typer.ml 37.1 KB
Newer Older
1
(* TODO:
2
 - rewrite type-checking of operators to propagate constraint
3
4
 - optimize computation of pattern free variables
 - check whether it is worth using recursive hash-consing internally
5
6
*)

7

8
9
let warning loc msg =
  Format.fprintf !Location.warning_ppf "Warning %a:@\n%a%s@\n" 
10
11
    Location.print_loc (loc,`Full)
    Location.html_hilight (loc,`Full)
12
13
    msg

14
15
(* I. Transform the abstract syntax of types and patterns into
      the internal form *)
16
17
18

open Location
open Ast
19
open Ident
20

21
module S = struct type t = string let compare = compare end
22
module TypeEnv = Map.Make(S)
23

24
exception NonExhaustive of Types.descr
25
exception Constraint of Types.descr * Types.descr
26
exception ShouldHave of Types.descr * string
27
exception ShouldHave2 of Types.descr * string * Types.descr
28
exception WrongLabel of Types.descr * label
29
exception UnboundId of id
30
exception Error of string
31

32
33
let raise_loc loc exn = raise (Location (loc,`Full,exn))
let raise_loc_str loc ofs exn = raise (Location (loc,`Char ofs,exn))
34
let error loc msg = raise_loc loc (Error msg)
35

36
37
38
  (* Schema datastructures *)

module StringSet = Set.Make (String)
39
40
41

  (* just to remember imported schemas *)
let schemas = State.ref "Typer.schemas" StringSet.empty
42
43
44

let schema_types = State.ref "Typer.schema_types" (Hashtbl.create 51)
let schema_elements = State.ref "Typer.schema_elements" (Hashtbl.create 51)
45
let schema_attributes = State.ref "Typer.schema_attributes" (Hashtbl.create 51)
46

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
(* Eliminate Recursion, propagate Sequence Capture Variables *)

let rec seq_vars accu = function
  | Epsilon | Elem _ -> accu
  | Seq (r1,r2) | Alt (r1,r2) -> seq_vars (seq_vars accu r1) r2
  | Star r | WeakStar r -> seq_vars accu r
  | SeqCapture (v,r) -> seq_vars (IdSet.add v accu) r

type derecurs_slot = {
  ploc : Location.loc;
  pid  : int;
  mutable ploop : bool;
  mutable pdescr : derecurs option
} and derecurs =
  | PAlias of derecurs_slot
  | PType of Types.descr
  | POr of derecurs * derecurs
  | PAnd of derecurs * derecurs
  | PDiff of derecurs * derecurs
  | PTimes of derecurs * derecurs
  | PXml of derecurs * derecurs
  | PArrow of derecurs * derecurs
  | POptional of derecurs
  | PRecord of bool * derecurs label_map
  | PCapture of id
  | PConstant of id * Types.const
  | PRegexp of derecurs_regexp * derecurs
and derecurs_regexp =
  | PEpsilon
  | PElem of derecurs
  | PSeq of derecurs_regexp * derecurs_regexp
  | PAlt of derecurs_regexp * derecurs_regexp
  | PStar of derecurs_regexp
  | PWeakStar of derecurs_regexp

let rec hash_derecurs = function
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
  | PAlias s -> 
      s.pid
  | PType t -> 
      1 + 17 * (Types.hash_descr t)
  | POr (p1,p2) -> 
      2 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PAnd (p1,p2) -> 
      3 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PDiff (p1,p2) -> 
      4 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PTimes (p1,p2) -> 
      5 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PXml (p1,p2) -> 
      6 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PArrow (p1,p2) -> 
      7 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | POptional p -> 
      8 + 17 * (hash_derecurs p)
  | PRecord (o,r) -> 
      (if o then 9 else 10) + 17 * (LabelMap.hash hash_derecurs r)
  | PCapture x -> 
      11 + 17 * (Id.hash x)
  | PConstant (x,c) -> 
      12 + 17 * (Id.hash x) + 257 * (Types.hash_const c)
  | PRegexp (p,q) -> 
      13 + 17 * (hash_derecurs_regexp p) + 257 * (hash_derecurs q)
109
and hash_derecurs_regexp = function
110
111
112
113
114
115
116
117
118
119
120
121
  | PEpsilon -> 
      1
  | PElem p -> 
      2 + 17 * (hash_derecurs p)
  | PSeq (p1,p2) -> 
      3 + 17 * (hash_derecurs_regexp p1) + 257 * (hash_derecurs_regexp p2)
  | PAlt (p1,p2) -> 
      4 + 17 * (hash_derecurs_regexp p1) + 257 * (hash_derecurs_regexp p2)
  | PStar p -> 
      5 + 17 * (hash_derecurs_regexp p)
  | PWeakStar p -> 
      6 + 17 * (hash_derecurs_regexp p)
122
123

let rec equal_derecurs p1 p2 = (p1 == p2) || match p1,p2 with
124
125
126
127
  | PAlias s1, PAlias s2 -> 
      s1 == s2
  | PType t1, PType t2 -> 
      Types.equal_descr t1 t2
128
129
130
131
132
  | POr (p1,q1), POr (p2,q2)
  | PAnd (p1,q1), PAnd (p2,q2)
  | PDiff (p1,q1), PDiff (p2,q2)
  | PTimes (p1,q1), PTimes (p2,q2)
  | PXml (p1,q1), PXml (p2,q2)
133
134
135
136
137
138
139
140
141
142
143
144
  | PArrow (p1,q1), PArrow (p2,q2) -> 
      (equal_derecurs p1 p2) && (equal_derecurs q1 q2)
  | POptional p1, POptional p2 -> 
      equal_derecurs p1 p2
  | PRecord (o1,r1), PRecord (o2,r2) -> 
      (o1 == o2) && (LabelMap.equal equal_derecurs r1 r2)
  | PCapture x1, PCapture x2 -> 
      Id.equal x1 x2
  | PConstant (x1,c1), PConstant (x2,c2) -> 
      (Id.equal x1 x2) && (Types.equal_const c1 c2)
  | PRegexp (p1,q1), PRegexp (p2,q2) -> 
      (equal_derecurs_regexp p1 p2) && (equal_derecurs q1 q2)
145
146
  | _ -> false
and equal_derecurs_regexp r1 r2 = match r1,r2 with
147
148
149
150
  | PEpsilon, PEpsilon -> 
      true
  | PElem p1, PElem p2 -> 
      equal_derecurs p1 p2
151
  | PSeq (p1,q1), PSeq (p2,q2) 
152
153
  | PAlt (p1,q1), PAlt (p2,q2) -> 
      (equal_derecurs_regexp p1 p2) && (equal_derecurs_regexp q1 q2)
154
  | PStar p1, PStar p2
155
156
  | PWeakStar p1, PWeakStar p2 -> 
      equal_derecurs_regexp p1 p2
157
  | _ -> false
158

159
160
161
162
163
164
165
166
167
168
169
module DerecursTable = Hashtbl.Make(
  struct 
    type t = derecurs 
    let hash = hash_derecurs
    let equal = equal_derecurs
  end
)

module RE = Hashtbl.Make(
  struct 
    type t = derecurs_regexp * derecurs 
170
171
172
173
    let hash (p,q) = 
      (hash_derecurs_regexp p) + 17 * (hash_derecurs q)
    let equal (p1,q1) (p2,q2) = 
      (equal_derecurs_regexp p1 p2) && (equal_derecurs q1 q2)
174
175
  end
)
176

177
178
179
180
181
182
183
184
185
  
let counter = State.ref "Typer.counter - derecurs" 0
let mk_slot loc = 
  incr counter; 
  { ploop = false; ploc = loc; pid = !counter; pdescr = None }
  
let rec derecurs env p = match p.descr with
  | PatVar v ->
      (try PAlias (TypeEnv.find v env)
186
187
       with Not_found -> 
	 raise_loc_generic p.loc ("Undefined type/pattern " ^ v))
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
  | SchemaVar (kind, schema, item) ->
      let try_elt () = fst (Hashtbl.find !schema_elements (schema, item)) in
      let try_typ () = Hashtbl.find !schema_types (schema, item) in
      let try_att () = Hashtbl.find !schema_attributes (schema, item) in
      (match kind with
      | `Element ->
          (try
            PType (try_elt ())
          with Not_found ->
            failwith (Printf.sprintf
              "No element named '%s' found in schema '%s'" item schema))
      | `Type ->
          (try
            PType (try_typ ())
          with Not_found ->
            failwith (Printf.sprintf
              "No type named '%s' found in schema '%s'" item schema))
      | `Attribute ->
          (try
            PType (try_att ())
          with Not_found ->
            failwith (Printf.sprintf
              "No attribute named '%s' found in schema '%s'" item schema))
      | `Any ->
          PType
            (try try_elt () with Not_found ->
              (try try_typ () with Not_found ->
                (try try_att () with Not_found ->
                  failwith (Printf.sprintf
                    "No item named '%s' found in schema '%s'" item schema)))))
218
219
220
221
222
223
224
225
226
227
228
229
230
  | Recurs (p,b) -> derecurs (derecurs_def env b) p
  | Internal t -> PType t
  | Or (p1,p2) -> POr (derecurs env p1, derecurs env p2)
  | And (p1,p2) -> PAnd (derecurs env p1, derecurs env p2)
  | Diff (p1,p2) -> PDiff (derecurs env p1, derecurs env p2)
  | Prod (p1,p2) -> PTimes (derecurs env p1, derecurs env p2)
  | XmlT (p1,p2) -> PXml (derecurs env p1, derecurs env p2)
  | Arrow (p1,p2) -> PArrow (derecurs env p1, derecurs env p2)
  | Optional p -> POptional (derecurs env p)
  | Record (o,r) -> PRecord (o, LabelMap.map (derecurs env) r)
  | Capture x -> PCapture x
  | Constant (x,c) -> PConstant (x,c)
  | Regexp (r,q) -> 
231
232
      let constant_nil t v = 
	PAnd (t, PConstant (v, Types.Atom Sequence.nil_atom)) in
233
234
235
236
237
      let vars = seq_vars IdSet.empty r in
      let q = IdSet.fold constant_nil (derecurs env q) vars in
      let r = derecurs_regexp (fun p -> p) env r in
      PRegexp (r, q)
and derecurs_regexp vars env = function
238
239
240
241
242
243
244
245
246
247
248
249
250
251
  | Epsilon -> 
      PEpsilon
  | Elem p -> 
      PElem (vars (derecurs env p))
  | Seq (p1,p2) -> 
      PSeq (derecurs_regexp vars env p1, derecurs_regexp vars env p2)
  | Alt (p1,p2) -> 
      PAlt (derecurs_regexp vars env p1, derecurs_regexp vars env p2)
  | Star p -> 
      PStar (derecurs_regexp vars env p)
  | WeakStar p -> 
      PWeakStar (derecurs_regexp vars env p)
  | SeqCapture (x,p) -> 
      derecurs_regexp (fun p -> PAnd (vars p, PCapture x)) env p
252
253
254
255
256
257
258


and derecurs_def env b =
  let b = List.map (fun (v,p) -> (v,p,mk_slot p.loc)) b in
  let env = List.fold_left (fun env (v,p,s) -> TypeEnv.add v s env) env b in
  List.iter (fun (v,p,s) -> s.pdescr <- Some (derecurs env p)) b;
  env
259

260
(* Stratification and recursive hash-consing *)
261
262
263
264
265
266
267
268
269

type descr = 
  | IType of Types.descr
  | IOr of descr * descr
  | IAnd of descr * descr
  | IDiff of descr * descr
  | ITimes of slot * slot
  | IXml of slot * slot
  | IArrow of slot * slot
270
  | IOptional of descr
271
272
273
274
275
276
277
278
  | IRecord of bool * slot label_map
  | ICapture of id
  | IConstant of id * Types.const
and slot = {
  mutable fv : fv option;
  mutable hash : int option;
  mutable rank1: int; mutable rank2: int;
  mutable gen1 : int; mutable gen2: int;
279
  mutable d    : descr option
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
}
    
let descr s = 
  match s.d with
    | Some d -> d
    | None -> assert false
	
let gen = ref 0
let rank = ref 0
	     
let rec hash_descr = function
  | IType x -> Types.hash_descr x
  | IOr (d1,d2) -> 1 + 17 * (hash_descr d1) + 257 * (hash_descr d2)
  | IAnd (d1,d2) -> 2 + 17 * (hash_descr d1) + 257 * (hash_descr d2)
  | IDiff (d1,d2) -> 3 + 17 * (hash_descr d1) + 257 * (hash_descr d2)
  | IOptional d -> 4 + 17 * (hash_descr d)
  | ITimes (s1,s2) -> 5 + 17 * (hash_slot s1) + 257 * (hash_slot s2)
  | IXml (s1,s2) -> 6 + 17 * (hash_slot s1) + 257 * (hash_slot s2)
  | IArrow (s1,s2) -> 7 + 17 * (hash_slot s1) + 257 * (hash_slot s2)
  | IRecord (o,r) -> (if o then 8 else 9) + 17 * (LabelMap.hash hash_slot r)
  | ICapture x -> 10 + 17 * (Id.hash x)
  | IConstant (x,y) -> 11 + 17 * (Id.hash x) + 257 * (Types.hash_const y)
and hash_slot s =
  if s.gen1 = !gen then 13 * s.rank1
  else (
    incr rank;
    s.rank1 <- !rank; s.gen1 <- !gen;
    hash_descr (descr s)
  )
    
let rec equal_descr d1 d2 = 
  match (d1,d2) with
  | IType x1, IType x2 -> Types.equal_descr x1 x2
  | IOr (x1,y1), IOr (x2,y2) 
  | IAnd (x1,y1), IAnd (x2,y2) 
  | IDiff (x1,y1), IDiff (x2,y2) -> (equal_descr x1 x2) && (equal_descr y1 y2)
  | IOptional x1, IOptional x2 -> equal_descr x1 x2
  | ITimes (x1,y1), ITimes (x2,y2) 
  | IXml (x1,y1), IXml (x2,y2) 
  | IArrow (x1,y1), IArrow (x2,y2) -> (equal_slot x1 x2) && (equal_slot y1 y2)
320
321
  | IRecord (o1,r1), IRecord (o2,r2) -> 
      (o1 = o2) && (LabelMap.equal equal_slot r1 r2)
322
  | ICapture x1, ICapture x2 -> Id.equal x1 x2
323
324
  | IConstant (x1,y1), IConstant (x2,y2) -> 
      (Id.equal x1 x2) && (Types.equal_const y1 y2)
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
  | _ -> false
and equal_slot s1 s2 =
  ((s1.gen1 = !gen) && (s2.gen2 = !gen) && (s1.rank1 = s2.rank2))
  ||
  ((s1.gen1 <> !gen) && (s2.gen2 <> !gen) && (
     incr rank;
     s1.rank1 <- !rank; s1.gen1 <- !gen;
     s2.rank2 <- !rank; s2.gen2 <- !gen;
     equal_descr (descr s1) (descr s2)
   ))
  
module Arg = struct
  type t = slot
      
  let hash s =
    match s.hash with
      | Some h -> h
      | None ->
	  incr gen; rank := 0; 
	  let h = hash_slot s in
	  s.hash <- Some h;
	  h
	    
348
349
350
351
  let equal s1 s2 = 
    (s1 == s2) || 
    (incr gen; rank := 0; 
     let e = equal_slot s1 s2 in
352
(*     if e then Printf.eprintf "Recursive hash-consig: Equal\n";  *)
353
     e)
354
end
355
356
357
358
359
360
361
362
363
module SlotTable = Hashtbl.Make(Arg)
  
let rec fv_slot s =
  match s.fv with
    | Some x -> x
    | None ->
	if s.gen1 = !gen then IdSet.empty 
	else (s.gen1 <- !gen; fv_descr (descr s))
and fv_descr = function
364
  | IType _ -> IdSet.empty
365
366
367
368
369
370
371
  | IOr (d1,d2)
  | IAnd (d1,d2)  
  | IDiff (d1,d2) -> IdSet.cup (fv_descr d1) (fv_descr d2)
  | IOptional d -> fv_descr d
  | ITimes (s1,s2)  
  | IXml (s1,s2)  
  | IArrow (s1,s2) -> IdSet.cup (fv_slot s1) (fv_slot s2)
372
373
  | IRecord (o,r) -> 
      List.fold_left IdSet.cup IdSet.empty (LabelMap.map_to_list fv_slot r)
374
  | ICapture x | IConstant (x,_) -> IdSet.singleton x
375

376
377
378
379
380
381
382
383
384
      
let compute_fv s =
  match s.fv with
    | Some x -> ()
    | None ->
	incr gen;
	let x = fv_slot s in
	s.fv <- Some x
	  
385
386

let todo_fv = ref []
387
388
389
390
391
392
393
394
	  
let mk () =   
  let s = 
    { d = None;
      fv = None;
      hash = None;
      rank1 = 0; rank2 = 0;
      gen1 = 0; gen2 = 0 } in
395
  todo_fv := s :: !todo_fv;
396
  s
397
398
399
400

let flush_fv () =
  List.iter compute_fv !todo_fv;
  todo_fv := []
401
    
402
403
404
let compile_slot_hash = DerecursTable.create 67
let compile_hash = DerecursTable.create 67

405
let defs = ref []
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

let rec compile p =
  try DerecursTable.find compile_hash p
  with Not_found ->
    let c = real_compile p in
    DerecursTable.replace compile_hash p c;
    c
and real_compile = function
  | PAlias v ->
      if v.ploop then
	raise_loc_generic v.ploc ("Unguarded recursion on type/pattern");
      v.ploop <- true;
      let r = match v.pdescr with Some x -> compile x | _ -> assert false in
      v.ploop <- false;
      r
  | PType t -> IType t
  | POr (t1,t2) -> IOr (compile t1, compile t2)
  | PAnd (t1,t2) -> IAnd (compile t1, compile t2)
  | PDiff (t1,t2) -> IDiff (compile t1, compile t2)
  | PTimes (t1,t2) -> ITimes (compile_slot t1, compile_slot t2)
  | PXml (t1,t2) -> IXml (compile_slot t1, compile_slot t2)
  | PArrow (t1,t2) -> IArrow (compile_slot t1, compile_slot t2)
  | POptional t -> IOptional (compile t)
  | PRecord (o,r) ->  IRecord (o, LabelMap.map compile_slot r)
  | PConstant (x,v) -> IConstant (x,v)
  | PCapture x -> ICapture x
  | PRegexp (r,q) -> compile_regexp r q
and compile_regexp r q =
  let memo = RE.create 17 in
  let rec aux accu r q =
    if RE.mem memo (r,q) then accu
    else (
      RE.add memo (r,q) ();
      match r with
440
441
442
443
	| PEpsilon -> 
	    (match q with 
	       | PRegexp (r,q) -> aux accu r q 
	       | _ -> (compile q) :: accu)
444
445
446
447
448
449
450
451
452
453
454
455
456
	| PElem p -> ITimes (compile_slot p, compile_slot q) :: accu
	| PSeq (r1,r2) -> aux accu r1 (PRegexp (r2,q))
	| PAlt (r1,r2) -> aux (aux accu r1 q) r2 q
	| PStar r1 -> aux (aux accu r1 (PRegexp (r,q))) PEpsilon q
	| PWeakStar r1 -> aux (aux accu PEpsilon q) r1 (PRegexp (r,q))
    )
  in
  let accu = aux [] r q in
  match accu with
    | [] -> assert false
    | p::l -> List.fold_left (fun acc p -> IOr (p,acc)) p l
and compile_slot p =
  try DerecursTable.find compile_slot_hash p
457
458
  with Not_found ->
    let s = mk () in
459
460
    defs := (s,p) :: !defs;
    DerecursTable.add compile_slot_hash p s;
461
    s
462

463
464
465
466
      
let rec flush_defs () = 
  match !defs with
    | [] -> ()
467
    | (s,p)::t -> defs := t; s.d <- Some (compile p); flush_defs ()
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
	
let typ_nodes = SlotTable.create 67
let pat_nodes = SlotTable.create 67
		  
let rec typ = function
  | IType t -> t
  | IOr (s1,s2) -> Types.cup (typ s1) (typ s2)
  | IAnd (s1,s2) ->  Types.cap (typ s1) (typ s2)
  | IDiff (s1,s2) -> Types.diff (typ s1) (typ s2)
  | ITimes (s1,s2) -> Types.times (typ_node s1) (typ_node s2)
  | IXml (s1,s2) -> Types.xml (typ_node s1) (typ_node s2)
  | IArrow (s1,s2) -> Types.arrow (typ_node s1) (typ_node s2)
  | IOptional s -> Types.Record.or_absent (typ s)
  | IRecord (o,r) -> Types.record' (o, LabelMap.map typ_node r)
  | ICapture x | IConstant (x,_) -> assert false
      
and typ_node s : Types.node =
  try SlotTable.find typ_nodes s
  with Not_found ->
    let x = Types.make () in
    SlotTable.add typ_nodes s x;
    Types.define x (typ (descr s));
    x
      
let rec pat d : Patterns.descr =
  if IdSet.is_empty (fv_descr d)
  then Patterns.constr (typ d)
  else pat_aux d
    
    
and pat_aux = function
  | IOr (s1,s2) -> Patterns.cup (pat s1) (pat s2)
  | IAnd (s1,s2) -> Patterns.cap (pat s1) (pat s2)
  | IDiff (s1,s2) when IdSet.is_empty (fv_descr s2) ->
      let s2 = Types.neg (typ s2) in
      Patterns.cap (pat s1) (Patterns.constr s2)
  | IDiff _ ->
      raise (Patterns.Error "Difference not allowed in patterns")
  | ITimes (s1,s2) -> Patterns.times (pat_node s1) (pat_node s2)
  | IXml (s1,s2) -> Patterns.xml (pat_node s1) (pat_node s2)
  | IOptional _ -> 
      raise (Patterns.Error "Optional field not allowed in record patterns")
  | IRecord (o,r) ->
      let pats = ref [] in
      let aux l s = 
	if IdSet.is_empty (fv_slot s) then typ_node s
	else
	  ( pats := Patterns.record l (pat_node s) :: !pats;
	    Types.any_node )
      in
      let constr = Types.record' (o,LabelMap.mapi aux r) in
      List.fold_left Patterns.cap (Patterns.constr constr) !pats
	(* TODO: can avoid constr when o=true, and all fields have fv *)
  | ICapture x -> Patterns.capture x
  | IConstant (x,c) -> Patterns.constant x c
  | IArrow _ ->
      raise (Patterns.Error "Arrow not allowed in patterns")
  | IType _ -> assert false
      
and pat_node s : Patterns.node =
  try SlotTable.find pat_nodes s
  with Not_found ->
    let x = Patterns.make (fv_slot s) in
    SlotTable.add pat_nodes s x;
    Patterns.define x (pat (descr s));
    x
      
let glb = State.ref "Typer.glb_env" TypeEnv.empty
536

537
let register_global_types b =
538
539
540
541
542
  List.iter 
    (fun (v,p) ->
       if TypeEnv.mem v !glb
       then raise_loc_generic p.loc ("Multiple definition for type " ^ v)
    ) b;
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
  let old_glb = !glb in
  try
    glb := derecurs_def !glb b;
    let b = List.map (fun (v,p) -> (v,p,compile (derecurs !glb p))) b in
    flush_defs ();
    flush_fv ();
    let b = 
      List.map 
	(fun (v,p,s) -> 
	   if not (IdSet.is_empty (fv_descr s)) then
	     raise_loc_generic p.loc 
	       "Capture variables are not allowed in types";
	   let t = typ s in
	   if (p.loc <> noloc) && (Types.is_empty t) then
	     warning p.loc 
	       ("This definition yields an empty type for " ^ v);
	   (v,t)) b in
    List.iter (fun (v,t) -> Types.Print.register_global v t) b
  with e ->
    glb := old_glb;
    raise e
564
565
566

let dump_global_types ppf =
  TypeEnv.iter (fun v _ -> Format.fprintf ppf " %s" v) !glb
567
568
569

let do_typ loc r = 
  let s = compile_slot r in
570
571
572
  flush_defs ();
  flush_fv ();
  if IdSet.is_empty (fv_slot s) then typ_node s
573
574
575
576
  else raise_loc_generic loc "Capture variables are not allowed in types"
   
let typ p =
  do_typ p.loc (derecurs !glb p)
577
578
    
let pat p = 
579
  let s = compile_slot (derecurs !glb p) in
580
581
582
583
  flush_defs ();
  flush_fv ();
  try pat_node s
  with Patterns.Error e -> raise_loc_generic p.loc e
584
    | Location (loc,_,exn) when loc = noloc -> raise (Location (p.loc, `Full, exn))
585
586


587
588
(* II. Build skeleton *)

589
module Fv = IdSet
590

591
592
593
type branch = Branch of Typed.branch * branch list

let cur_branch : branch list ref = ref []
594

595
let exp loc fv e =
596
597
  fv,
  { Typed.exp_loc = loc;
598
    Typed.exp_typ = Types.empty;
599
    Typed.exp_descr = e;
600
  }
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655


let rec expr loc = function
  | LocatedExpr (loc,e) -> expr loc e
  | Forget (e,t) ->
      let (fv,e) = expr loc e and t = typ t in
      exp loc fv (Typed.Forget (e,t))
  | Var s -> 
      exp loc (Fv.singleton s) (Typed.Var s)
  | Apply (e1,e2) -> 
      let (fv1,e1) = expr loc e1 and (fv2,e2) = expr loc e2 in
      exp loc (Fv.cup fv1 fv2) (Typed.Apply (e1,e2))
  | Abstraction a ->
      let iface = List.map (fun (t1,t2) -> (typ t1, typ t2)) 
		    a.fun_iface in
      let t = List.fold_left 
		(fun accu (t1,t2) -> Types.cap accu (Types.arrow t1 t2)) 
		Types.any iface in
      let iface = List.map 
		    (fun (t1,t2) -> (Types.descr t1, Types.descr t2)) 
		    iface in
      let (fv0,body) = branches a.fun_body in
      let fv = match a.fun_name with
	| None -> fv0
	| Some f -> Fv.remove f fv0 in
      let e = Typed.Abstraction 
		{ Typed.fun_name = a.fun_name;
		  Typed.fun_iface = iface;
		  Typed.fun_body = body;
		  Typed.fun_typ = t;
		  Typed.fun_fv = fv
		} in
      exp loc fv e
  | Cst c -> 
      exp loc Fv.empty (Typed.Cst c)
  | Pair (e1,e2) ->
      let (fv1,e1) = expr loc e1 and (fv2,e2) = expr loc e2 in
      exp loc (Fv.cup fv1 fv2) (Typed.Pair (e1,e2))
  | Xml (e1,e2) ->
      let (fv1,e1) = expr loc e1 and (fv2,e2) = expr loc e2 in
      exp loc (Fv.cup fv1 fv2) (Typed.Xml (e1,e2))
  | Dot (e,l) ->
      let (fv,e) = expr loc e in
      exp loc fv (Typed.Dot (e,l))
  | RemoveField (e,l) ->
      let (fv,e) = expr loc e in
      exp loc fv (Typed.RemoveField (e,l))
  | RecordLitt r -> 
      let fv = ref Fv.empty in
      let r = LabelMap.map 
		(fun e -> 
		   let (fv2,e) = expr loc e 
		   in fv := Fv.cup !fv fv2; e)
		r in
      exp loc !fv (Typed.RecordLitt r)
656
657
658
  | String (i,j,s,e) ->
      let (fv,e) = expr loc e in
      exp loc fv (Typed.String (i,j,s,e))
659
660
661
  | Op (op,le) ->
      let (fvs,ltes) = List.split (List.map (expr loc) le) in
      let fv = List.fold_left Fv.cup Fv.empty fvs in
662
663
664
665
666
667
668
      (try
	 (match (ltes,Typed.find_op op) with
	    | [e], `Unary op -> exp loc fv (Typed.UnaryOp (op, e))
	    | [e1;e2], `Binary op -> exp loc fv (Typed.BinaryOp (op, e1,e2))
	    | _ -> assert false)
       with Not_found -> assert false)

669
670
671
672
  | Match (e,b) -> 
      let (fv1,e) = expr loc e
      and (fv2,b) = branches b in
      exp loc (Fv.cup fv1 fv2) (Typed.Match (e, b))
673
674
675
676
677
  | Map (e,b) ->
      let (fv1,e) = expr loc e
      and (fv2,b) = branches b in
      exp loc (Fv.cup fv1 fv2) (Typed.Map (e, b))
  | Transform (e,b) ->
678
679
      let (fv1,e) = expr loc e
      and (fv2,b) = branches b in
680
      exp loc (Fv.cup fv1 fv2) (Typed.Transform (e, b))
681
  | Xtrans (e,b) ->
682
683
      let (fv1,e) = expr loc e
      and (fv2,b) = branches b in
684
      exp loc (Fv.cup fv1 fv2) (Typed.Xtrans (e, b))
685
686
687
  | Validate (e,schema,elt) ->
      let (fv,e) = expr loc e in
      exp loc fv (Typed.Validate (e, schema, elt))
688
689
690
691
692
  | Try (e,b) ->
      let (fv1,e) = expr loc e
      and (fv2,b) = branches b in
      exp loc (Fv.cup fv1 fv2) (Typed.Try (e, b))

693
	      
694
  and branches b = 
695
    let fv = ref Fv.empty in
696
    let accept = ref Types.empty in
697
    let branch (p,e) = 
698
699
      let cur_br = !cur_branch in
      cur_branch := [];
700
701
      let (fv2,e) = expr noloc e in
      let br_loc = merge_loc p.loc e.Typed.exp_loc in
702
703
704
705
706
707
708
709
710
711
      let p = pat p in
      let fv2 = Fv.diff fv2 (Patterns.fv p) in
      fv := Fv.cup !fv fv2;
      accept := Types.cup !accept (Types.descr (Patterns.accept p));
      let br = 
	{ 
	  Typed.br_loc = br_loc;
	  Typed.br_used = br_loc = noloc;
	  Typed.br_pat = p;
	  Typed.br_body = e } in
712
      cur_branch := Branch (br, !cur_branch) :: cur_br;
713
714
      br in
    let b = List.map branch b in
715
716
717
718
    (!fv, 
     { 
       Typed.br_typ = Types.empty; 
       Typed.br_branches = b; 
719
720
       Typed.br_accept = !accept;
       Typed.br_compiled = None;
721
722
     } 
    )
723

724
725
let expr = expr noloc

726
727
728
let let_decl p e =
  let (_,e) = expr e in
  { Typed.let_pat = pat p;
729
730
731
732
733
734
    Typed.let_body = e;
    Typed.let_compiled = None }

(* III. Type-checks *)

type env = Types.descr Env.t
735
736
737

open Typed

738
739
let require loc t s = 
  if not (Types.subtype t s) then raise_loc loc (Constraint (t, s))
740

741
742
743
let check loc t s = 
  require loc t s; t

744
745
746
747
748
let check_str loc ofs t s = 
  if not (Types.subtype t s) then raise_loc_str loc ofs (Constraint (t, s));
  t

let should_have loc constr s = 
749
750
  raise_loc loc (ShouldHave (constr,s))

751
752
753
let should_have_str loc ofs constr s = 
  raise_loc_str loc ofs (ShouldHave (constr,s))

754
755
756
757
758
759
760
761
762
763
764
let flatten loc arg constr precise =
  let constr' = Sequence.star 
		  (Sequence.approx (Types.cap Sequence.any constr)) in
  let sconstr' = Sequence.star constr' in
  let exact = Types.subtype constr' constr in
  if exact then
    let t = arg sconstr' precise in
    if precise then Sequence.flatten t else constr
  else
    let t = arg sconstr' true in
    Sequence.flatten t
765

766
767
let rec type_check env e constr precise = 
  let d = type_check' e.exp_loc env e.exp_descr constr precise in
768
  let d = if precise then d else constr in
769
770
771
  e.exp_typ <- Types.cup e.exp_typ d;
  d

772
and type_check' loc env e constr precise = match e with
773
774
775
  | Forget (e,t) ->
      let t = Types.descr t in
      ignore (type_check env e t false);
776
777
      check loc t constr

778
  | Abstraction a ->
779
780
781
      let t =
	try Types.Arrow.check_strenghten a.fun_typ constr 
	with Not_found -> 
782
783
	  should_have loc constr
	    "but the interface of the abstraction is not compatible"
784
      in
785
786
787
      let env = match a.fun_name with
	| None -> env
	| Some f -> Env.add f a.fun_typ env in
788
789
      List.iter 
	(fun (t1,t2) ->
790
791
792
	   let acc = a.fun_body.br_accept in 
	   if not (Types.subtype t1 acc) then
	     raise_loc loc (NonExhaustive (Types.diff t1 acc));
793
	   ignore (type_check_branches loc env t1 a.fun_body t2 false)
794
795
	) a.fun_iface;
      t
796

797
798
  | Match (e,b) ->
      let t = type_check env e b.br_accept true in
799
      type_check_branches loc env t b constr precise
800
801
802

  | Try (e,b) ->
      let te = type_check env e constr precise in
803
      let tb = type_check_branches loc env Types.any b constr precise in
804
      Types.cup te tb
805

806
807
  | Pair (e1,e2) ->
      type_check_pair loc env e1 e2 constr precise
808

809
810
  | Xml (e1,e2) ->
      type_check_pair ~kind:`XML loc env e1 e2 constr precise
811

812
  | RecordLitt r ->
813
814
815
816
817
818
819
820
      type_record loc env r constr precise

  | Map (e,b) ->
      type_map loc env false e b constr precise

  | Transform (e,b) ->
      flatten loc (type_map loc env true e b) constr precise

821
822
823
824
  | Apply (e1,e2) ->
      let t1 = type_check env e1 Types.Arrow.any true in
      let t1 = Types.Arrow.get t1 in
      let dom = Types.Arrow.domain t1 in
825
826
827
828
829
830
831
      let res =
	if Types.Arrow.need_arg t1 then
	  let t2 = type_check env e2 dom true in
	  Types.Arrow.apply t1 t2
	else
	  (ignore (type_check env e2 dom false); Types.Arrow.apply_noarg t1)
      in
832
833
834
      check loc res constr

  | UnaryOp (o,e) ->
835
836
      let t = o.un_op_typer loc 
		(type_check env e) constr precise in
837
838
839
      check loc t constr

  | BinaryOp (o,e1,e2) ->
840
841
842
      let t = o.bin_op_typer loc 
		(type_check env e1) 
		(type_check env e2) constr precise in
843
844
845
846
847
848
849
850
851
852
853
      check loc t constr

  | Var s -> 
      let t = 
	try Env.find s env
	with Not_found -> raise_loc loc (UnboundId s) in
      check loc t constr
      
  | Cst c -> 
      check loc (Types.constant c) constr

854
855
856
  | String (i,j,s,e) ->
      type_check_string loc env 0 s i j e constr precise

857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
  | Dot (e,l) ->
      let t = type_check env e Types.Record.any true in
      let t = 
        try (Types.Record.project t l) 
        with Not_found -> raise_loc loc (WrongLabel(t,l))
      in
      check loc t constr

  | RemoveField (e,l) ->
      let t = type_check env e Types.Record.any true in
      let t = Types.Record.remove_field t l in
      check loc t constr

  | Xtrans (e,b) ->
      let t = type_check env e Sequence.any true in
      let t = 
	Sequence.map_tree 
	  (fun t ->
	     let resid = Types.diff t b.br_accept in
	     let res = type_check_branches loc env t b Sequence.any true in
	     (res,resid)
	  ) t in
      check loc t constr

881
882
883
884
  | Validate (e, schema_name, elt_name) ->
      ignore (type_check env e Types.any false);
      let t = fst (Hashtbl.find !schema_elements (schema_name, elt_name)) in
      check loc t constr
885

886
and type_check_pair ?(kind=`Normal) loc env e1 e2 constr precise =
887
  let rects = Types.Product.normal ~kind constr in
888
889
  if Types.Product.is_empty rects then 
    (match kind with
890
891
      | `Normal -> should_have loc constr "but it is a pair"
      | `XML -> should_have loc constr "but it is an XML element");
892
  let need_s = Types.Product.need_second rects in
893
894
895
896
897
  let t1 = type_check env e1 (Types.Product.pi1 rects) (precise || need_s) in
  let c2 = Types.Product.constraint_on_2 rects t1 in
  if Types.is_empty c2 then 
    raise_loc loc (ShouldHave2 (constr,"but the first component has type",t1));
  let t2 = type_check env e2 c2 precise in
898

899
  if precise then 
900
901
902
    match kind with
      | `Normal -> Types.times (Types.cons t1) (Types.cons t2)
      | `XML -> Types.xml (Types.cons t1) (Types.cons t2)
903
904
905
  else
    constr

906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
and type_check_string loc env ofs s i j e constr precise =
  if U.equal_index i j then type_check env e constr precise
  else
    let rects = Types.Product.normal constr in
    if Types.Product.is_empty rects 
    then should_have_str loc ofs constr "but it is a string"
    else
      let need_s = Types.Product.need_second rects in
      let (ch,i') = U.next s i in
      let ch = Chars.mk_int ch in
      let tch = Types.constant (Types.Char ch) in
      let t1 = check_str loc ofs tch (Types.Product.pi1 rects) in
      let c2 = Types.Product.constraint_on_2 rects t1 in
      let t2 = type_check_string loc env (ofs + 1) s i' j e c2 precise in
      if precise then Types.times (Types.cons t1) (Types.cons t2)
      else constr

923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
and type_record loc env r constr precise =
(* try to get rid of precise = true for values of fields *)
(* also: the use equivalent of need_second to optimize... *)
  if not (Types.Record.has_record constr) then
    should_have loc constr "but it is a record";
  let (rconstr,res) = 
    List.fold_left
      (fun (rconstr,res) (l,e) ->
	 (* could compute (split l e) once... *)
	 let pi = Types.Record.project_opt rconstr l in
	 if Types.is_empty pi then 
	   (let l = U.to_string (LabelPool.value l) in
	    should_have loc constr
	      (Printf.sprintf "Field %s is not allowed here." l));
	 let t = type_check env e pi true in
	 let rconstr = Types.Record.condition rconstr l t in
	 let res = (l,Types.cons t) :: res in
	 (rconstr,res)
      ) (constr, []) (LabelMap.get r)
  in
  if not (Types.Record.has_empty_record rconstr) then
    should_have loc constr "More fields should be present";
  let t = 
    Types.record' (false, LabelMap.from_list (fun _ _ -> assert false) res)
  in
  check loc t constr
949

950

951
and type_check_branches loc env targ brs constr precise =
952
  if Types.is_empty targ then Types.empty
953
954
  else (
    brs.br_typ <- Types.cup brs.br_typ targ;
955
    branches_aux loc env targ 
956
957
      (if precise then Types.empty else constr) 
      constr precise brs.br_branches
958
  )
959
    
960
and branches_aux loc env targ tres constr precise = function
961
  | [] -> tres
962
963
964
965
966
967
  | b :: rem ->
      let p = b.br_pat in
      let acc = Types.descr (Patterns.accept p) in

      let targ' = Types.cap targ acc in
      if Types.is_empty targ' 
968
      then branches_aux loc env targ tres constr precise rem
969
970
971
972
973
974
      else 
	( b.br_used <- true;
	  let res = Patterns.filter targ' p in
	  let env' = List.fold_left 
		       (fun env (x,t) -> Env.add x (Types.descr t) env) 
		       env res in
975
976
	  let t = type_check env' b.br_body constr precise in
	  let tres = if precise then Types.cup t tres else tres in
977
978
	  let targ'' = Types.diff targ acc in
	  if (Types.non_empty targ'') then 
979
	    branches_aux loc env targ'' tres constr precise rem 
980
981
	  else
	    tres
982
	)
983

984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
and type_map loc env def e b constr precise = 
  let acc = if def then Sequence.any else Sequence.star b.br_accept in
  let t = type_check env e acc true in

  let constr' = Sequence.approx (Types.cap Sequence.any constr) in
  let exact = Types.subtype (Sequence.star constr') constr in
  (* Note: 
     - could be more precise by integrating the decomposition
     of constr inside Sequence.map.
  *)
  let res = 
    Sequence.map 
      (fun t ->
	 let res = 
	   type_check_branches loc env t b constr' (precise || (not exact)) in
	 if def && not (Types.subtype t b.br_accept) 
	 then Types.cup res Sequence.nil_type
	 else res)
      t in
  if exact then res else check loc res constr

1005
1006
1007
1008
1009
1010
1011
1012
1013
and type_let_decl env l =
  let acc = Types.descr (Patterns.accept l.let_pat) in
  let t = type_check env l.let_body acc true in
  let res = Patterns.filter t l.let_pat in
  List.map (fun (x,t) -> (x, Types.descr t)) res

and type_rec_funs env l =
  let types = 
    List.fold_left
1014
1015
1016
1017
1018
      (fun accu -> function  
	 | { exp_descr=Abstraction { fun_typ = t; fun_name = Some f } } ->
	     (f,t) :: accu
	 | _ -> assert false
      ) [] l
1019
1020
  in
  let env' = List.fold_left (fun env (x,t) -> Env.add x t env) env types in
1021
  List.iter (fun e -> ignore (type_check env' e Types.any false)) l;
1022
1023
  types

1024
1025

let rec unused_branches b =
1026
  List.iter
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
    (fun (Branch (br,s)) -> 
       if not br.br_used 
       then warning br.br_loc "This branch is not used"
       else unused_branches s
    )
    b

let report_unused_branches () =
  unused_branches !cur_branch;
  cur_branch := []
1037

1038
1039
  (* Schema stuff from now on ... *)

1040
let debug = true
1041
1042
1043
1044
1045
1046

  (** convertion from XML Schema types (including global elements and
  attributes) to CDuce Types.descr *)
module Schema_converter =
  struct

1047
1048
    open Printf
    open Schema_types
1049
1050
1051
1052

    (* auxiliary functions *)

      (* build a regexp Elem from a Types.descr *)
1053
    let mk_re_elt descr = PElem descr
1054
1055
1056
1057

    (* conversion functions *)

    let cd_type_of_simple_type = function
1058
      | SBuilt_in name -> PType (Schema_builtin.cd_type_of_builtin name)
1059
1060
      | SUser_defined (_, _, _, _) -> assert false (* TODO *)

1061
1062
    let complex_memo = Hashtbl.create 213

1063
    let rec regexp_of_term = function
1064
      | All [] | Choice [] | Sequence [] -> PEpsilon
1065
1066
      | Choice (hd :: tl) ->
          List.fold_left
1067
            (fun acc particle -> PAlt (acc, regexp_of_particle particle))
1068
            (regexp_of_particle hd) tl
1069
      | All (hd :: tl) | Sequence (hd :: tl) ->
1070
          List.fold_left
1071
            (fun acc particle -> PSeq (acc, regexp_of_particle particle))
1072
1073
1074
1075
            (regexp_of_particle hd) tl
      | Elt decl -> mk_re_elt (cd_type_of_elt_decl !decl)

    and regexp_of_content_type = function
1076
      | CT_empty -> PEpsilon
1077
1078
1079
1080
1081
1082
1083
1084
1085
      | CT_simple st -> mk_re_elt (cd_type_of_simple_type st)
      | CT_model (particle, mixed) ->
          assert (not mixed); (* TODO mixed support *)
          regexp_of_particle particle

    and regexp_of_particle =
        (* given a regexp re and a (non negative) integer n create a regexp
        matching exactly n times re *)
      let rec repeat_regexp re = function
1086
1087
        | 0 -> PEpsilon
        | n when n > 0 -> PSeq (re, repeat_regexp re (n - 1))
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
        | _ -> assert false
      in
      fun (min, max, term) ->
        let term_regexp = regexp_of_term term in
        let min_regexp = repeat_regexp term_regexp min in
        match max with
        | Some max ->
            assert (max >= min);
            let rec aux acc = function
              | 0 -> acc
              | n ->
                  aux
1100
                    (PAlt (PEpsilon, (PSeq (term_regexp, acc))))
1101
1102
                    (n - 1)
            in
1103
1104
            PSeq (min_regexp, aux PEpsilon (max - min))
        | None -> PSeq (min_regexp, PStar term_regexp)
1105
1106
1107
1108
1109

      (** @return a pair composed by a type for the attributes (a record) and a
      type for the content model (a sequence) *)
    and cd_type_of_complex_type' = function
      | CBuilt_in name -> assert false
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
      | CUser_defined (id, name, _, _, attr_uses, content) ->
	  try PAlias (Hashtbl.find complex_memo id)
	  with Not_found -> 
	    let slot = mk_slot noloc in
	    Hashtbl.add complex_memo id slot;
            let content_re = regexp_of_content_type content in
            let content_ast_node = PRegexp (content_re, PType Sequence.nil_type) in
	    slot.pdescr <- Some 
	      (PTimes (cd_type_of_attr_uses attr_uses, content_ast_node));
	    PAlias slot
	    
1121

1122
1123
(* TODO if constraint is Fixed we can give a more precise CDuce type *)

1124
1125
      (** @return a closed record *)
    and cd_type_of_attr_uses attr_uses =
1126
1127
1128
      let fields = 
	List.map 
	  (fun (required, (name, st, _), _) ->
1129
	     let r = cd_type_of_simple_type st in
1130
1131
1132
1133
	     let r = if required then r else POptional r in
	     (LabelPool.mk (U.mk name), r)
	  ) attr_uses in
      PRecord (false, LabelMap.from_list_disj fields)
1134

1135
1136
1137
1138
    and cd_type_of_att_decl (name, st, _) =
      let r = cd_type_of_simple_type st in
      PRecord (false, LabelMap.from_list_disj [(LabelPool.mk (U.mk name), r)])

1139
    and cd_type_of_elt_decl (name, typ, _) =
1140
1141
      let atom_type = PType (Types.atom (Atoms.atom (Atoms.mk (U.mk name)))) in
      let content = match !typ with
1142
1143
	| S st ->
            PTimes (PType Types.empty_closed_record, cd_type_of_simple_type st)
1144
1145
1146
1147
1148
	| C ct -> cd_type_of_complex_type' ct
      in
      PXml (atom_type, content)

    let typ r = Types.descr (do_typ noloc r)
1149
1150
1151

    let cd_type_of_complex_type = function
      | CBuilt_in name -> Schema_builtin.cd_type_of_builtin name
1152
      | ct -> typ (PXml (PType Types.any, cd_type_of_complex_type' ct))
1153
1154

    let cd_type_of_type_def = function
1155
      | S st -> typ (cd_type_of_simple_type st)
1156
1157
      | C ct -> cd_type_of_complex_type ct

1158
1159
    let cd_type_of_elt_decl x = typ (cd_type_of_elt_decl x)
    let cd_type_of_att_decl x = typ (cd_type_of_att_decl x)
1160

1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
  end

let get_schema_validator (schema_name, elt_name) =
  snd (Hashtbl.find !schema_elements (schema_name, elt_name))

let register_schema schema_name schema =
  if StringSet.mem schema_name !schemas then
    failwith ("Redefinition of schema " ^ schema_name)
  else begin
    schemas := StringSet.add schema_name !schemas;
    List.iter (* Schema types -> CDuce types *)
      (fun type_def ->
        let cd_type = Schema_converter.cd_type_of_type_def type_def in
        Hashtbl.add !schema_types
          (schema_name, Schema_types.name_of_type_def type_def)
          cd_type)
      schema.Schema_types.type_defs;
1178
1179
1180
1181
1182
    List.iter (* Schema attributes -> CDuce types *)
      (fun (att_name, _, _) as att_decl ->
        let cd_type = Schema_converter.cd_type_of_att_decl att_decl in
        Hashtbl.add !schema_attributes (schema_name, att_name) cd_type)
      schema.Schema_types.att_decls;
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
    List.iter (* Schema elements -> CDuce types * validators *)
      (fun elt_decl ->
        let cd_type = Schema_converter.cd_type_of_elt_decl elt_decl in
        if debug then
          (Types.Print.print Format.std_formatter cd_type;
          Format.fprintf Format.std_formatter "\n";
          Format.pp_print_flush Format.std_formatter ());
        let validator = Schema_validator.validator_of_elt_decl elt_decl in
        Hashtbl.add !schema_elements
          (schema_name, Schema_types.name_of_elt_decl elt_decl)
          (cd_type, validator))
      schema.Schema_types.elt_decls
  end

(* DEBUGGING ONLY *)

1199
let get_schema_type x = fst (Hashtbl.find !schema_elements x)