boolVar.ml 15.2 KB
Newer Older
1 2 3 4
let (<) : int -> int -> bool = (<)
let (>) : int -> int -> bool = (>)
let (=) : int -> int -> bool = (=)

5
(* this is the the of the Constructor container *)
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
module type E =
sig
  type elem
  include Custom.T

  val empty : t
  val full  : t
  val cup   : t -> t -> t
  val cap   : t -> t -> t
  val diff  : t -> t -> t
  val atom  : elem -> t

end

module type S =
sig
22 23 24 25 26 27 28
  type s
  type elem = s Custom.pairvar
  type 'a bdd =
    [ `True
    | `False
    | `Split of int * 'a * ('a bdd) * ('a bdd) * ('a bdd) ]

29
  include Custom.T with type t = elem bdd
30

31
  (* returns the union of all leaves in the BDD *)
32
  val leafconj: t -> s
33

34
  val get: t -> (elem list * elem list) list
35 36 37

  val empty : t
  val full  : t
Pietro Abate's avatar
Pietro Abate committed
38 39 40
  (* same as full, but we keep it for the moment to avoid chaging 
   * the code everywhere *)
  val any  : t
41 42 43 44
  val cup   : t -> t -> t
  val cap   : t -> t -> t
  val diff  : t -> t -> t
  val atom  : elem -> t
45 46

  (* vars a : return a bdd that is ( Any ^ Var a ) *)
47
  val vars  : Custom.var -> t
48 49 50 51 52 53 54 55 56 57 58 59

  val iter: (elem-> unit) -> t -> unit

  val compute: empty:'b -> full:'b -> cup:('b -> 'b -> 'b) 
    -> cap:('b -> 'b -> 'b) -> diff:('b -> 'b -> 'b) ->
    atom:(elem -> 'b) -> t -> 'b

  val is_empty : t -> bool

  val print: string -> t -> (Format.formatter -> unit) list

  val trivially_disjoint: t -> t -> bool
60

61 62
  val extractvars : t -> [> `Var of Custom.String.t ] bdd * t 

63 64
end

65 66 67 68
(*
module type MAKE = functor (T : E) -> S with type elem = T.t Custom.pairvar 
*)

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
(* ternary BDD
 * where the nodes are Atm of X.t | Var of String.t
 * Variables are always before Values
 * All the leaves are then base types 
 *
 * we add a third case when two leaves of the bdd are of the same
 * kind, that's it Val of t1 , Val of t2
 *
 * This representation can be used for all kinds.
 * Intervals, Atoms and Chars can be always merged (for union and intersection)
 * Products can be merged for intersections
 * Arrows can be never merged
 *
 * extract_var : copy the orginal tree and on one copy put to zero all 
 * leaves that have an Atm on the other all leaves that have a Var
 *
 * *)

87
module Make(T : E) : S with type s = T.t =
88 89 90
struct
  (* ternary decision trees . cf section 11.3.3 Frish PhD *)
  (* plus variables *)
91 92
  (* `Atm are containers (Atoms, Chars, Intervals, Pairs ... )
   * `Var are String
93
   *)
94
  type s = T.t
95
  module X = Custom.Var(T)
96 97 98 99 100 101 102 103
  type elem = s Custom.pairvar
  type 'a bdd =
    [ `True
    | `False
    | `Split of int * 'a * ('a bdd) * ('a bdd) * ('a bdd) ]
  type t = elem bdd

  let rec equal_aux eq a b =
104 105
    (a == b) ||
    match (a,b) with
106
      | `Split (h1,x1,p1,i1,n1), `Split (h2,x2,p2,i2,n2) ->
107
	  (h1 == h2) &&
108 109
	  (equal_aux eq p1 p2) && (equal_aux eq i1 i2) &&
	  (equal_aux eq n1 n2) && (eq x1 x2)
110 111
      | _ -> false

112 113
  let equal = equal_aux X.equal

114 115 116 117 118 119
(* Idea: add a mutable "unique" identifier and set it to
   the minimum of the two when egality ... *)

  let rec compare a b =
    if (a == b) then 0 
    else match (a,b) with
120
      | `Split (h1,x1, p1,i1,n1), `Split (h2,x2, p2,i2,n2) ->
121 122 123 124 125
	  if h1 < h2 then -1 else if h1 > h2 then 1 
	  else let c = X.compare x1 x2 in if c <> 0 then c
	  else let c = compare p1 p2 in if c <> 0 then c
	  else let c = compare i1 i2 in if c <> 0 then c 
	  else compare n1 n2
126 127 128 129
      | `True,_  -> -1
      | _, `True -> 1
      | `False,_ -> -1
      | _,`False -> 1
130 131

  let rec hash = function
132 133 134
    | `True -> 1
    | `False -> 0
    | `Split(h, _,_,_,_) -> h
135 136

  let compute_hash x p i n = 
137
	(Hashtbl.hash x) + 17 * (hash p) + 257 * (hash i) + 16637 * (hash n)
138 139

  let rec check = function
140 141 142
    | `True -> assert false;
    | `False -> ()
    | `Split (h,x,p,i,n) ->
143
	assert (h = compute_hash x p i n);
144 145 146
	(match p with `Split (_,y,_,_,_) -> assert (X.compare x y < 0) | _ -> ());
	(match i with `Split (_,y,_,_,_) -> assert (X.compare x y < 0) | _ -> ());
	(match n with `Split (_,y,_,_,_) -> assert (X.compare x y < 0) | _ -> ());
147 148 149 150
	X.check x; check p; check i; check n

  let atom x =
    let h = X.hash x + 17 in (* partial evaluation of compute_hash... *)
151
    `Split (h, x,`True,`False,`False)
152 153 154
 
  let neg_atom x =
    let h = X.hash x + 16637 in (* partial evaluation of compute_hash... *)
155 156 157 158 159 160
    `Split (h, x,`False,`False,`True)

  let vars v =
    let a = atom (`Atm T.full) in 
    let h = compute_hash v a `False `False in 
    ( `Split (h,v,a,`False,`False) :> t )
161 162

  let rec iter f = function
163
    | `Split (_, x, p,i,n) -> f x; iter f p; iter f i; iter f n
164 165 166
    | _ -> ()

  let rec dump ppf = function
167 168 169 170 171
    | `True -> Format.fprintf ppf "+"
    | `False -> Format.fprintf ppf "-"
    | `Split (_,x, p,i,n) -> 
	Format.fprintf ppf "%a(@[%a,%a,%a@])" 
	X.dump x (*X.hash x*) dump p dump i dump n
172 173

  let rec print f ppf = function
174 175 176
    | `True -> Format.fprintf ppf "Any"
    | `False -> Format.fprintf ppf "Empty"
    | `Split (_, x, p,i, n) ->
177 178 179
	let flag = ref false in
	let b () = if !flag then Format.fprintf ppf " | " else flag := true in
	(match p with 
180 181
	   | `True -> b(); Format.fprintf ppf "%a" f x
	   | `False -> ()
182 183
	   | _ -> b (); Format.fprintf ppf "%a & @[(%a)@]" f x (print f) p );
	(match i with 
184 185
	   | `True -> assert false;
	   | `False -> ()
186 187
	   | _ -> b(); print f ppf i);
	(match n with 
188 189
	   | `True -> b (); Format.fprintf ppf "@[~%a@]" f x
	   | `False -> ()
190 191 192
	   | _ -> b (); Format.fprintf ppf "@[~%a@] & @[(%a)@]" f x (print f) n)
	
  let print a = function
193 194
    | `True -> [ fun ppf -> Format.fprintf ppf "%s" a ]
    | `False -> []
195 196
    | c -> [ fun ppf -> print X.dump ppf c ]

197 198 199 200
  (* return a list of pairs, where each pair holds the list
   * of positive and negative elements on a branch *)
  let get x =
    let rec aux accu pos neg = function
201
      | `True -> (List.rev pos, List.rev neg) :: accu
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
      | `False -> accu
      | `Split (_,x, p,i,n) ->
        (*OPT: can avoid creating this list cell when pos or neg =`False *)
        let accu = aux accu (x::pos) neg p in
        let accu = aux accu pos (x::neg) n in
        let accu = aux accu pos neg i in
        accu
    in aux [] [] [] x

  let leafconj x = 
    let rec aux accu = function
      | `True -> accu
      | `False -> accu
      | `Split (_,`Atm x, `True,`False,`False) -> x :: accu
      | `Split (_,`Atm x, _,_,_) -> assert false
      | `Split (_,`Var x, p,i,n) ->
        let accu = aux accu p in
        let accu = aux accu n in
        let accu = aux accu i in
        accu
    in
    List.fold_left T.cup T.empty (aux [] x)
224

225
(*      
226
  let rec get' accu pos neg = function
227 228 229
    | `True -> (pos,neg) :: accu
    | `False -> accu
    | `Split (_,x,p,i,n) ->
230 231
	let accu = get' accu (x::pos) neg p in
	let rec aux l = function
232
	  | `Split (_,x,`False,i,n') when equal n n' ->
233 234 235 236 237 238 239 240
	      aux (x :: l) i
	  | i ->
	      let accu = get' accu pos (l :: neg) n in
	      get' accu pos neg i
	in
	aux [x] i

  let get' x = get' [] [] [] x
241
  *)
242 243 244

  let compute ~empty ~full ~cup ~cap ~diff ~atom b =
    let rec aux = function
245 246 247
      | `True -> full
      | `False -> empty
      | `Split(_,x, p,i,n) ->
248 249 250 251 252 253 254 255 256 257
	  let p = cap (atom x) (aux p)
	  and i = aux i
	  and n = diff (aux n) (atom x) in
	  cup (cup p i) n
    in
    aux b
      
(* Invariant: correct hash value *)

  let split0 x pos ign neg =
258
    `Split (compute_hash x pos ign neg, x, pos, ign, neg)
259

260 261 262
  let empty = `False
  let full = split0 (`Atm T.full) `True `False `False
  let any = full
263 264 265 266

  let is_empty t = (t == empty)

(* Invariants:
267
     `Split (x, pos,ign,neg) ==>  (ign <> `True), (pos <> neg)
268 269 270 271
*)

  let rec has_true = function
    | [] -> false
272
    | `True :: _ -> true
273 274
    | _ :: l -> has_true l

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
  (* split removes redundant subtrees from the positive and negative
   * branch if they are present in the lazy union branch *)
  let gensplit compare normalize normunion is_empty =
    let equal = equal_aux (fun a b -> compare a b = 0) in
    let rec has_same a = function
      | [] -> false
      | b :: l -> (equal a b) || (has_same a l)
    in
    let rec split x p i n =
      if is_empty x  then `False
      (* 0?p:i:n -> 0 *)
      else if i == `True then `True 
      (* x?p:1:n -> 1 *)
      else if equal p n then p ++ i
      else let p = simplify p [i] and n = simplify n [i] in
      (* x?p:i:n when p = n -> bdd of (p ++ i) *)
      if equal p n then p ++ i
      else split0 x p i n

    (* simplify t l -> bdd of ( t // l ) *)
    and simplify a l =
      match normalize a with
        | `False -> `False
        | `True -> if has_true l then `False else `True
        | `Split (_,x,p,i,n) ->
          if (has_true l) || (has_same a l) then `False
          else s_aux2 a x p i n [] [] [] l
    and s_aux2 a x p i n ap ai an = function
      | [] -> 
        let p = simplify p ap 
        and n = simplify n an
        and i = simplify i ai in
        if equal p n then p ++ i else split0 x p i n
      | b :: l -> s_aux3 a x p i n ap ai an l b 
    and s_aux3 a x p i n ap ai an l = function
      | `False -> s_aux2 a x p i n ap ai an l
      | `True -> assert false
      | `Split (_,x2,p2,i2,n2) as b ->
        if equal a b then `False 
        else let c = compare x2 x in
        if c < 0 then s_aux3 a x p i n ap ai an l i2
        else if c > 0 then s_aux2 a x p i n (b :: ap) (b :: ai) (b :: an) l
        else s_aux2 a x p i n (p2 :: i2 :: ap) (i2 :: ai) (n2 :: i2 :: an) l

    (* Inv : all leafs are of type Atm and they are always merged *)
    (* union *)
    and ( ++ ) a b = if a == b then a
    else match normunion (a,b) with
      | `True, _ | _, `True -> `True
      | `False, a | a, `False -> a
      
      | `Split (_,x1, p1,i1,n1), `Split (_,x2, p2,i2,n2) ->
        let c = compare x1 x2 in
        if c = 0 then split x1 (p1 ++ p2) (i1 ++ i2) (n1 ++ n2)
        else if c < 0 then split x1 p1 (i1 ++ b) n1
        else split x2 p2 (i2 ++ a) n2

    in split,(++)

    (*
  let splitvar,_ = gensplit Pervasives.compare (fun x -> x) (fun x -> x) (fun _ -> false)
*)


  let split,(++) = 
    let norm = function 
      | `Split (_,`Atm x, `False,`False,`True) -> split0 (`Atm(T.diff T.full x)) `True `False `False 
      | x -> x
    in
    let normunion = function
        | `Split (_,`Atm x1, `True,`False,`False), `Split (_,`Atm x2, `True,`False,`False) ->
            split0 (`Atm (T.cup x1 x2)) `True `False `False,`False

        | `Split (_,`Atm x1, `False,`False,`True), `Split (_,`Atm x2, `False,`False,`True) ->
            split0 (`Atm (T.cup (T.diff T.full x1) (T.diff T.full x2))) `True `False `False,`False

        | `Split (_,`Atm x1, `True,`False,`False), `Split (_,`Atm x2, `False,`False,`True) ->
            split0 (`Atm (T.cup x1 (T.diff T.full x2))) `True `False `False,`False

        | `Split (_,`Atm x1, `False,`False,`True), `Split (_,`Atm x2, `True,`False,`False) ->
            split0 (`Atm (T.cup (T.diff T.full x1) x2)) `True `False `False,`False

        |a,b -> a,b
    in
      gensplit X.compare norm normunion (fun x -> X.equal (`Atm T.empty) x)
360 361 362 363 364 365

(* seems better not to make ++ and this split mutually recursive;
   is the invariant still inforced ? *)

  (* intersection *)
  let rec ( ** ) a b = if a == b then a else match (a,b) with
366 367
    | `True, a | a, `True -> a
    | `False, _ | _, `False -> `False
368

369 370
    | `Split (_,`Atm x1, `True,`False,`False), `Split (_,`Atm x2, `True,`False,`False) ->
        split (`Atm(T.cap x1 x2)) `True `False `False
371

372 373
    | `Split (_,`Atm x1, `False,`False,`True), `Split (_,`Atm x2, `False,`False,`True) ->
        split (`Atm(T.cap (T.diff T.full x1) (T.diff T.full x2))) `True `False `False
374

375 376
    | `Split (_,`Atm x1, `True,`False,`False), `Split (_,`Atm x2, `False,`False,`True) ->
        split (`Atm(T.cap x1 (T.diff T.full x2))) `True `False `False
377

378 379
    | `Split (_,`Atm x1, `False,`False,`True), `Split (_,`Atm x2, `True,`False,`False) ->
        split (`Atm(T.cap (T.diff T.full x1) x2)) `True `False `False
380

381
    | `Split (_,x1, p1,i1,n1), `Split (_,x2, p2,i2,n2) ->
382 383 384 385 386 387 388 389 390 391
	let c = X.compare x1 x2 in
	if c = 0 then
	  split x1 
	    (p1 ** (p2 ++ i2) ++ (p2 ** i1))
	    (i1 ** i2)
	    (n1 ** (n2 ++ i2) ++ (n2 ** i1))  
	else if c < 0 then split x1 (p1 ** b) (i1 ** b) (n1 ** b)
	else split x2 (p2 ** a) (i2 ** a) (n2 ** a)

  let rec trivially_disjoint a b =
392
    if a == b then a == `False
393
    else match (a,b) with
394 395 396
      | `True, a | a, `True -> a == `False
      | `False, _ | _, `False -> true
      | `Split (_,x1, p1,i1,n1), `Split (_,x2, p2,i2,n2) ->
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
	  let c = X.compare x1 x2 in
	  if c = 0 then
(* try expanding -> p1 p2; p1 i2; i1 p2; i1 i2 ... *)
	    trivially_disjoint (p1 ++ i1) (p2 ++ i2) &&
	    trivially_disjoint (n1 ++ i1) (n2 ++ i2)
	  else if c < 0 then
	    trivially_disjoint p1 b &&
	    trivially_disjoint i1 b &&
	    trivially_disjoint n1 b
	  else
	    trivially_disjoint p2 a &&
	    trivially_disjoint i2 a &&
	    trivially_disjoint n2 a

  let rec neg = function
412 413 414 415 416 417 418 419
    | `True -> `False
    | `False -> `True
    | `Split (_,`Atm x, `True,`False,`False) -> split0 (`Atm(T.diff T.full x)) `True `False `False
    | `Split (_,`Atm x, `False,`False,`True) -> split0 (`Atm(T.diff T.full x)) `True `False `False
    | `Split (_,x, p,i,`False) -> split x `False (neg (i ++ p)) (neg i)
    | `Split (_,x, `False,i,n) -> split x (neg i) (neg (i ++ n)) `False 
    | `Split (_,x, p,`False,n) -> split x (neg p) (neg (p ++ n)) (neg n)  
    | `Split (_,x, p,i,n) -> split x (neg (i ++ p)) `False (neg (i ++ n))
420 421 422
	      
  let rec ( // ) a b =
    let negatm = T.diff T.full in
423
    if a == b then `False 
424
    else match (a,b) with
425 426 427
      | `False,_ | _, `True -> `False
      | a, `False -> a
      | `True, b -> neg b
428

429 430
      | `Split (_,`Atm x1, `True,`False,`False), `Split (_,`Atm x2, `True,`False,`False) ->
          split (`Atm(T.diff x1 x2)) `True `False `False
431

432 433
      | `Split (_,`Atm x1, `False,`False,`True), `Split (_,`Atm x2, `False,`False,`True) ->
          split (`Atm(T.diff (negatm x1) (negatm x2))) `True `False `False
434

435 436
      | `Split (_,`Atm x1, `True,`False,`False), `Split (_,`Atm x2, `False,`False,`True) ->
          split (`Atm(T.diff x1 (negatm x2))) `True `False `False
437

438 439
      | `Split (_,`Atm x1, `False,`False,`True), `Split (_,`Atm x2, `True,`False,`False) ->
          split (`Atm(T.diff (negatm x1) x2)) `True `False `False
440

441
      | `Split (_,x1, p1,i1,n1), `Split (_,x2, p2,i2,n2) ->
442 443
	  let c = X.compare x1 x2 in
	  if c = 0 then
444
	    if (i2 == `False) && (n2 == `False) 
445 446
	    then split x1 (p1 // p2) (i1 // p2) (n1 ++ i1)
	    else 
447
	      split x1 ((p1++i1) // (p2 ++ i2)) `False ((n1++i1) // (n2 ++ i2))
448 449 450
	  else if c < 0 then
	    split x1 (p1 // b) (i1 // b) (n1 // b) 
	  else
451
	    split x2 (a // (i2 ++ p2)) `False (a // (i2 ++ n2))
452 453 454 455 456 457 458 459 460
	      
  let cup = ( ++ )
  let cap = ( ** )
  let diff = ( // )

  (* return a couple of trees (v,a), the second where all variables
   * v = only variables as leaves
   * a = only atoms as leaves
   *)
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
  let rec extractvars = function
    (* `True or `False can only be under a variable *)
    | `True -> `True,`False
    | `False -> `False,`False
    | `Split (_,`Atm _, `True,`False,`False) as x -> `False, x
    | `Split (_,`Atm _, _,_,_) -> assert false
    | `Split (_,((`Var y) as x),p,i,n) ->
        let p1,p2 = extractvars p in
        let i1,i2 = extractvars i in
        let n1,n2 = extractvars n in
        (* let v = `Split (compute_hash x p1 i1 n1,x,p1,i1,n1) in   *)
        let v = (fst(gensplit Pervasives.compare (fun x -> x) (fun x -> x) (fun _ -> false)) x p1 i1 n1) in
        let t = split x p2 i2 n2 in
        assert(v <> `True);
        (v,t)
Pietro Abate's avatar
Pietro Abate committed
476

477
end
478 479 480 481 482 483 484

module Vars = struct
  module V = struct include Custom.String end
  include Bool.Make(V)
end

module BoolVars = Make(Vars)