typer.ml 13.6 KB
Newer Older
1
2
(* I. Transform the abstract syntax of types and patterns into
      the internal form *)
3
4
5
6

open Location
open Ast

7
8
9
10
11
exception Pattern of string
exception NonExhaustive of Types.descr
exception Constraint of Types.descr * Types.descr * string

let raise_loc loc exn = raise (Location (loc,exn))
12
13
14
15

(* Internal representation as a graph (desugar recursive types and regexp),
   to compute freevars, etc... *)

16
type ti = {
17
18
19
20
21
22
23
24
  id : int; 
  mutable loc' : loc;
  mutable fv : string SortedList.t option; 
  mutable descr': descr;
  mutable type_node: Types.node option;
  mutable pat_node: Patterns.node option
} 
and descr =
25
   [ `Alias of string * ti
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
   | `Type of Types.descr
   | `Or of ti * ti
   | `And of ti * ti
   | `Diff of ti * ti
   | `Times of ti * ti
   | `Arrow of ti * ti
   | `Record of Types.label * bool * ti
   | `Capture of Patterns.capture
   | `Constant of Patterns.capture * Types.const
   ]
    


module S = struct type t = string let compare = compare end
module StringMap = Map.Make(S)
module StringSet = Set.Make(S)

let mk' =
  let counter = ref 0 in
45
  fun loc ->
46
    incr counter;
47
48
    let rec x = { 
      id = !counter; 
49
      loc' = loc; 
50
51
52
53
54
      fv = None; 
      descr' = `Alias ("__dummy__", x);  
      type_node = None; 
      pat_node = None 
    } in
55
56
57
    x

let cons loc d =
58
  let x = mk' loc in
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
  x.descr' <- d;
  x
    
(* Note:
   Compilation of Regexp is implemented as a ``rewriting'' of
   the parsed syntax, in order to be able to print its result
   (for debugging for instance)
   
   It would be possible (and a little more efficient) to produce
   directly ti nodes.
*)
    
module Regexp = struct
  let memo = Hashtbl.create 51
  let defs = ref []
  let name =
    let c = ref 0 in
    fun () ->
      incr c;
      "#" ^ (string_of_int !c)

  let rec seq_vars accu = function
    | Epsilon | Elem _ -> accu
    | Seq (r1,r2) | Alt (r1,r2) -> seq_vars (seq_vars accu r1) r2
    | Star r | WeakStar r -> seq_vars accu r
    | SeqCapture (v,r) -> seq_vars (StringSet.add v accu) r

  let rec propagate vars = function
    | Epsilon -> `Epsilon
    | Elem x -> `Elem (vars,x)
    | Seq (r1,r2) -> `Seq (propagate vars r1,propagate vars r2)
    | Alt (r1,r2) -> `Alt (propagate vars r1, propagate vars r2)
    | Star r -> `Star (propagate vars r)
    | WeakStar r -> `WeakStar (propagate vars r)
    | SeqCapture (v,x) -> propagate (StringSet.add v vars) x

  let cup r1 r2 = 
    match (r1,r2) with
      | (_, `Empty) -> r1
      | (`Empty, _) -> r2
      | (`Res t1, `Res t2) -> `Res (mk noloc (Or (t1,t2)))

  let rec compile fin e seq : [`Res of Ast.ppat | `Empty] = 
    if List.mem seq e then `Empty
    else 
      let e = seq :: e in
      match seq with
	| [] ->
	    `Res fin
	| `Epsilon :: rest -> 
	    compile fin e rest
	| `Elem (vars,x) :: rest -> 
	    let capt = StringSet.fold
			 (fun v t -> mk noloc (And (t, (mk noloc (Capture v)))))
			 vars x in
	    `Res (mk noloc (Prod (capt, guard_compile fin rest)))
	| `Seq (r1,r2) :: rest -> 
	    compile fin e (r1 :: r2 :: rest)
	| `Alt (r1,r2) :: rest -> 
	    cup (compile fin e (r1::rest)) (compile fin e (r2::rest))
	| `Star r :: rest -> cup (compile fin e (r::seq)) (compile fin e rest) 
	| `WeakStar r :: rest -> cup (compile fin e rest) (compile fin e (r::seq))

  and guard_compile fin seq =
    try Hashtbl.find memo seq 
    with
	Not_found ->
          let n = name () in
	  let v = mk noloc (PatVar n) in
          Hashtbl.add memo seq v;
	  let d = compile fin [] seq in
	  (match d with
	     | `Empty -> assert false
	     | `Res d -> defs := (n,d) :: !defs);
	  v


  let atom_nil = Types.mk_atom "nil"
  let constant_nil v t = 
    mk noloc (And (t, (mk noloc (Constant (v, Types.Atom atom_nil)))))

  let compile regexp queue : ppat =
    let vars = seq_vars StringSet.empty regexp in
    let fin = StringSet.fold constant_nil vars queue in
    let n = guard_compile fin [propagate StringSet.empty regexp] in
    Hashtbl.clear memo;
    let d = !defs in
    defs := [];
    mk noloc (Recurs (n,d))
end

let compile_regexp = Regexp.compile


let rec compile env { loc = loc; descr = d } : ti = 
  match (d : Ast.ppat') with
  | PatVar s -> 
      (try StringMap.find s env
157
158
       with Not_found -> 
	 raise_loc loc (Pattern ("Undefined type variable " ^ s))
159
      )
160
  | Recurs (t, b) -> compile (compile_many env b) t
161
162
163
164
165
166
167
168
169
170
171
  | Regexp (r,q) -> compile env (Regexp.compile r q)
  | Internal t -> cons loc (`Type t)
  | Or (t1,t2) -> cons loc (`Or (compile env t1, compile env t2))
  | And (t1,t2) -> cons loc (`And (compile env t1, compile env t2))
  | Diff (t1,t2) -> cons loc (`Diff (compile env t1, compile env t2))
  | Prod (t1,t2) -> cons loc (`Times (compile env t1, compile env t2))
  | Arrow (t1,t2) -> cons loc (`Arrow (compile env t1, compile env t2))
  | Record (l,o,t) -> cons loc (`Record (l,o,compile env t))
  | Constant (x,v) -> cons loc (`Constant (x,v))
  | Capture x -> cons loc (`Capture x)

172
173
174
175
176
177
178
179
and compile_many env b = 
  let b = List.map (fun (v,t) -> (v,t,mk' t.loc)) b in
  let env = 
    List.fold_left (fun env (v,t,x) -> StringMap.add v x env) env b in
  List.iter (fun (v,t,x) -> x.descr' <- `Alias (v, compile env t)) b;
  env


180
181
182
183
184
185
let rec comp_fv seen s =
  match s.fv with
    | Some l -> l
    | None ->
	let l = 
	  match s.descr' with
186
	    | `Alias (_,x) -> if List.memq s seen then [] else comp_fv (s :: seen) x
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
	    | `Or (s1,s2) 
	    | `And (s1,s2)
	    | `Diff (s1,s2)
	    | `Times (s1,s2)
	    | `Arrow (s1,s2) -> SortedList.cup (comp_fv seen s1) (comp_fv seen s2)
	    | `Record (l,opt,s) -> comp_fv seen s
	    | `Type _ -> []
	    | `Capture x
	    | `Constant (x,_) -> [x]
	in
	if seen = [] then s.fv <- Some l;
	l


let fv = comp_fv []

let rec typ seen s : Types.descr =
  match s.descr' with
205
206
207
208
209
    | `Alias (v,x) ->
	if List.memq s seen then 
	  raise_loc s.loc' 
	    (Pattern 
	       ("Unguarded recursion on variable " ^ v ^ " in this type"))
210
211
212
213
214
215
216
217
	else typ (s :: seen) x
    | `Type t -> t
    | `Or (s1,s2) -> Types.cup (typ seen s1) (typ seen s2)
    | `And (s1,s2) ->  Types.cap (typ seen s1) (typ seen s2)
    | `Diff (s1,s2) -> Types.diff (typ seen s1) (typ seen s2)
    | `Times (s1,s2) ->	Types.times (typ_node s1) (typ_node s2)
    | `Arrow (s1,s2) ->	Types.arrow (typ_node s1) (typ_node s2)
    | `Record (l,o,s) -> Types.record l o (typ_node s)
218
    | `Capture _ | `Constant _ -> assert false
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

and typ_node s : Types.node =
  match s.type_node with
    | Some x -> x
    | None ->
	let x = Types.make () in
	s.type_node <- Some x;
	let t = typ [] s in
	Types.define x t;
	x

let type_node s = Types.internalize (typ_node s)

let rec pat seen s : Patterns.descr =
  if fv s = [] then Patterns.constr (type_node s) else
  match s.descr' with
235
236
237
238
239
    | `Alias (v,x) ->
	if List.memq s seen then 
	  raise_loc s.loc' 
	    (Pattern 
	       ("Unguarded recursion on variable " ^ v ^ " in this pattern"))
240
241
242
243
244
245
	else pat (s :: seen) x
    | `Or (s1,s2) -> Patterns.cup (pat seen s1) (pat seen s2)
    | `And (s1,s2) -> Patterns.cap (pat seen s1) (pat seen s2)
    | `Diff (s1,s2) when fv s2 = [] ->
	let s2 = Types.cons (Types.neg (Types.descr (type_node s2)))in
	Patterns.cap (pat seen s1) (Patterns.constr s2)
246
247
    | `Diff _ ->
	raise_loc s.loc' (Pattern "Difference not allowed in patterns")
248
249
    | `Times (s1,s2) -> Patterns.times (pat_node s1) (pat_node s2)
    | `Record (l,false,s) -> Patterns.record l (pat_node s)
250
251
252
    | `Record _ ->
	raise_loc s.loc' 
	  (Pattern "Optional field not allowed in record patterns")
253
254
    | `Capture x ->  Patterns.capture x
    | `Constant (x,c) -> Patterns.constant x c
255
256
257
    | `Arrow _ ->
	raise_loc s.loc' (Pattern "Arrow not allowed in patterns")
    | `Type _ -> assert false
258
259
260
261
262
263
264
265
266
267
268

and pat_node s : Patterns.node =
  match s.pat_node with
    | Some x -> x
    | None ->
	let x = Patterns.make (fv s) in
	s.pat_node <- Some x;
	let t = pat [] s in
	Patterns.define x t;
	x

269
270
271
let global_types = ref StringMap.empty

let mk_typ e =
272
  if fv e = [] then type_node e 
273
274
275
276
277
  else raise_loc e.loc' (Pattern "Capture variables are not allowed in types")
    

let typ e =
  mk_typ (compile !global_types e)
278
279

let pat e =
280
  let e = compile !global_types e in
281
282
  pat_node e

283
284
let register_global_types b =
  let env = compile_many !global_types b in
285
286
287
288
  List.iter (fun (v,_) -> 
	       let d = Types.descr (mk_typ (StringMap.find v env)) in
	       Types.Print.register_global v d
	    ) b;
289
  global_types := env
290
291


292
293
(* II. Build skeleton *)

294
295
module Fv = StringSet

296
let rec expr { loc = loc; descr = d } = 
297
  let (fv,td) = 
298
    match d with
299
300
301
302
      | Var s -> (Fv.singleton s, Typed.Var s)
      | Apply (e1,e2) -> 
	  let (fv1,e1) = expr e1 and (fv2,e2) = expr e2 in
	  (Fv.union fv1 fv2, Typed.Apply (e1,e2))
303
      | Abstraction a ->
304
305
306
307
	  let iface = List.map (fun (t1,t2) -> (typ t1, typ t2)) a.fun_iface in
	  let t = List.fold_left 
		    (fun accu (t1,t2) -> Types.cap accu (Types.arrow t1 t2)) 
		    Types.any iface in
308
309
310
	  let iface = List.map 
			(fun (t1,t2) -> (Types.descr t1, Types.descr t2)) 
			iface in
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
	  let (fv0,body) = branches a.fun_body in
	  let fv = match a.fun_name with
	    | None -> fv0
	    | Some f -> Fv.remove f fv0 in
	  (fv,
	   Typed.Abstraction 
	     { Typed.fun_name = a.fun_name;
	       Typed.fun_iface = iface;
	       Typed.fun_body = body;
	       Typed.fun_typ = t;
	       Typed.fun_fv = Fv.elements fv0
	     }
	  )
      | Cst c -> (Fv.empty, Typed.Cst c)
      | Pair (e1,e2) ->
	  let (fv1,e1) = expr e1 and (fv2,e2) = expr e2 in
	  (Fv.union fv1 fv2, Typed.Pair (e1,e2))
      | RecordLitt r -> 
	  (* XXX TODO: check that no label appears twice *)
	  let fv = ref Fv.empty in
	  let r = List.map 
		    (fun (l,e) -> 
		       let (fv2,e) = expr e in
		       fv := Fv.union !fv fv2;
		       (l,e)
		    ) r in
	  (!fv, Typed.RecordLitt r)
338
339
340
341
      | Op (op,le) ->
	  let (fvs,ltes) = List.split (List.map expr le) in
	  let fv = List.fold_left Fv.union Fv.empty fvs in
	  (fv, Typed.Op (op,ltes))
342
343
344
345
346
347
348
349
      | Match (e,b) -> 
	  let (fv1,e) = expr e
	  and (fv2,b) = branches b in
	  (Fv.union fv1 fv2, Typed.Match (e, b))
      | Map (e,b) ->
	  let (fv1,e) = expr e
	  and (fv2,b) = branches b in
	  (Fv.union fv1 fv2, Typed.Map (e, b))
350
  in
351
352
  fv,
  { Typed.exp_loc = loc;
353
354
355
356
    Typed.exp_typ = Types.empty;
    Typed.exp_descr = td;
  }
	      
357
358
359
360
361
362
363
364
365
366
  and branches b = 
    let fv = ref Fv.empty in
    let b = List.map 
	      (fun (p,e) ->
		 let (fv2,e) = expr e in
		 fv := Fv.union !fv fv2;
		 { Typed.br_used = false;
		   Typed.br_pat = pat p;
		   Typed.br_body = e }
	      ) b in
367
    (!fv, { Typed.br_typ = Types.empty; Typed.br_branches = b } )
368
369
370
371
372
373
374
375
376
377
378
379
380
381

module Env = StringMap

open Typed

let rec compute_type env e = 
  let d = compute_type' e.exp_loc env e.exp_descr in
  e.exp_typ <- Types.cup e.exp_typ d;
  d

and compute_type' loc env = function
  | Var s -> Env.find s env
  | Apply (e1,e2) ->
      let t1 = compute_type env e1 and t2 = compute_type env e2 in
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
      if Types.is_empty t2 
      then Types.empty
      else 
	if Types.subtype t1 Types.Arrow.any 
	then
	  let t1 = Types.Arrow.get t1 in
	  let dom = Types.Arrow.domain t1 in
	  if Types.subtype t2 dom
	  then Types.Arrow.apply t1 t2
	  else
	    raise_loc loc 
	      (Constraint 
		 (t2,dom,"The argument is not in the domain of the function"))
	else
	  raise_loc loc
	    (Constraint
	       (t1,Types.Arrow.any,"The expression in function position is not necessarily a function"))
399
400
401
402
403
  | Abstraction a ->
      let env = match a.fun_name with
	| None -> env
	| Some f -> Env.add f a.fun_typ env in
      List.iter (fun (t1,t2) ->
404
405
406
		   let t = type_branches loc env t1 a.fun_body in
		   if not (Types.subtype t t2) then
		     raise_loc loc (Constraint (t,t2,"Constraint not satisfied in interface"))
407
408
409
410
411
412
413
414
415
416
417
418
419
420
		) a.fun_iface;
      a.fun_typ
  | Cst c -> Types.constant c
  | Pair (e1,e2) -> 
      let t1 = compute_type env e1 and t2 = compute_type env e2 in
      let t1 = Types.cons t1 and t2 = Types.cons t2 in
      Types.times t1 t2
  | RecordLitt r ->
      List.fold_left 
	(fun accu (l,e) ->
	   let t = compute_type env e in
	   let t = Types.record l false (Types.cons t) in
	   Types.cap accu t
	) Types.Record.any r
421
422
423
  | Op (op, el) ->
      let args = List.map (fun e -> (e.exp_loc, compute_type env e)) el in
      type_op loc op args
424
425
  | Match (e,b) ->
      let t = compute_type env e in
426
      type_branches loc env t b
427
428
  | Map (e,b) -> assert false

429
and type_branches loc env targ brs =
430
  if Types.is_empty targ then Types.empty 
431
432
433
434
  else (
    brs.br_typ <- Types.cup brs.br_typ targ;
    branches_aux loc env targ Types.empty brs.br_branches
  )
435
    
436
437
and branches_aux loc env targ tres = function
  | [] -> raise_loc loc (NonExhaustive targ)
438
439
440
441
442
443
  | b :: rem ->
      let p = b.br_pat in
      let acc = Types.descr (Patterns.accept p) in

      let targ' = Types.cap targ acc in
      if Types.is_empty targ' 
444
      then branches_aux loc env targ tres rem
445
446
447
448
449
450
451
      else 
	( b.br_used <- true;
	  let res = Patterns.filter targ' p in
	  let env' = List.fold_left 
		       (fun env (x,t) -> Env.add x (Types.descr t) env) 
		       env res in
	  let t = compute_type env' b.br_body in
452
453
454
455
456
457
	  let tres = Types.cup t tres in
	  let targ'' = Types.diff targ acc in
	  if (Types.non_empty targ'') then 
	    branches_aux loc env targ'' (Types.cup t tres) rem 
	  else
	    tres
458
	)
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482

and type_op loc op args =
  match (op,args) with
    | ("+", [loc1,t1; loc2,t2]) ->
	type_int_binop Intervals.add loc1 t1 loc2 t2
    | ("*", [loc1,t1; loc2,t2]) ->
	type_int_binop (fun i1 i2 -> Intervals.any) loc1 t1 loc2 t2
    | _ -> assert false

and type_int_binop f loc1 t1 loc2 t2 =
  if not (Types.Int.is_int t1) then
    raise_loc loc1 
      (Constraint 
	 (t1,Types.Int.any,
	  "The first argument must be an integer"));
  if not (Types.Int.is_int t2) then
    raise_loc loc2
      (Constraint 
	       (t1,Types.Int.any,
		"The second argument must be an integer"));
  Types.Int.put
    (f (Types.Int.get t1) (Types.Int.get t2));