seq !memo
151
152
153
    with
	Not_found ->
          let n = name () in
154
	  let v = mk !re_loc (PatVar n) in
155
156
          memo := Memo.add seq v !memo;
	  let d = compile fin (ref Coind.empty) seq in
157
158
	  assert (d != dummy_pat);
	  defs := (n,d) :: !defs;
159
160
	  v

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
(*
  type trans = [ `Alt of gnode * gnode | `Elem of Ast.ppat * gnode | `Final ]
  and gnode = 
      {
	mutable seen  : bool;
	mutable compile : bool;
	name  : string;
	mutable trans : trans;
      }

  let new_node() = { seen = false; compile = false; 
		     name = name(); trans = `Final }
  let to_compile = ref []

  let rec compile after = function
    | `Epsilon -> after
    | `Elem (_,p) -> 
	if not after.compile then (after.compile <- true; 
				   to_compile := after :: !to_compile);
	{ new_node () with trans = `Elem (p, after)  }
    | `Seq(r1,r2) -> compile (compile after r2) r1
    | `Alt(r1,r2) ->
	let r1 = compile after r1 and r2 = compile after r2 in
	{ new_node () with trans = `Alt (r1,r2) }
    | `Star r ->
	let n  = new_node() in
	n.trans <- `Alt (compile n r, after);
	n
    | `WeakStar r ->
	let n  = new_node() in
	n.trans <- `Alt (after, compile n r);
	n

  let seens = ref []	
  let rec collect_aux accu n =
    if n.seen then accu 
    else ( seens := n :: !seens;
	   match n.trans with
	     | `Alt (n1,n2) -> collect_aux (collect_aux accu n2) n1
	     | _ -> n :: accu
	 )

  let collect fin n =
    let l = collect_aux [] n in
    List.iter (fun n -> n.seen <- false) !seens;
    let l = List.map (fun n ->
			match n.trans with
			  | `Final -> fin
			  | `Elem (p,a) -> 
			      mk !re_loc (Prod(p, mk !re_loc (PatVar a.name)))
			  | _ -> assert false
		     ) l in
    match l with
      | h::t ->
	  List.fold_left (fun accu p -> mk !re_loc (Or (accu,p))) h t
      | _ -> assert false
*)    
	
219
220

  let constant_nil v t = 
221
    mk !re_loc 
222
      (And (t, (mk !re_loc (Constant (v, Types.Atom Sequence.nil_atom)))))
223

224
225
  let compile loc regexp queue : ppat =
    re_loc := loc;
226
    let vars = seq_vars StringSet.empty regexp in
227
    let fin = StringSet.fold constant_nil vars queue in
228
229
    let re = propagate (fun p -> p) regexp in
    let n = guard_compile fin [re] in
230
    memo := Memo.empty; 
231
232
    let d = !defs in
    defs := [];
233
234
235
236
237
238
239
240

(*
    let after = new_node() in
    let n = collect queue (compile after re) in
    let d = List.map (fun n -> (n.name, collect queue n)) !to_compile in
    to_compile := [];
*)

241
    mk !re_loc (Recurs (n,d))
242
243
end

244
let compile_regexp = Regexp.compile noloc
245
246
247
248
249
250


let rec compile env { loc = loc; descr = d } : ti = 
  match (d : Ast.ppat') with
  | PatVar s -> 
      (try StringMap.find s env
251
       with Not_found -> 
252
	 raise_loc_generic loc ("Undefined type variable " ^ s)
253
      )
254
  | Recurs (t, b) -> compile (compile_many env b) t
255
  | Regexp (r,q) -> compile env (Regexp.compile loc r q)
256
257
258
259
260
261
262
  | Internal t -> cons loc (IType t)
  | Or (t1,t2) -> cons loc (IOr (compile env t1, compile env t2))
  | And (t1,t2) -> cons loc (IAnd (compile env t1, compile env t2))
  | Diff (t1,t2) -> cons loc (IDiff (compile env t1, compile env t2))
  | Prod (t1,t2) -> cons loc (ITimes (compile env t1, compile env t2))
  | XmlT (t1,t2) -> cons loc (IXml (compile env t1, compile env t2))
  | Arrow (t1,t2) -> cons loc (IArrow (compile env t1, compile env t2))
263
  | Record (o,r) -> 
264
265
266
      cons loc (IRecord (o, List.map (fun (l,o,t) -> l,o,compile env t) r))
  | Constant (x,v) -> cons loc (IConstant (x,v))
  | Capture x -> cons loc (ICapture x)
267

268
269
270
271
and compile_many env b = 
  let b = List.map (fun (v,t) -> (v,t,mk' t.loc)) b in
  let env = 
    List.fold_left (fun env (v,t,x) -> StringMap.add v x env) env b in
272
  List.iter (fun (v,t,x) -> x.descr' <- IAlias (v, compile env t)) b;
273
274
  env

275
276
277
module IntSet = 
  Set.Make(struct type t = int let compare (x:int) y = compare x y end)

278
let comp_fv_seen = ref []
279
let comp_fv_res = ref StringSet.empty
280
let rec comp_fv s =
281
282
283
284
  match s.fv with
    | Some fv -> comp_fv_res := StringSet.union fv !comp_fv_res
    | None ->
	(match s.descr' with
285
	   | IAlias (_,x) -> 
286
	       if x.seen then ()
287
	       else ( 
288
289
		 x.seen <- true;
		 comp_fv_seen := x :: !comp_fv_seen; 
290
291
		 comp_fv x
	       ) 
292
293
294
295
296
297
298
299
300
301
	   | IOr (s1,s2) 
	   | IAnd (s1,s2)
	   | IDiff (s1,s2)
	   | ITimes (s1,s2) | IXml (s1,s2)
	   | IArrow (s1,s2) -> comp_fv s1; comp_fv s2
	   | IRecord (_,r) -> List.iter (fun (l,opt,s) -> comp_fv s) r
	   | IType _ -> ()
	   | ICapture x
	   | IConstant (x,_) -> comp_fv_res := StringSet.add x !comp_fv_res
	)
302
303
304


let fv s =   
305
306
  match s.fv with
    | Some l -> l
307
308
    | None -> 
	comp_fv s;
309
310
	let l = !comp_fv_res in
	comp_fv_res := StringSet.empty;
311
312
	List.iter (fun n -> n.seen <- false) !comp_fv_seen;
	comp_fv_seen := [];
313
	s.fv <- Some l; 
314
315
316
317
	l

let rec typ seen s : Types.descr =
  match s.descr' with
318
    | IAlias (v,x) ->
319
	if IntSet.mem s.id seen then 
320
321
	  raise_loc_generic s.loc' 
	    ("Unguarded recursion on variable " ^ v ^ " in this type")
322
	else typ (IntSet.add s.id seen) x
323
324
325
326
327
328
329
330
    | IType t -> t
    | IOr (s1,s2) -> Types.cup (typ seen s1) (typ seen s2)
    | IAnd (s1,s2) ->  Types.cap (typ seen s1) (typ seen s2)
    | IDiff (s1,s2) -> Types.diff (typ seen s1) (typ seen s2)
    | ITimes (s1,s2) ->	Types.times (typ_node s1) (typ_node s2)
    | IXml (s1,s2) ->	Types.xml (typ_node s1) (typ_node s2)
    | IArrow (s1,s2) ->	Types.arrow (typ_node s1) (typ_node s2)
    | IRecord (o,r) -> 
331
332
	Types.record' 
	  (o,List.map (fun (l,o,s) -> (l,(o,typ_node s))) r)
333
    | ICapture x | IConstant (x,_) -> assert false
334
335
336
337
338
339
340

and typ_node s : Types.node =
  match s.type_node with
    | Some x -> x
    | None ->
	let x = Types.make () in
	s.type_node <- Some x;
341
	let t = typ IntSet.empty s in
342
343
344
	Types.define x t;
	x

345
346
347
let type_node s = 
  let s = typ_node s in
  let s = Types.internalize s in
348
(*  Types.define s (Types.normalize (Types.descr s)); *)
349
  s
350
351

let rec pat seen s : Patterns.descr =
352
353
354
  if StringSet.is_empty (fv s) 
  then Patterns.constr (Types.descr (type_node s)) 
  else
355
356
357
358
359
360
    try pat_aux seen s
    with Patterns.Error e -> raise_loc_generic s.loc' e
      | Location (loc,exn) when loc = noloc -> raise (Location (s.loc', exn))


and pat_aux seen s = match s.descr' with
361
  | IAlias (v,x) ->
362
      if IntSet.mem s.id seen 
363
364
365
      then raise 
	(Patterns.Error
	   ("Unguarded recursion on variable " ^ v ^ " in this pattern"));
366
      pat (IntSet.add s.id seen) x
367
368
369
  | IOr (s1,s2) -> Patterns.cup (pat seen s1) (pat seen s2)
  | IAnd (s1,s2) -> Patterns.cap (pat seen s1) (pat seen s2)
  | IDiff (s1,s2) when StringSet.is_empty (fv s2) ->
370
371
      let s2 = Types.neg (Types.descr (type_node s2)) in
      Patterns.cap (pat seen s1) (Patterns.constr s2)
372
  | IDiff _ ->
373
      raise (Patterns.Error "Difference not allowed in patterns")
374
375
376
  | ITimes (s1,s2) -> Patterns.times (pat_node s1) (pat_node s2)
  | IXml (s1,s2) -> Patterns.xml (pat_node s1) (pat_node s2)
  | IRecord (o,r) ->
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
      let pats = ref [] in
      let aux (l,o,s) = 
	if StringSet.is_empty (fv s) then (l,(o,type_node s))
	else
	  if o then 
	    raise 
	      (Patterns.Error 
		 "Optional field not allowed in record patterns")
	  else ( 
	    pats := Patterns.record l (pat_node s) :: !pats;
	    (l,(false,Types.any_node))
	  ) in
      let constr = Types.record' (o,List.map aux r) in
      List.fold_left Patterns.cap (Patterns.constr constr) !pats
(* TODO: can avoid constr when o=true, and all fields have fv *)
392
393
394
  | ICapture x ->  Patterns.capture x
  | IConstant (x,c) -> Patterns.constant x c
  | IArrow _ ->
395
      raise (Patterns.Error "Arrow not allowed in patterns")
396
  | IType _ -> assert false
397
398
399
400
401

and pat_node s : Patterns.node =
  match s.pat_node with
    | Some x -> x
    | None ->
402
403
	let fv = SortedList.from_list (StringSet.elements (fv s)) in
	let x = Patterns.make fv in
404
	s.pat_node <- Some x;
405
	let t = pat IntSet.empty s in
406
407
408
	Patterns.define x t;
	x

409
let mk_typ e =
410
  if StringSet.is_empty (fv e) then type_node e
411
  else raise_loc_generic e.loc' "Capture variables are not allowed in types"
412
413
    

414
415
416
417
418
let typ glb e =
  mk_typ (compile glb e)

let pat glb e =
  pat_node (compile glb e)
419

420
421
422
423
424
425
426
427
428
429
430
431
let register_global_types glb b =
  let env' = compile_many glb b in
  List.fold_left 
    (fun glb (v,{ loc = loc }) -> 
       let t = StringMap.find v env' in
       let d = Types.descr (mk_typ t) in
       (*	       let d = Types.normalize d in*)
       Types.Print.register_global v d;
       if StringMap.mem v glb
       then raise_loc_generic loc ("Multiple definition for type " ^ v);
       StringMap.add v t glb
    ) glb b
432
433
434



435
436
(* II. Build skeleton *)

437
438
module Fv = StringSet

439
440
441
442
443
(* IDEA: introduce a node Loc in the AST to override nolocs
   in sub-expressions *)
   
let rec expr loc' glb { loc = loc; descr = d } = 
  let loc =  if loc = noloc then loc' else loc in
444
  let (fv,td) = 
445
    match d with
446
      | Forget (e,t) ->
447
	  let (fv,e) = expr loc glb e and t = typ glb t in
448
	  (fv, Typed.Forget (e,t))
449
450
      | Var s -> (Fv.singleton s, Typed.Var s)
      | Apply (e1,e2) -> 
451
	  let (fv1,e1) = expr loc glb e1 and (fv2,e2) = expr loc glb e2 in
452
	  (Fv.union fv1 fv2, Typed.Apply (e1,e2))
453
      | Abstraction a ->
454
455
	  let iface = List.map (fun (t1,t2) -> (typ glb t1, typ glb t2)) 
			a.fun_iface in
456
457
458
	  let t = List.fold_left 
		    (fun accu (t1,t2) -> Types.cap accu (Types.arrow t1 t2)) 
		    Types.any iface in
459
460
461
	  let iface = List.map 
			(fun (t1,t2) -> (Types.descr t1, Types.descr t2)) 
			iface in
462
	  let (fv0,body) = branches loc glb a.fun_body in
463
464
465
466
467
468
469
470
471
	  let fv = match a.fun_name with
	    | None -> fv0
	    | Some f -> Fv.remove f fv0 in
	  (fv,
	   Typed.Abstraction 
	     { Typed.fun_name = a.fun_name;
	       Typed.fun_iface = iface;
	       Typed.fun_body = body;
	       Typed.fun_typ = t;
472
	       Typed.fun_fv = Fv.elements fv
473
474
475
476
	     }
	  )
      | Cst c -> (Fv.empty, Typed.Cst c)
      | Pair (e1,e2) ->
477
	  let (fv1,e1) = expr loc glb e1 and (fv2,e2) = expr loc glb e2 in
478
	  (Fv.union fv1 fv2, Typed.Pair (e1,e2))
479
      | Xml (e1,e2) ->
480
	  let (fv1,e1) = expr loc glb e1 and (fv2,e2) = expr loc glb e2 in
481
	  (Fv.union fv1 fv2, Typed.Xml (e1,e2))
482
      | Dot (e,l) ->
483
	  let (fv,e) = expr loc glb e in
484
	  (fv,  Typed.Dot (e,l))
485
486
      | RecordLitt r -> 
	  let fv = ref Fv.empty in
487
	  let r  = List.sort (fun (l1,_) (l2,_) -> compare l1 l2) r in
488
489
	  let r = List.map 
		    (fun (l,e) -> 
490
491
		       let (fv2,e) = expr loc glb e 
		       in fv := Fv.union !fv fv2; (l,e))
492
493
494
495
496
497
498
		    r in
	  let rec check = function
	    | (l1,_) :: (l2,_) :: _ when l1 = l2 -> 
		raise_loc loc (MultipleLabel l1)
	    | _ :: rem -> check rem
	    | _ -> () in
	  check r;
499
	  (!fv, Typed.RecordLitt r)
500
      | Op (op,le) ->
501
	  let (fvs,ltes) = List.split (List.map (expr loc glb) le) in
502
503
	  let fv = List.fold_left Fv.union Fv.empty fvs in
	  (fv, Typed.Op (op,ltes))
504
      | Match (e,b) -> 
505
506
	  let (fv1,e) = expr loc glb e
	  and (fv2,b) = branches loc glb b in
507
508
	  (Fv.union fv1 fv2, Typed.Match (e, b))
      | Map (e,b) ->
509
510
	  let (fv1,e) = expr loc glb e
	  and (fv2,b) = branches loc glb b in
511
	  (Fv.union fv1 fv2, Typed.Map (e, b))
512
      | Try (e,b) ->
513
514
	  let (fv1,e) = expr loc glb e
	  and (fv2,b) = branches loc glb b in
515
	  (Fv.union fv1 fv2, Typed.Try (e, b))
516
  in
517
518
  fv,
  { Typed.exp_loc = loc;
519
520
521
522
    Typed.exp_typ = Types.empty;
    Typed.exp_descr = td;
  }
	      
523
  and branches loc glb b = 
524
    let fv = ref Fv.empty in
525
    let accept = ref Types.empty in
526
527
    let b = List.map 
	      (fun (p,e) ->
528
		 let (fv2,e) = expr loc glb e in
529
		 let p = pat glb p in
530
531
		 let fv2 = List.fold_right Fv.remove (Patterns.fv p) fv2 in
		 fv := Fv.union !fv fv2;
532
		 accept := Types.cup !accept (Types.descr (Patterns.accept p));
533
		 { Typed.br_used = false;
534
		   Typed.br_pat = p;
535
536
		   Typed.br_body = e }
	      ) b in
537
538
539
540
    (!fv, 
     { 
       Typed.br_typ = Types.empty; 
       Typed.br_branches = b; 
541
542
       Typed.br_accept = !accept;
       Typed.br_compiled = None;
543
544
     } 
    )
545

546
547
let expr = expr noloc

548
549
550
let let_decl glb p e =
  let (_,e) = expr glb e in
  { Typed.let_pat = pat glb p;
551
552
553
554
555
    Typed.let_body = e;
    Typed.let_compiled = None }

(* III. Type-checks *)

556
module Env = StringMap
557
type env = Types.descr Env.t
558
559
560

open Typed

561
let warning loc msg =
562
563
564
565
  Format.fprintf !Location.warning_ppf "Warning %a:@\n%a%s@\n" 
    Location.print_loc loc
    Location.html_hilight loc
    msg
566
567
568
569

let check loc t s msg =
  if not (Types.subtype t s) then raise_loc loc (Constraint (t, s, msg))

570
let rec type_check env e constr precise = 
571
(*  Format.fprintf Format.std_formatter "constr=%a precise=%b@\n"
572
573
    Types.Print.print_descr constr precise; 
*)
574
  let d = type_check' e.exp_loc env e.exp_descr constr precise in
575
576
577
  e.exp_typ <- Types.cup e.exp_typ d;
  d

578
and type_check' loc env e constr precise = match e with
579
580
581
582
  | Forget (e,t) ->
      let t = Types.descr t in
      ignore (type_check env e t false);
      t
583
  | Abstraction a ->
584
585
586
587
588
589
590
      let t =
	try Types.Arrow.check_strenghten a.fun_typ constr 
	with Not_found -> 
	  raise_loc loc 
	  (ShouldHave
	     (constr, "but the interface of the abstraction is not compatible"))
      in
591
592
593
      let env = match a.fun_name with
	| None -> env
	| Some f -> Env.add f a.fun_typ env in
594
595
      List.iter 
	(fun (t1,t2) ->
596
	   ignore (type_check_branches loc env t1 a.fun_body t2 false)
597
598
	) a.fun_iface;
      t
599

600
601
  | Match (e,b) ->
      let t = type_check env e b.br_accept true in
602
      type_check_branches loc env t b constr precise
603
604
605

  | Try (e,b) ->
      let te = type_check env e constr precise in
606
      let tb = type_check_branches loc env Types.any b constr precise in
607
      Types.cup te tb
608

609
610
611
612
  | Pair (e1,e2) ->
      type_check_pair loc env e1 e2 constr precise
  | Xml (e1,e2) ->
      type_check_pair ~kind:`XML loc env e1 e2 constr precise
613
614

(*
615
616
617
618
619
  | RecordLitt r ->
      let rconstr = Types.Record.get constr in
      if Types.Record.is_empty rconstr then
	raise_loc loc (ShouldHave (constr,"but it is a record."));

620
621
622
623
(* Completely buggy !  Need to check at the end that all required labels 
   are present ...A better to do it without precise = true ? *)
      let precise = true in

624
625
626
627
628
629
630
631
632
      let (rconstr,res) = 
	List.fold_left 
	  (fun (rconstr,res) (l,e) ->
	     let rconstr = Types.Record.restrict_label_present rconstr l in
	     let pi = Types.Record.project_field rconstr l in
	     if Types.Record.is_empty rconstr then
	       raise_loc loc 
		 (ShouldHave (constr,(Printf.sprintf 
					"Field %s is not allowed here."
633
					(Types.LabelPool.value l)
634
635
636
637
638
639
640
641
642
643
644
645
				     )
			     ));
	     let t = type_check env e pi true in
	     let rconstr = Types.Record.restrict_field rconstr l t in
	     
	     let res = 
	       if precise 
	       then Types.cap res (Types.record l false (Types.cons t))
	       else res in
	     (rconstr,res)
	  ) (rconstr, if precise then Types.Record.any else constr) r
      in
646
(*      check loc res constr ""; *)
647
      res
648
*)
649

650
651
652
653
654
  | Map (e,b) ->
      let t = type_check env e (Sequence.star b.br_accept) true in

      let constr' = Sequence.approx (Types.cap Sequence.any constr) in
      let exact = Types.subtype (Sequence.star constr') constr in
655
656
657
658
659
660
661
      (* Note: 
	 - could be more precise by integrating the decomposition
	 of constr inside Sequence.map.
      *)
      let res = 
	Sequence.map 
	  (fun t -> 
662
	     type_check_branches loc env t b constr' (precise || (not exact)))
663
664
665
	  t in
      if not exact then check loc res constr "";
      if precise then res else constr
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
  | Op ("@", [e1;e2]) ->
      let constr' = Sequence.star 
		      (Sequence.approx (Types.cap Sequence.any constr)) in
      let exact = Types.subtype constr' constr in
      if exact then
	let t1 = type_check env e1 constr' precise
	and t2 = type_check env e2 constr' precise in
	if precise then Sequence.concat t1 t2 else constr
      else
	(* Note:
	   the knownledge of t1 may makes it useless to
	   check t2 with 'precise' ... *)
	let t1 = type_check env e1 constr' true
	and t2 = type_check env e2 constr' true in
	let res = Sequence.concat t1 t2 in
	check loc res constr "";
	if precise then res else constr
683
  | Apply (e1,e2) ->
684
(*
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
      let constr' = Sequence.star 
		      (Sequence.approx (Types.cap Sequence.any constr)) in
      let t1 = type_check env e1 (Types.cup Types.Arrow.any constr') true in
      let t1_fun = Types.Arrow.get t1 in

      let has_fun = not (Types.Arrow.is_empty t1_fun)
      and has_seq = not (Types.subtype t1 Types.Arrow.any) in

      let constr' =
	Types.cap 
	  (if has_fun then Types.Arrow.domain t1_fun else Types.any)
	  (if has_seq then constr' else Types.any)
      in
      let need_arg = has_fun && Types.Arrow.need_arg t1_fun in
      let precise  = need_arg || has_seq in
      let t2 = type_check env e2 constr' precise in
      let res = Types.cup 
		  (if has_fun then 
		     if need_arg then Types.Arrow.apply t1_fun t2
		     else Types.Arrow.apply_noarg t1_fun
		   else Types.empty)
		  (if has_seq then Sequence.concat t1 t2
		   else Types.empty)
      in
      check loc res constr "";
      res
711
*)
712
713
714
      let t1 = type_check env e1 Types.Arrow.any true in
      let t1 = Types.Arrow.get t1 in
      let dom = Types.Arrow.domain t1 in
715
716
717
718
719
720
721
722
723
      let res =
	if Types.Arrow.need_arg t1 then
	  let t2 = type_check env e2 dom true in
	  Types.Arrow.apply t1 t2
	else
	  (ignore (type_check env e2 dom false); Types.Arrow.apply_noarg t1)
      in
      check loc res constr "";
      res
724
725
726
727
728
729
730
731
732
733
734
735
736
  | Op ("flatten", [e]) ->
      let constr' = Sequence.star 
		      (Sequence.approx (Types.cap Sequence.any constr)) in
      let sconstr' = Sequence.star constr' in
      let exact = Types.subtype constr' constr in
      if exact then
	let t = type_check env e sconstr' precise in
	if precise then Sequence.flatten t else constr
      else
	let t = type_check env e sconstr' true in
	let res = Sequence.flatten t in
	check loc res constr "";
	if precise then res else constr
737
738
739
740
741
  | _ -> 
      let t : Types.descr = compute_type' loc env e in
      check loc t constr "";
      t

742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
and type_check_pair ?(kind=`Normal) loc env e1 e2 constr precise =
  let rects = Types.Product.get ~kind constr in
  if Types.Product.is_empty rects then 
    (match kind with
      | `Normal -> raise_loc loc (ShouldHave (constr,"but it is a pair."))
      | `XML -> raise_loc loc (ShouldHave (constr,"but it is an XML element.")));
  let pi1 = Types.Product.pi1 rects in
  
  let t1 = type_check env e1 (Types.Product.pi1 rects) 
	     (precise || (Types.Product.need_second rects))in
  let rects = Types.Product.restrict_1 rects t1 in
  let t2 = type_check env e2 (Types.Product.pi2 rects) precise in
  if precise then 
    match kind with
      | `Normal -> Types.times (Types.cons t1) (Types.cons t2)
      | `XML -> Types.xml (Types.cons t1) (Types.cons t2)
  else
    constr


762
763
764
765
and compute_type env e =
  type_check env e Types.any true

and compute_type' loc env = function
766
767
768
769
  | Var s -> 
      (try Env.find s env 
       with Not_found -> raise_loc loc (UnboundId s)
      )
770
  | Cst c -> Types.constant c
771
772
773
774
  | Dot (e,l) ->
      let t = type_check env e Types.Record.any true in
         (try (Types.Record.project t l) 
          with Not_found -> raise_loc loc (WrongLabel(t,l)))
775
776
777
  | Op (op, el) ->
      let args = List.map (fun e -> (e.exp_loc, compute_type env e)) el in
      type_op loc op args
778
779
  | Map (e,b) ->
      let t = compute_type env e in
780
      Sequence.map (fun t -> type_check_branches loc env t b Types.any true) t
781
782
783
784
785
786
787
788
789
790

(* We keep these cases here to allow comparison and benchmarking ...
   Just comment the corresponding cases in type_check' to
   activate these ones.
*)
  | Pair (e1,e2) -> 
      let t1 = compute_type env e1 
      and t2 = compute_type env e2 in
      Types.times (Types.cons t1) (Types.cons t2)
  | RecordLitt r ->
791
792
793
794
795
      let r = 
	List.map
          (fun (l,e) -> (l,(false,Types.cons (compute_type env e))))
	  r in
      Types.record' (false,r)
796
  | _ -> assert false
797

798
and type_check_branches loc env targ brs constr precise =
799
  if Types.is_empty targ then Types.empty 
800
801
  else (
    brs.br_typ <- Types.cup brs.br_typ targ;
802
    branches_aux loc env targ 
803
804
      (if precise then Types.empty else constr) 
      constr precise brs.br_branches
805
  )
806
    
807
808
and branches_aux loc env targ tres constr precise = function
  | [] -> raise_loc loc (NonExhaustive targ)
809
810
811
812
813
814
  | b :: rem ->
      let p = b.br_pat in
      let acc = Types.descr (Patterns.accept p) in

      let targ' = Types.cap targ acc in
      if Types.is_empty targ' 
815
      then branches_aux loc env targ tres constr precise rem
816
817
818
819
820
821
      else 
	( b.br_used <- true;
	  let res = Patterns.filter targ' p in
	  let env' = List.fold_left 
		       (fun env (x,t) -> Env.add x (Types.descr t) env) 
		       env res in
822
823
	  let t = type_check env' b.br_body constr precise in
	  let tres = if precise then Types.cup t tres else tres in
824
825
	  let targ'' = Types.diff targ acc in
	  if (Types.non_empty targ'') then 
826
	    branches_aux loc env targ'' tres constr precise rem 
827
828
	  else
	    tres
829
	)
830

831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
and type_let_decl env l =
  let acc = Types.descr (Patterns.accept l.let_pat) in
  let t = type_check env l.let_body acc true in
  let res = Patterns.filter t l.let_pat in
  List.map (fun (x,t) -> (x, Types.descr t)) res

and type_rec_funs env l =
  let types = 
    List.fold_left
      (fun accu -> function  {let_body={exp_descr=Abstraction a}} as l ->
	 let t = a.fun_typ in
	 let acc = Types.descr (Patterns.accept l.let_pat) in
	 if not (Types.subtype t acc) then
	   raise_loc l.let_body.exp_loc (NonExhaustive (Types.diff t acc));
	 let res = Patterns.filter t l.let_pat in
	 List.fold_left (fun accu (x,t) -> (x, Types.descr t)::accu) accu res
	 | _ -> assert false) [] l
  in
  let env' = List.fold_left (fun env (x,t) -> Env.add x t env) env types in
  List.iter 
    (function  { let_body = { exp_descr = Abstraction a } } as l ->
       ignore (type_check env' l.let_body Types.any false)
       | _ -> assert false) l;
  types


857
858
and type_op loc op args =
  match (op,args) with
859
    | "+", [loc1,t1; loc2,t2] ->
860
	type_int_binop Intervals.add loc1 t1 loc2 t2
861
862
    | "-", [loc1,t1; loc2,t2] ->
	type_int_binop Intervals.sub loc1 t1 loc2 t2
863
    | ("*" | "/" | "mod"), [loc1,t1; loc2,t2] ->
864
	type_int_binop (fun i1 i2 -> Intervals.any) loc1 t1 loc2 t2
865
    | "@", [loc1,t1; loc2,t2] ->
866
867
868
	check loc1 t1 Sequence.any
	  "The first argument of @ must be a sequence";
	Sequence.concat t1 t2
869
    | "flatten", [loc1,t1] ->
870
871
872
	check loc1 t1 Sequence.seqseq 
	  "The argument of flatten must be a sequence of sequences";
	Sequence.flatten t1
873
874
875
876
    | "load_xml", [loc1,t1] ->
	check loc1 t1 Sequence.string
	  "The argument of load_xml must be a string (filename)";
	Types.any
877
878
879
880
    | "load_html", [loc1,t1] ->
	check loc1 t1 Sequence.string
	  "The argument of load_html must be a string (filename)";
	Types.any
881
882
    | "raise", [loc1,t1] ->
	Types.empty
883
884
    | "print_xml", [loc1,t1] ->
	Sequence.string
885
886
    | "print", [loc1,t1] ->
	check loc1 t1 Sequence.string
887
888
889
890
891
892
893
894
	  "The argument of print must be a string";
	Sequence.nil_type
    | "dump_to_file", [loc1,t1; loc2,t2] ->
	check loc1 t1 Sequence.string
	  "The argument of dump_to_file must be a string (filename)";
	check loc2 t2 Sequence.string
	  "The argument of dump_to_file must be a string (value to dump)";
	Sequence.nil_type
895
896
    | "int_of", [loc1,t1] ->
	check loc1 t1 Sequence.string
897
	  "The argument of int_of must be a string";
898
899
900
	if not (Types.subtype t1 Builtin.intstr) then
	  warning loc "This application of int_of may fail";
	Types.interval Intervals.any
901
902
    | "string_of", [loc1,t1] ->
	Sequence.string
903
904
905
906
907
908
909
910
911
912
913
    | _ -> assert false

and type_int_binop f loc1 t1 loc2 t2 =
  if not (Types.Int.is_int t1) then
    raise_loc loc1 
      (Constraint 
	 (t1,Types.Int.any,
	  "The first argument must be an integer"));
  if not (Types.Int.is_int t2) then
    raise_loc loc2
      (Constraint 
914
	       (t2,Types.Int.any,
915
916
917
918
919
		"The second argument must be an integer"));
  Types.Int.put
    (f (Types.Int.get t1) (Types.Int.get t2));