types.ml 44.4 KB
Newer Older
1
open Ident
2
open Encodings
3

4
5
6
7
8
9
10
11
12
13
(*
To be sure not to use generic comparison ...
*)
let (=) : int -> int -> bool = (==)
let (<) : int -> int -> bool = (<)
let (<=) : int -> int -> bool = (<=)
let (<>) : int -> int -> bool = (<>)
let compare = 1


14
15
16
17
18
19
module HashedString = 
struct 
  type t = string 
  let hash = Hashtbl.hash
  let equal = (=)
end
20
21


22
23
24
25
type const = 
  | Integer of Intervals.v
  | Atom of Atoms.v
  | Char of Chars.v
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
let compare_const c1 c2 =
  match (c1,c2) with
    | Integer x, Integer y -> Intervals.vcompare x y
    | Integer _, _ -> -1
    | _, Integer _ -> 1
    | Atom x, Atom y -> Atoms.vcompare x y
    | Atom _, _ -> -1
    | _, Atom _ -> 1
    | Char x, Char y -> Chars.vcompare x y

let hash_const = function
  | Integer x -> Intervals.vhash x
  | Atom x -> Atoms.vhash x
  | Char x -> Chars.vhash x

42
43
let equal_const c1 c2 = compare_const c1 c2 = 0

44
45
type pair_kind = [ `Normal | `XML ]

46
47
48
49
type 'a node0 = { id : int; mutable descr : 'a }

module NodePair = struct
  type 'a t = 'a node0 * 'a node0
50
51
52
  let dump ppf (x,y) =
    Format.fprintf ppf "(%i,%i)" x.id y.id
  let compare (y1,x1) (y2,x2) =
53
54
55
56
57
58
59
    if x1.id < x2.id then -1
    else if x1.id > x2.id then 1
    else y1.id - y2.id
  let equal (x1,y1) (x2,y2) = (x1==x2) && (y1==y2)
  let hash (x,y) = x.id + 17 * y.id
end 

60
61
62
module RecArg = struct
  type 'a t = bool * 'a node0 label_map
  
63
64
  let dump ppf (o,r) = ()

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
  let rec compare_rec r1 r2 =
    if r1 == r2 then 0
    else match (r1,r2) with
      | (l1,x1)::r1,(l2,x2)::r2 ->
	  if ((l1:int) < l2) then -1 
	  else if (l1 > l2) then 1 
	  else if x1.id < x2.id then -1
	  else if x1.id > x2.id then 1
	  else compare_rec r1 r2
      | ([],_) -> -1
      | _ -> 1

  let compare (o1,r1) (o2,r2) =
    if o1 && not o2 then -1 
    else if o2 && not o1 then 1
    else compare_rec (LabelMap.get r1) (LabelMap.get r2)

  let rec equal_rec r1 r2 =
    (r1 == r2) ||
    match (r1,r2) with
      | (l1,x1)::r1,(l2,x2)::r2 ->
	  (x1.id == x2.id) && (l1 == l2) && (equal_rec r1 r2)
      | _ -> false

  let equal (o1,r1) (o2,r2) =
    (o1 == o2) && (equal_rec (LabelMap.get r1) (LabelMap.get r2))

  let rec hash_rec accu = function
    | (l,x)::rem -> hash_rec (257 * accu + 17 * l + x.id) rem
    | [] -> accu + 5
      
  let hash (o,r) = hash_rec (if o then 2 else 1) (LabelMap.get r)
end

99
100
(* It is also possible to use Boolean insteand of Bool here;
   need to analyze when each one is more efficient *)
101
102
module BoolPair = Bool.Make(NodePair)
module BoolRec = Bool.Make(RecArg)
103

104
type descr = {
105
  atoms : Atoms.t;
106
107
  ints  : Intervals.t;
  chars : Chars.t;
108
109
110
  times : descr BoolPair.t;
  xml   : descr BoolPair.t;
  arrow : descr BoolPair.t;
111
  record: descr BoolRec.t;
112
  absent: bool
113
} and node = descr node0
114

115
	       
116
let empty = { 
117
118
119
  times = BoolPair.empty; 
  xml   = BoolPair.empty; 
  arrow = BoolPair.empty; 
120
  record= BoolRec.empty;
121
122
123
  ints  = Intervals.empty;
  atoms = Atoms.empty;
  chars = Chars.empty;
124
  absent= false;
125
126
127
}
	      
let any =  {
128
129
130
  times = BoolPair.full; 
  xml   = BoolPair.full; 
  arrow = BoolPair.full; 
131
  record= BoolRec.full; 
132
133
134
  ints  = Intervals.any;
  atoms = Atoms.any;
  chars = Chars.any;
135
  absent= false;
136
137
138
139
}
	     
	     
let interval i = { empty with ints = i }
140
141
142
let times x y = { empty with times = BoolPair.atom (x,y) }
let xml x y = { empty with xml = BoolPair.atom (x,y) }
let arrow x y = { empty with arrow = BoolPair.atom (x,y) }
143
let record label t = 
144
145
146
  { empty with record = BoolRec.atom (true,LabelMap.singleton label t) }
let record' (x : bool * node Ident.label_map) =
  { empty with record = BoolRec.atom x }
147
148
149
150
151
152
let atom a = { empty with atoms = a }
let char c = { empty with chars = c }
let constant = function
  | Integer i -> interval (Intervals.atom i)
  | Atom a -> atom (Atoms.atom a)
  | Char c -> char (Chars.atom c)
153
      
154
155
let cup x y = 
  if x == y then x else {
156
157
158
    times = BoolPair.cup x.times y.times;
    xml   = BoolPair.cup x.xml y.xml;
    arrow = BoolPair.cup x.arrow y.arrow;
159
    record= BoolRec.cup x.record y.record;
160
161
162
    ints  = Intervals.cup x.ints  y.ints;
    atoms = Atoms.cup x.atoms y.atoms;
    chars = Chars.cup x.chars y.chars;
163
    absent= x.absent || y.absent;
164
165
166
167
  }
    
let cap x y = 
  if x == y then x else {
168
169
    times = BoolPair.cap x.times y.times;
    xml   = BoolPair.cap x.xml y.xml;
170
    record= BoolRec.cap x.record y.record;
171
    arrow = BoolPair.cap x.arrow y.arrow;
172
173
174
    ints  = Intervals.cap x.ints  y.ints;
    atoms = Atoms.cap x.atoms y.atoms;
    chars = Chars.cap x.chars y.chars;
175
    absent= x.absent && y.absent;
176
177
178
179
  }
    
let diff x y = 
  if x == y then empty else {
180
181
182
    times = BoolPair.diff x.times y.times;
    xml   = BoolPair.diff x.xml y.xml;
    arrow = BoolPair.diff x.arrow y.arrow;
183
    record= BoolRec.diff x.record y.record;
184
185
186
    ints  = Intervals.diff x.ints  y.ints;
    atoms = Atoms.diff x.atoms y.atoms;
    chars = Chars.diff x.chars y.chars;
187
    absent= x.absent && not y.absent;
188
189
  }
    
190

191
let equal_descr a b =
192
193
194
  (Atoms.equal a.atoms b.atoms) &&
  (Chars.equal a.chars b.chars) &&
  (Intervals.equal a.ints  b.ints) &&
195
196
197
  (BoolPair.equal a.times b.times) &&
  (BoolPair.equal a.xml b.xml) &&
  (BoolPair.equal a.arrow b.arrow) &&
198
  (BoolRec.equal a.record b.record) &&
199
  (a.absent == b.absent)
200
201

let compare_descr a b =
202
203
  if a == b then 0 
  else let c = Atoms.compare a.atoms b.atoms in if c <> 0 then c
204
205
  else let c = Chars.compare a.chars b.chars in if c <> 0 then c
  else let c = Intervals.compare a.ints b.ints in if c <> 0 then c
206
207
208
  else let c = BoolPair.compare a.times b.times in if c <> 0 then c
  else let c = BoolPair.compare a.xml b.xml in if c <> 0 then c
  else let c = BoolPair.compare a.arrow b.arrow in if c <> 0 then c
209
  else let c = BoolRec.compare a.record b.record in if c <> 0 then c
210
211
  else if a.absent && not b.absent then -1
  else if b.absent && not a.absent then 1
212
213
  else 0

214
let hash_descr a =
215
216
217
  let accu = Chars.hash 1 a.chars in
  let accu = Intervals.hash accu a.ints in
  let accu = Atoms.hash accu a.atoms in
218
219
220
  let accu = 17 * accu + BoolPair.hash a.times in
  let accu = 17 * accu + BoolPair.hash a.xml in
  let accu = 17 * accu + BoolPair.hash a.arrow in
221
  let accu = 17 * accu + BoolRec.hash a.record in
222
  let accu = if a.absent then accu+5 else accu in
223
  accu
224

225
226
227
228
229
230
231
232
(* TODO: optimize disjoint check for boolean combinations *)
let trivially_disjoint a b =
  (Chars.disjoint a.chars b.chars) &&
  (Intervals.disjoint a.ints b.ints) &&
  (Atoms.disjoint a.atoms b.atoms) &&
  (BoolPair.trivially_disjoint a.times b.times) &&
  (BoolPair.trivially_disjoint a.xml b.xml) &&
  (BoolPair.trivially_disjoint a.arrow b.arrow) &&
233
234
  (BoolRec.trivially_disjoint a.record b.record) &&
  (not (a.absent && b.absent))
235

236

237
238
239
240
241
242
243
244
245
module Descr =
struct 
  type t = descr
  let hash = hash_descr
  let equal = equal_descr
  let compare = compare_descr
end
module DescrHash = Hashtbl.Make(Descr)
module DescrMap = Map.Make(Descr)
246
module DescrSet = Set.Make(Descr)
247
248
249
250
251
252
253
254
255

module Descr1 =
struct 
  type 'a t = descr
  let hash = hash_descr
  let equal = equal_descr
  let compare = compare_descr
end
module DescrSList = SortedList.Make(Descr1)
256

257
(* let hash_cons = DescrHash.create 17000 *)
258

259
let count = State.ref "Types.count" 0
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
let make () = incr count; { id = !count; descr = empty }
let define n d = 
(*  DescrHash.add hash_cons d n; *)
  n.descr <- d
let cons d = 
  (* try DescrHash.find hash_cons d with Not_found ->
  incr count; let n = { id = !count; descr = d } in
  DescrHash.add hash_cons d n; n *)
  incr count; { id = !count; descr = d }
let descr n = n.descr
let internalize n = n
let id n = n.id




276
277
let neg x = diff any x

278
279
let any_node = cons any

280
module LabelS = Set.Make(LabelPool)
281
282
283

let get_record r =
  let labs accu (_,r) = 
284
285
    List.fold_left 
      (fun accu (l,_) -> LabelS.add l accu) accu (LabelMap.get r) in
286
  let extend descrs labs (o,r) =
287
288
289
290
291
    let rec aux i labs r =
      match labs with
	| [] -> ()
	| l1::labs ->
	    match r with
292
	      | (l2,x)::r when l1 == l2 -> 
293
294
295
		  descrs.(i) <- cap descrs.(i) (descr x);
		  aux (i+1) labs r
	      | r ->
296
		  if not o then descrs.(i) <- 
297
		    cap descrs.(i) { empty with absent = true }; (* TODO:OPT *)
298
299
		  aux (i+1) labs r
    in
300
    aux 0 labs (LabelMap.get r);
301
302
303
304
    o
  in
  let line (p,n) =
    let labels = 
305
306
      List.fold_left labs (List.fold_left labs LabelS.empty p) n in
    let labels = LabelS.elements labels in
307
    let nlab = List.length labels in
308
    let mk () = Array.create nlab { any with absent = true } in
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

    let pos = mk () in
    let opos = List.fold_left 
		 (fun accu x -> 
		    (extend pos labels x) && accu)
		 true p in
    let p = (opos, pos) in

    let n = List.map (fun x ->
			let neg = mk () in
			let o = extend neg labels x in
			(o,neg)
		     ) n in
    (labels,p,n)
  in
324
  List.map line (BoolRec.get r)
325
   
326

327

328
329
330
331
332
333
334
335
336
337
338
339


(* Subtyping algorithm *)

let diff_t d t = diff d (descr t)
let cap_t d t = cap d (descr t)
let cup_t d t = cup d (descr t)
let cap_product l =
  List.fold_left 
    (fun (d1,d2) (t1,t2) -> (cap_t d1 t1, cap_t d2 t2))
    (any,any)
    l
340
341
342
343
344
let cup_product l =
  List.fold_left 
    (fun (d1,d2) (t1,t2) -> (cup_t d1 t1, cup_t d2 t2))
    (empty,empty)
    l
345

346
347
348
let rec exists max f =
  (max > 0) && (f (max - 1) || exists (max - 1) f)

349
let trivially_empty d = equal_descr d empty
350

351
exception NotEmpty
352

353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
type slot = { mutable status : status; 
	       mutable notify : notify;
	       mutable active : bool }
and status = Empty | NEmpty | Maybe
and notify = Nothing | Do of slot * (slot -> unit) * notify

let memo = DescrHash.create 33000

let marks = ref [] 
let slot_empty = { status = Empty; active = false; notify = Nothing }
let slot_not_empty = { status = NEmpty; active = false; notify = Nothing }

let rec notify = function
  | Nothing -> ()
  | Do (n,f,rem) -> 
368
      if n.status == Maybe then (try f n with NotEmpty -> ());
369
370
371
372
373
374
375
376
377
378
      notify rem

let rec iter_s s f = function
  | [] -> ()
  | arg::rem -> f arg s; iter_s s f rem


let set s =
  s.status <- NEmpty;
  notify s.notify;
379
  s.notify <- Nothing; 
380
381
  raise NotEmpty

382
let count_slot = ref 0
383
384
385
386
387
let rec big_conj f l n =
  match l with
    | [] -> set n
    | [arg] -> f arg n
    | arg::rem ->
388
389
390
	let s = 
	  { status = Maybe; active = false; 
	    notify = Do (n,(big_conj f rem), Nothing) } in
391
392
393
	try 
	  f arg s;
	  if s.active then n.active <- true
394
	with NotEmpty -> if n.status == NEmpty then raise NotEmpty
395
396

let rec guard a f n =
397
398
  match slot a with
    | { status = Empty } -> ()
399
400
401
    | { status = Maybe } as s -> 
	n.active <- true; 
	s.notify <- Do (n,f,s.notify)
402
    | { status = NEmpty } -> f n
403
404
405
406

and slot d =
  if not ((Intervals.is_empty d.ints) && 
	  (Atoms.is_empty d.atoms) &&
407
408
	  (Chars.is_empty d.chars) &&
	  (not d.absent)) then slot_not_empty 
409
410
411
412
413
  else try DescrHash.find memo d
  with Not_found ->
    let s = { status = Maybe; active = false; notify = Nothing } in
    DescrHash.add memo d s;
    (try
414
415
       iter_s s check_times (BoolPair.get d.times);  
       iter_s s check_times (BoolPair.get d.xml); 
416
       iter_s s check_arrow (BoolPair.get d.arrow);
417
418
419
420
421
422
423
424
425
       iter_s s check_record (get_record d.record);
       if s.active then marks := s :: !marks else s.status <- Empty;
     with
	 NotEmpty -> ());
    s

and check_times (left,right) s =
  let rec aux accu1 accu2 right s = match right with
    | (t1,t2)::right ->
426
427
428
	let t1 = descr t1 and t2 = descr t2 in
	if trivially_disjoint accu1 t1 || 
	   trivially_disjoint accu2 t2 then (
429
430
	     aux accu1 accu2 right s )
	else (
431
432
433
434
          let accu1' = diff accu1 t1 in 
	  guard accu1' (aux accu1' accu2 right) s;

          let accu2' = diff accu2 t2 in 
435
	  guard accu2' (aux accu1 accu2' right) s  
436
	)
437
438
    | [] -> set s
  in
439
  let (accu1,accu2) = cap_product left in
440
  guard accu1 (guard accu2 (aux accu1 accu2 right)) s
441

442
443
444
445
and check_arrow (left,right) s =
  let single_right (s1,s2) s =
    let rec aux accu1 accu2 left s = match left with
      | (t1,t2)::left ->
446
447
448
449
450
          let accu1' = diff_t accu1 t1 in 
	  guard accu1' (aux accu1' accu2 left) s;

          let accu2' = cap_t  accu2 t2 in 
	  guard accu2' (aux accu1 accu2' left) s
451
452
453
454
455
456
      | [] -> set s
    in
    let accu1 = descr s1 in
    guard accu1 (aux accu1 (neg (descr s2)) left) s
  in
  big_conj single_right right s
457

458
and check_record (labels,(oleft,left),rights) s =
459
460
  let rec aux rights s = match rights with
    | [] -> set s
461
    | (oright,right)::rights ->
462
	let next =
463
	  (oleft && (not oright)) ||
464
	  exists (Array.length left)
465
	    (fun i -> trivially_disjoint left.(i) right.(i))
466
467
468
469
470
471
	in
	if next then aux rights s
	else
	  for i = 0 to Array.length left - 1 do
	    let back = left.(i) in
	    let di = diff back right.(i) in
472
473
474
475
476
	    guard di (fun s ->
			left.(i) <- diff back right.(i);
			aux rights s;
			left.(i) <- back;
		     ) s
477
478
479
480
481
	  done
  in
  let rec start i s =
    if (i < 0) then aux rights s
    else
482
      guard left.(i) (start (i - 1)) s
483
484
485
486
487
488
489
  in
  start (Array.length left - 1) s


let is_empty d =
  let s = slot d in
  List.iter 
490
491
    (fun s' -> 
       if s'.status == Maybe then s'.status <- Empty; s'.notify <- Nothing) 
492
493
    !marks;
  marks := [];
494
  s.status == Empty
495
496
  

497
498
499
500
(*****************************************************************
 Old (backtracking) implementation of the subtyping algo:

let memo = ref DescrSet.empty
501
let cache_false = DescrHash.create 33000
502

503
let rec empty_rec d =
504
  if not (Intervals.is_empty d.ints) then false
505
506
  else if not (Atoms.is_empty d.atoms) then false
  else if not (Chars.is_empty d.chars) then false
507
  else if d.absent then false
508
  else if DescrHash.mem cache_false d then false 
509
  else if DescrSet.mem d !memo then true
510
511
  else (
    let backup = !memo in
512
    memo := DescrSet.add d backup;
513
    if 
514
515
516
      (empty_rec_times (BoolPair.get d.times)) &&
      (empty_rec_times (BoolPair.get d.xml)) &&
      (empty_rec_arrow (BoolPair.get d.arrow)) &&
517
518
519
520
      (empty_rec_record d.record) 
    then true
    else (
      memo := backup;
521
      DescrHash.add cache_false d ();
522
523
524
525
526
527
528
529
530
531
      false
    )
  )

and empty_rec_times c =
  List.for_all empty_rec_times_aux c

and empty_rec_times_aux (left,right) =
  let rec aux accu1 accu2 = function
    | (t1,t2)::right ->
532
533
	if trivially_empty (cap_t accu1 t1) || 
	   trivially_empty (cap_t accu2 t2) then
534
535
536
537
538
	  aux accu1 accu2 right
	else
          let accu1' = diff_t accu1 t1 in
          if not (empty_rec accu1') then aux accu1' accu2 right;
          let accu2' = diff_t accu2 t2 in
539
	  if not (empty_rec accu2') then aux accu1 accu2' right
540
541
542
543
544
    | [] -> raise NotEmpty
  in
  let (accu1,accu2) = cap_product left in
  (empty_rec accu1) || (empty_rec accu2) ||
    (try aux accu1 accu2 right; true with NotEmpty -> false)
545

546
547
548
549
550
551
552
553
554

and empty_rec_arrow c =
  List.for_all empty_rec_arrow_aux c

and empty_rec_arrow_aux (left,right) =
  let single_right (s1,s2) =
    let rec aux accu1 accu2 = function
      | (t1,t2)::left ->
          let accu1' = diff_t accu1 t1 in
555
          if not (empty_rec accu1') then aux accu1' accu2 left;
556
          let accu2' = cap_t accu2 t2 in
557
          if not (empty_rec accu2') then aux accu1 accu2' left
558
559
560
561
562
563
564
565
      | [] -> raise NotEmpty
    in
    let accu1 = descr s1 in
    (empty_rec accu1) ||
    (try aux accu1 (diff any (descr s2)) left; true with NotEmpty -> false)
  in
  List.exists single_right right

566
and empty_rec_record_aux (labels,(oleft,left),rights) =
567
568
  let rec aux = function
    | [] -> raise NotEmpty
569
    | (oright,right)::rights ->
570
571
572
573
	let next =
	  (oleft && (not oright)) ||
	  exists (Array.length left)
	    (fun i ->
574
	       trivially_empty (cap left.(i) right.(i)))
575
576
577
578
579
580
	in
	if next then aux rights 
	else
	  for i = 0 to Array.length left - 1 do
	    let back = left.(i) in
	    let di = diff back right.(i) in
581
	    if not (empty_rec di) then (
582
583
584
585
586
587
588
	      left.(i) <- diff back right.(i);
	      aux rights;
	      left.(i) <- back;
	    )
	  done
  in
  exists (Array.length left) 
589
    (fun i -> empty_rec left.(i))
590
591
592
593
  ||
  (try aux rights; true with NotEmpty -> false)
	    

594
and empty_rec_record c =
595
  List.for_all empty_rec_record_aux (get_record c)
596

597
let is_empty d =
598
  empty_rec d
599
600
*******************************************************************)

601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620

let non_empty d = 
  not (is_empty d)

let subtype d1 d2 =
  is_empty (diff d1 d2)

module Product =
struct
  type t = (descr * descr) list

  let other ?(kind=`Normal) d = 
    match kind with
      | `Normal -> { d with times = empty.times }
      | `XML -> { d with xml = empty.xml }

  let is_product ?kind d = is_empty (other ?kind d)

  let need_second = function _::_::_ -> true | _ -> false

621
622
623
624
  let normal_aux = function
    | ([] | [ _ ]) as d -> d
    | d ->

625
626
627
628
629
630
631
    let res = ref [] in

    let add (t1,t2) =
      let rec loop t1 t2 = function
	| [] -> res := (ref (t1,t2)) :: !res
	| ({contents = (d1,d2)} as r)::l ->
	    (*OPT*) 
632
(*	    if equal_descr d1 t1 then r := (d1,cup d2 t2) else*)
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
	      
	      let i = cap t1 d1 in
	      if is_empty i then loop t1 t2 l
	      else (
		r := (i, cup t2 d2);
		let k = diff d1 t1 in 
		if non_empty k then res := (ref (k,d2)) :: !res;
		
		let j = diff t1 d1 in 
		if non_empty j then loop j t2 l
	      )
      in
      loop t1 t2 !res
    in
    List.iter add d;
    List.map (!) !res

650
(*
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
This version explodes when dealing with
   Any - [ t1? t2? t3? ... tn? ]
==> need partitioning 
*)
  let get_aux d =
    let line accu (left,right) =
      let rec aux accu d1 d2 = function
	| (t1,t2)::right ->
	    let accu = 
	      let d1 = diff_t d1 t1 in
              if is_empty d1 then accu else aux accu d1 d2 right in
	    let accu =
              let d2 = diff_t d2 t2 in
              if is_empty d2 then accu else aux accu d1 d2 right in
	    accu
	| [] -> (d1,d2) :: accu
      in
      let (d1,d2) = cap_product left in
      if (is_empty d1) || (is_empty d2) then accu else aux accu d1 d2 right
    in
    List.fold_left line [] d

(* Partitioning:

(t,s) - ((t1,s1) | (t2,s2) | ... | (tn,sn))
=
(t & t1, s - s1) | ... | (t & tn, s - sn) | (t - (t1|...|tn), s)

679
*)
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
  let get_aux d =
    let accu = ref [] in
    let line (left,right) =
      let (d1,d2) = cap_product left in
      if (non_empty d1) && (non_empty d2) then
	let right = List.map (fun (t1,t2) -> descr t1, descr t2) right in
	let right = normal_aux right in
	let resid1 = ref d1 in
	let () = 
	  List.iter
	    (fun (t1,t2) ->
	       let t1 = cap d1 t1 in
	       if (non_empty t1) then
		 let () = resid1 := diff !resid1 t1 in
		 let t2 = diff d2 t2 in
		 if (non_empty t2) then accu := (t1,t2) :: !accu
	    ) right in
	if non_empty !resid1 then accu := (!resid1, d2) :: !accu 
    in
699
    List.iter line (BoolPair.get d);
700
    !accu
701
702
703
(* Maybe, can improve this function with:
     (t,s) \ (t1,s1) = (t&t',s\s') | (t\t',s),
   don't call normal_aux *)
704

705

706
707
  let get ?(kind=`Normal) d = 
    match kind with
708
709
      | `Normal -> get_aux d.times
      | `XML -> get_aux d.xml
710
711
712

  let pi1 = List.fold_left (fun acc (t1,_) -> cup acc t1) empty
  let pi2 = List.fold_left (fun acc (_,t2) -> cup acc t2) empty
713
714
715
716
  let pi2_restricted restr = 
    List.fold_left (fun acc (t1,t2) -> 
		      if is_empty (cap t1 restr) then acc
		      else cup acc t2) empty
717
718

  let restrict_1 rects pi1 =
719
720
    let aux acc (t1,t2) = 
      let t1 = cap t1 pi1 in if is_empty t1 then acc else (t1,t2)::acc in
721
722
723
724
    List.fold_left aux [] rects
  
  type normal = t

725
  module Memo = Map.Make(struct type t = descr BoolPair.t let compare = BoolPair.compare end)
726

727
728
  (* TODO: try with an hashtable *)
  (* Also, avoid lookup for simple products (t1,t2) *)
729
730
731
732
733
734
  let memo = ref Memo.empty
  let normal ?(kind=`Normal) d = 
    let d = match kind with `Normal -> d.times | `XML -> d.xml in
    try Memo.find d !memo 
    with
	Not_found ->
735
	  let gd = get_aux d in
736
	  let n = normal_aux gd in
737
738
(* Could optimize this call to normal_aux because one already
   know that each line is normalized ... *)
739
740
	  memo := Memo.add d n !memo;
	  n
741

742
743
744
745
746
747
748
749
750
751
  let merge_same_2 r =
    let r = 
      List.fold_left 
	(fun accu (t1,t2) ->
	   let t = try DescrMap.find t2 accu with Not_found -> empty in
	   DescrMap.add t2 (cup t t1) accu
	) DescrMap.empty r in
    DescrMap.fold (fun t2 t1 accu -> (t1,t2)::accu) r []
	 

752
753
754
755
756
757
758
  let constraint_on_2 n t1 =
    List.fold_left 
      (fun accu (d1,d2) ->
	 if is_empty (cap d1 t1) then accu else cap accu d2)
      any
      n

759
760
  let any = { empty with times = any.times }
  and any_xml = { empty with xml = any.xml }
761
  let is_empty d = d == []
762
end
763

764
module Record = 
765
struct
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
  let has_record d = not (is_empty { empty with record = d.record })
  let or_absent d = { d with absent = true }
  let any_or_absent = or_absent any
  let has_absent d = d.absent

  let only_absent = {empty with absent = true}
  let only_absent_node = cons only_absent

  module T = struct
    type t = descr
    let any = any_or_absent
    let cap = cap
    let cup = cup
    let diff = diff
    let is_empty = is_empty
    let empty = empty
  end
  module R = struct
    type t = descr
    let any = { empty with record = any.record }
    let cap = cap
    let cup = cup
    let diff = diff
    let is_empty = is_empty
    let empty = empty
  end
  module TR = Normal.Make(T)(R)

  let any_record = { empty with record = BoolRec.full }

  let atom o l = 
    if o && LabelMap.is_empty l then any_record else
    { empty with record = BoolRec.atom (o,l) }

  type zor = Pair of descr * descr | Any

  let aux_split d l=
    let f (o,r) =
      try
	let (lt,rem) = LabelMap.assoc_remove l r in
	Pair (descr lt, atom o rem)
      with Not_found -> 
	if o then
	  if LabelMap.is_empty r then Any else
	    Pair (any_or_absent, { empty with record = BoolRec.atom (o,r) })
	else
	  Pair (only_absent,
		{ empty with record = BoolRec.atom (o,r) })
    in
    List.fold_left 
      (fun b (p,n) ->
	 let rec aux_p accu = function
	   | x::p -> 
	       (match f x with
		  | Pair (t1,t2) -> aux_p ((t1,t2)::accu) p
		  | Any -> aux_p accu p)
	   | [] -> aux_n accu [] n
	 and aux_n p accu = function
	   | x::n -> 
	       (match f x with
		  | Pair (t1,t2) -> aux_n p ((t1,t2)::accu) n
		  | Any -> b)
	   | [] -> (p,accu) :: b in
	 aux_p [] p)
      []
      (BoolRec.get d.record)

  let split (d : descr) l =
    TR.boolean (aux_split d l)

  let split_normal d l =
    TR.boolean_normal (aux_split d l)


  let project d l =
    let t = TR.pi1 (split d l) in
    if t.absent then raise Not_found;
    t

  let project_opt d l =
    let t = TR.pi1 (split d l) in
    { t with absent = false }

  let condition d l t =
    TR.pi2_restricted t (split d l)
851

852
853
854
855
856
(* TODO: eliminate this cap ... (reord l only_absent_node) when
   not necessary. eg. {| ..... |} \ l *)

  let remove_field d l = 
    cap (TR.pi2 (split d l)) (record l only_absent_node)
857

858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
  let first_label d =
    let min = ref LabelPool.dummy_max in
    let aux (_,r) = 
      match LabelMap.get r with
	  (l,_)::_ -> if (l:int) < !min then min := l | _ -> () in
    BoolRec.iter aux d.record;
    !min

  let empty_cases d =
    let x = BoolRec.compute
	      ~empty:0 ~full:3 ~cup:(lor) ~cap:(land)
	      ~diff:(fun a b -> a land lnot b)
	      ~atom:(function (o,r) ->
		       assert (LabelMap.get r == []);
		       if o then 3 else 1
		    )
	      d.record in
    (x land 2 <> 0, x land 1 <> 0)

  let has_empty_record d =
    BoolRec.compute
      ~empty:false ~full:true ~cup:(||) ~cap:(&&)
      ~diff:(fun a b -> a && not b)
      ~atom:(function (o,r) ->
	       List.for_all 
	         (fun (l,t) -> (descr t).absent)
	         (LabelMap.get r)
	    )
      d.record
    

(*TODO: optimize merge
   - pre-compute the sequence of labels
   - remove empty or full { l = t }
*)

  let merge d1 d2 = 
    let res = ref empty in
    let rec aux accu d1 d2 =
      let l = min (first_label d1) (first_label d2) in
      if l = LabelPool.dummy_max then
	let (some1,none1) = empty_cases d1 
	and (some2,none2) = empty_cases d2 in
	let none = none1 && none2 and some = some1 || some2 in
	let accu = LabelMap.from_list (fun _ _ -> assert false) accu in
	(* approx for the case (some && not none) ... *)
	res := cup !res (record' (some, accu))
      else
	let l1 = split d1 l and l2 = split d2 l in
	let loop (t1,d1) (t2,d2) =
	  let t = 
	    if t2.absent 
	    then cup t1 { t2 with absent = false } 
	    else t2 
	  in
	  aux ((l,cons t)::accu) d1 d2
	in
	List.iter (fun x -> List.iter (loop x) l2) l1
	  
    in
    aux [] d1 d2;
    !res

  let any = { empty with record = any.record }

  let get d =
    let rec aux r accu d =
      let l = first_label d in
      if l == LabelPool.dummy_max then
	let (o1,o2) = empty_cases d in 
	if o1 || o2 then (LabelMap.from_list_disj r,o1,o2)::accu else accu
      else
	List.fold_left 
	  (fun accu (t1,t2) -> aux ((l,t1)::r) accu t2)
	  accu
	  (split d l)
    in
    aux [] [] d
end


module Print = 
struct
941
  let print_const ppf = function
942
943
944
    | Integer i -> Intervals.print_v ppf i
    | Atom a -> Atoms.print_v ppf a
    | Char c -> Chars.print_v ppf c
945

946
  let nil_atom = Atoms.mk_ascii "nil"
947
948
949
950
951
952
953
954
955
  let nil_type = atom (Atoms.atom nil_atom)
  let (seqs_node,seqs_descr) = 
    let n = make () in
    let d = cup nil_type (times any_node n) in
    define n d;
    (n, d)

  let is_regexp t = subtype t seqs_descr

956
957
958
959
  module S = struct
  type t = { id : int; 
	     mutable def : d list; 
	     mutable state : [ `Expand | `None | `Marked | `Named of string ] }
960
961
962
963
964
965
  and  d =
    | Name of string
    | Regexp of t Pretty.regexp
    | Atomic of (Format.formatter -> unit)
    | Pair of t * t
    | Char of Chars.v
966
    | Xml of [ `Tag of Atoms.v | `Type of t ] * t * t
967
968
    | Record of (bool * t) label_map * bool * bool
    | Arrows of (t * t) list * (t * t) list
969
    | Neg of t
970
971
972
973
  let compare x y = x.id - y.id
  end
  module Decompile = Pretty.Decompile(DescrHash)(S)
  open S
974
975
976
977
978
979
980
981
982
983
984
985

  module DescrPairMap = 
    Map.Make(
      struct
	type t = descr * descr
	let compare (x1,y1) (x2,y2) =
	  let c = compare_descr x1 x2 in 
	  if c = 0 then compare_descr y1 y2 else c
      end)

  let named = State.ref "Types.Print.named" DescrMap.empty
  let named_xml = State.ref "Types.Print.named_xml"  DescrPairMap.empty
986
  let register_global name d = 
987
988
989
990
991
    if equal_descr { d with xml = BoolPair.empty } empty then 
      (let l = (*Product.merge_same_2*) (Product.get ~kind:`XML d) in
      match l with
	| [(t1,t2)] -> named_xml := DescrPairMap.add (t1,t2) name !named_xml
	| _ -> ());
992
    named := DescrMap.add d name !named
993

994
  let memo = DescrHash.create 63
995
996
  let counter = ref 0
  let alloc def = { id = (incr counter; !counter); def = def; state = `None }
997

998
999
1000
1001
1002
  let count_name = ref 0
  let name () =
    incr count_name;
    "X" ^ (string_of_int !count_name)

1003
1004
  let to_print = ref []

1005
1006
1007
  let trivial_rec b = 
    b == BoolRec.empty || 
    (is_empty { empty with record = BoolRec.diff BoolRec.full b})
1008

1009
  let trivial_pair b = b == BoolPair.empty || b == BoolPair.full
1010
1011

  let worth_abbrev d = 
1012
1013
    not (trivial_pair d.times && trivial_pair d.xml && 
	 trivial_pair d.arrow && trivial_rec d.record) 
1014

1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
  let worth_complement d =
    let aux f x y = if f x y = 0 then 1 else 0 in
    let n = 
      aux Atoms.compare d.atoms any.atoms +
      aux Chars.compare d.chars any.chars +
      aux Intervals.compare d.ints any.ints +
      aux BoolPair.compare d.times any.times +
      aux BoolPair.compare d.xml any.xml +
      aux BoolPair.compare d.arrow any.arrow +
      aux BoolRec.compare d.record any.record in
    n >= 4

1027
  let rec prepare d =
1028
    try DescrHash.find memo d
1029
    with Not_found ->
1030
1031
      try 
	let n = DescrMap.find d !named in
1032
1033
	let s = alloc [] in
	s.state <- `Named n;
1034
1035
1036
	DescrHash.add memo d s;
	s
      with Not_found ->
1037
	if worth_complement d then 
1038
	  alloc [Neg (prepare (neg d))]
1039
	else
1040
1041
1042
	let slot = alloc [] in
	if not (worth_abbrev d) then slot.state <- `Expand;
	DescrHash.add memo d slot;
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
	let (seq,not_seq) =
	  if (subtype { empty with times = d.times } seqs_descr) then
	    (cap d seqs_descr, diff d seqs_descr)
	  else
	    (empty, d) in

	let add u = slot.def <- u :: slot.def in
	if (non_empty seq) then
	  add (Regexp (decompile seq));  
	List.iter
	  (fun (t1,t2) -> add (Pair (prepare t1, prepare t2)))
	  (Product.get not_seq);
	List.iter
	  (fun (t1,t2) ->
	     try 
	       let n = DescrPairMap.find (t1,t2) !named_xml in
	       add (Name n)
	     with
		 Not_found ->
	     let tag = 
	       match Atoms.is_atom t1.atoms with
1064
		 | Some a when is_empty { t1 with atoms = Atoms.empty } -> `Tag a
1065
1066
1067
1068
		 | _ -> `Type (prepare t1) in
	     List.iter
	       (fun (ta,tb) -> add (Xml (tag, prepare ta, prepare tb)))
	       (Product.get t2)
1069
	  )
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
	  ((*Product.merge_same_2*) (Product.get ~kind:`XML not_seq));
	List.iter
	  (fun (r,some,none) -> 
	     let r = LabelMap.map 
		       (fun t ->
			  (t.absent, prepare { t with absent = false })) r in
	     add (Record (r,some,none)))
	  (Record.get not_seq);
	(match Chars.is_char not_seq.chars with
	  | Some c -> add (Char c)
	  | None ->
	      List.iter (fun x -> add (Atomic x)) (Chars.print not_seq.chars));
	List.iter (fun x -> add (Atomic x)) (Intervals.print not_seq.ints);
	List.iter (fun x -> add (Atomic x)) (Atoms.print not_seq.atoms);
	List.iter
	  (fun (p,n) ->
	     let aux (t,s) = prepare (descr t), prepare (descr s) in
	     let p = List.map aux p and n = List.map aux n in
	     add (Arrows (p,n)))
	  (BoolPair.get not_seq.arrow);
	slot.def <- List.rev slot.def;
	slot
	

  and decompile d =
    Decompile.decompile 
      (fun t -> 
	 let tr = Product.get t in
	 let tr = List.map (fun (l,t) -> prepare l, t) tr in
	 tr, Atoms.contains nil_atom t.atoms)
      d

1102
1103
  let gen = ref 0

1104
  let rec assign_name s =
1105
    incr gen;
1106
    match s.state with
1107
1108
1109
1110
1111
      | `None ->  
	  let g = !gen in
	  s.state <- `Marked; 
	  List.iter assign_name_rec s.def;
	  if (s.state == `Marked) && (!gen == g) then s.state <- `None
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
      | `Marked -> s.state <- `Named (name ()); to_print := s :: !to_print
      | _ -> ()
  and assign_name_rec = function
    | Neg t -> assign_name t
    | Name _ | Char _ | Atomic _ -> ()
    | Regexp r -> assign_name_regexp r
    | Pair (t1,t2) -> assign_name t1; assign_name t2
    | Xml (tag,t2,t3) -> 
	(match tag with `Type t -> assign_name t | _ -> ());
	assign_name t2;
	assign_name t3
    | Record (r,_,_) ->
	List.iter (fun (_,(_,t)) -> assign_name t) (LabelMap.get r)
    | Arrows (p,n) ->
	List.iter (fun (t1,t2) -> assign_name t1; assign_name t2) p;
	List.iter (fun (t1,t2) -> assign_name t1; assign_name t2) n
  and assign_name_regexp = function
    | Pretty.Epsilon | Pretty.Empty -> ()
    | Pretty.Alt (r1,r2) 
    | Pretty.Seq (r1,r2) -> assign_name_regexp r1; assign_name_regexp r2
    | Pretty.Star r | Pretty.Plus r -> assign_name_regexp r
    | Pretty.Trans t -> assign_name t

1135
  let rec do_print_slot pri ppf s =
1136
1137
    match s.state with
      | `Named n -> Format.fprintf ppf "%s" n
1138
      | _ -> do_print_slot_real pri ppf s.def
1139
1140
1141
1142
1143
  and do_print_slot_real pri ppf def =
    let rec aux ppf = function
      | [] -> Format.fprintf ppf "Empty"
      | [ h ] -> do_print ppf h
      | h :: t -> Format.fprintf ppf "%a |@ %a" do_print h aux t
1144
    in
1145
1146
1147
1148
    if (pri >= 2) && (List.length def >= 2) 
    then Format.fprintf ppf "@[(%a)@]" aux def
    else aux ppf def
  and do_print ppf = function
1149
    | Neg t -> Format.fprintf ppf "Any \\ (@[%a@])" (do_print_slot 0) t
1150
1151
1152
1153
1154
1155
1156
1157
    | Name n -> Format.fprintf ppf "%s" n
    | Char c -> Chars.print_v ppf c
    | Regexp r -> Format.fprintf ppf "@[[ %a ]@]" (do_print_regexp 0) r
    | Atomic a -> a ppf
    | Pair (t1,t2) -> 
	Format.fprintf ppf "@[(%a,%a)@]" 
	  (do_print_slot 0) t1 
	  (do_print_slot 0) t2
1158
    | Xml (tag,attr,t) -> 
1159
1160
	Format.fprintf ppf "<%a%a>%a" 
	  do_print_tag tag
1161
1162
	  do_print_attr attr
	  (do_print_slot 0) t
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
    | Record (r,some,none) ->
	if some then Format.fprintf ppf "@[{"
	else Format.fprintf ppf "@[{|";
	do_print_record ppf r;
	if not none then  Format.fprintf ppf ";@ ...";
	if some then Format.fprintf ppf " }@]"
	else Format.fprintf ppf " |}@]"
    | Arrows (p,n) ->
	(match p with
	   | [] -> Format.fprintf ppf "Arrow"
	   | (t,s)::l ->
	       Format.fprintf ppf "%a" do_print_arrow (t,s);
	       List.iter 
		 (fun (t,s) ->
		    Format.fprintf ppf " &@ %a" do_print_arrow (t,s)
		 ) l);
	List.iter 
	  (fun (t,s) ->
	     Format.fprintf ppf " \\@ %a" do_print_arrow (t,s)
	  ) n
  and do_print_arrow ppf (t,s) =
    Format.fprintf ppf "%a -> %a"
      (do_print_slot 0) t
      (do_print_slot 0) s
  and do_print_tag ppf = function
1188
    | `Tag s -> Utf8.print ppf (Atoms.value s)
1189
1190
    | `Type t -> Format.fprintf ppf "(%a)" (do_print_slot 0) t
  and do_print_attr ppf = function
1191
1192
    | { state = `Marked|`Expand; 
	def = [ Record (r,true,true) ] } -> do_print_record ppf r
1193
1194
    | t -> Format.fprintf ppf " %a" (do_print_slot 2) t
  and do_print_record ppf r =
1195
    let first = ref true in
1196
1197
1198
1199
    List.iter 
      (fun (l,(o,t)) ->
	 let sep = if !first then (first := false; "") else ";" in
	 let opt = if o then "?" else "" in
1200
1201
	 Format.fprintf ppf "%s@ @[%a =%s@] %a" sep
	   Utf8.print (LabelPool.value l) opt (do_print_slot 0) t
1202
1203
      ) (LabelMap.get r)
  and do_print_regexp pri ppf = function
1204
    | Pretty.Empty ->  Format.fprintf ppf "Empty" (*assert false *)
1205
    | Pretty.Epsilon -> ()
1206
    | Pretty.Seq (Pretty.Trans { def = [ Char _ ] }, _) as r-> 
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
	(match extract_string [] r with
	  | s, None ->
	      Format.fprintf ppf "'";
	      List.iter (Chars.print_v_in_string ppf) s;
	      Format.fprintf ppf "'"
	  | s, Some r ->
	      if pri >= 3 then Format.fprintf ppf "@[(";
	      Format.fprintf ppf "'";
	      List.iter (Chars.print_v_in_string ppf) s;
	      Format.fprintf ppf "' %a" (do_print_regexp 2) r;
	      if pri >= 3 then Format.fprintf ppf ")@]")
    | Pretty.Seq (r1,r2) -> 
	if pri >= 3 then Format.fprintf ppf "@[(";
	Format.fprintf ppf "%a@ %a" 
	  (do_print_regexp 2) r1 
	  (do_print_regexp 2) r2;
	if pri >= 3 then Format.fprintf ppf ")@]"
    | Pretty.Alt (r,Pretty.Epsilon) | Pretty.Alt (Pretty.Epsilon,r) ->
	Format.fprintf ppf "@[%a@]?" (do_print_regexp 3) r
    | Pretty.Alt (r1,r2) -> 
	if pri >= 2 then Format.fprintf ppf "@[(";
	Format.fprintf ppf "%a |@ %a" 
	  (do_print_regexp 1) r1 
	  (do_print_regexp 1) r2;
	if pri >= 2 then Format.fprintf ppf ")@]"
    | Pretty.Star r -> 
	Format.fprintf ppf "@[%a@]*" (do_print_regexp 3) r