patterns.ml 49.8 KB
Newer Older
1
exception Error of string
2
open Ident
3

4
5
6
(*
To be sure not to use generic comparison ...
*)
7
8
9
10
11
12
let (=) : int -> int -> bool = (==)
let (<) : int -> int -> bool = (<)
let (<=) : int -> int -> bool = (<=)
let (<>) : int -> int -> bool = (<>)
let compare = 1

13

14
(* Syntactic algebra *)
15
(* Constraint: any node except Constr has fv<>[] ... *)
16
type d =
17
  | Constr of Types.t
18
  | Cup of descr * descr
19
  | Cap of descr * descr
20
  | Times of node * node
21
  | Xml of node * node
22
  | Record of label * node
23
24
  | Capture of id
  | Constant of id * Types.const
25
  | Dummy
26
27
and node = {
  id : int;
28
  mutable descr : descr;
29
  accept : Types.Node.t;
30
  fv : fv
31
32
33
} and descr = Types.t * fv * d


34

35
let id x = x.id
36
let descr x = x.descr
37
38
let fv x = x.fv
let accept x = Types.internalize x.accept
39
40
41

let printed = ref []
let to_print = ref []
42
let rec print ppf (a,_,d) = 
43
  match d with
44
    | Constr t -> Types.Print.print ppf t
45
46
47
48
49
50
51
52
53
    | Cup (p1,p2) -> Format.fprintf ppf "(%a | %a)" print p1 print p2
    | Cap (p1,p2) -> Format.fprintf ppf "(%a & %a)" print p1 print p2
    | Times (n1,n2) -> 
	Format.fprintf ppf "(P%i,P%i)" n1.id n2.id;
	to_print := n1 :: n2 :: !to_print
    | Xml (n1,n2) -> 
	Format.fprintf ppf "XML(P%i,P%i)" n1.id n2.id;
	to_print := n1 :: n2 :: !to_print
    | Record (l,n) -> 
54
	Format.fprintf ppf "{ %a =  P%i }" Label.print (LabelPool.value l) n.id;
55
56
	to_print := n :: !to_print
    | Capture x ->
57
	Format.fprintf ppf "%a" U.print (Id.value x)
58
    | Constant (x,c) ->
59
	Format.fprintf ppf "(%a := %a)" U.print (Id.value x) 
60
	  Types.Print.print_const c
61
62
    | Dummy ->
	Format.fprintf ppf "*DUMMY*"
63

64
let dump_print ppf =
65
  while !to_print != [] do
66
67
68
69
70
71
72
73
74
75
76
    let p = List.hd !to_print in
    to_print := List.tl !to_print;
    if not (List.mem p.id !printed) then
      ( printed := p.id :: !printed;
	Format.fprintf ppf "P%i:=%a\n" p.id print (descr p)
      )
  done

let print ppf d =
  Format.fprintf ppf "%a@\n" print d;
  dump_print ppf
77

78
79
80
81
82
let print_node ppf n =
  Format.fprintf ppf "P%i" n.id;
  to_print := n :: !to_print;
  dump_print ppf

83

84
85
let counter = State.ref "Patterns.counter" 0

86
let dummy = (Types.empty,IdSet.empty,Dummy)
87
88
let make fv =
  incr counter;
89
  { id = !counter; descr = dummy; accept = Types.make (); fv = fv }
90
91

let define x ((accept,fv,_) as d) =
92
  (* assert (x.fv = fv); *)
93
  Types.define x.accept accept;
94
  x.descr <- d
95

96
let constr x = (x,IdSet.empty,Constr x)
97
let cup ((acc1,fv1,_) as x1) ((acc2,fv2,_) as x2) = 
98
99
100
101
102
  if not (IdSet.equal fv1 fv2) then (
    let x = match IdSet.pick (IdSet.diff fv1 fv2) with
      | Some x -> x
      | None -> match IdSet.pick (IdSet.diff fv2 fv1) with Some x -> x 
	  | None -> assert false
103
104
105
    in
    raise 
      (Error 
106
	 ("The capture variable " ^ (U.to_string (Id.value x)) ^ 
107
108
	  " should appear on both side of this | pattern"))
  );
109
  (Types.cup acc1 acc2, IdSet.cup fv1 fv2, Cup (x1,x2))
110
let cap ((acc1,fv1,_) as x1) ((acc2,fv2,_) as x2) = 
111
112
113
  if not (IdSet.disjoint fv1 fv2) then (
    match IdSet.pick (IdSet.cap fv1 fv2) with
      | Some x -> 
114
115
	  raise 
	  (Error 
116
	     ("The capture variable " ^ (U.to_string (Id.value x)) ^ 
117
	      " cannot appear on both side of this & pattern"))
118
      | None -> assert false
119
  );
120
  (Types.cap acc1 acc2, IdSet.cup fv1 fv2, Cap (x1,x2))
121
let times x y =
122
  (Types.times x.accept y.accept, IdSet.cup x.fv y.fv, Times (x,y))
123
let xml x y =
124
  (Types.xml x.accept y.accept, IdSet.cup x.fv y.fv, Xml (x,y))
125
let record l x = 
126
  (Types.record l x.accept, x.fv, Record (l,x))
127
128
let capture x = (Types.any, IdSet.singleton x, Capture x)
let constant x c = (Types.any, IdSet.singleton x, Constant (x,c))
129

130

131
132
133
134
135
136
module Node = struct
  type t = node
  let compare n1 n2 = n1.id - n2.id
  let equal n1 n2 = n1.id == n2.id
  let hash n = n.id

137
  let check n = ()
138
  let dump = print_node
139

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

  module SMemo = Set.Make(Custom.Int)
  let memo = Serialize.Put.mk_property (fun t -> ref SMemo.empty)
  let rec serialize t n = 
    let l = Serialize.Put.get_property memo t in
    Serialize.Put.int t n.id;
    if not (SMemo.mem n.id !l) then (
      l := SMemo.add n.id !l;
      Types.Node.serialize t n.accept;
      IdSet.serialize t n.fv;
      serialize_descr t n.descr
    )
  and serialize_descr s (_,_,d) =
    serialize_d s d
  and serialize_d s = function
    | Constr t ->
	Serialize.Put.bits 3 s 0;
	Types.serialize s t
    | Cup (p1,p2) ->
	Serialize.Put.bits 3 s 1;
	serialize_descr s p1; 
	serialize_descr s p2
    | Cap (p1,p2) ->
	Serialize.Put.bits 3 s 2;
	serialize_descr s p1; 
	serialize_descr s p2
    | Times (p1,p2) ->
	Serialize.Put.bits 3 s 3;
	serialize s p1;
	serialize s p2
    | Xml (p1,p2) ->
	Serialize.Put.bits 3 s 4;
	serialize s p1;
	serialize s p2
    | Record (l,p) ->
	Serialize.Put.bits 3 s 5;
	LabelPool.serialize s l;
	serialize s p
    | Capture x ->
	Serialize.Put.bits 3 s 6;
	Id.serialize s x
    | Constant (x,c) ->
	Serialize.Put.bits 3 s 7;
	Id.serialize s x;
	Types.Const.serialize s c
    | Dummy -> assert false

  module DMemo = Map.Make(Custom.Int)
  let memo = Serialize.Get.mk_property (fun t -> ref DMemo.empty)
  let rec deserialize t = 
    let l = Serialize.Get.get_property memo t in
    let id = Serialize.Get.int t in
    try DMemo.find id !l
    with Not_found ->
      let accept = Types.Node.deserialize t in
      let fv = IdSet.deserialize t in
      incr counter;
197
      let n = { id = !counter; descr = dummy; accept = accept; fv = fv } in
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
      l := DMemo.add id n !l;
      n.descr <- deserialize_descr t;
      n
  and deserialize_descr s =
    match Serialize.Get.bits 3 s with
      | 0 -> constr (Types.deserialize s)
      | 1 ->
	  (* Avoid unnecessary tests *)
	  let (acc1,fv1,_) as x1 = deserialize_descr s in
	  let (acc2,fv2,_) as x2 = deserialize_descr s in
	  (Types.cup acc1 acc2, IdSet.cup fv1 fv2, Cup (x1,x2))
      | 2 ->
	  let (acc1,fv1,_) as x1 = deserialize_descr s in
	  let (acc2,fv2,_) as x2 = deserialize_descr s in
	  (Types.cap acc1 acc2, IdSet.cup fv1 fv2, Cap (x1,x2))
      | 3 ->
	  let x = deserialize s in
	  let y = deserialize s in
	  times x y
      | 4 ->
	  let x = deserialize s in
	  let y = deserialize s in
	  xml x y
      | 5 ->
	  let l = LabelPool.deserialize s in
	  let x = deserialize s in
	  record l x
      | 6 -> capture (Id.deserialize s)
      | 7 ->
	  let x = Id.deserialize s in
	  let c = Types.Const.deserialize s in
	  constant x c
      | _ -> assert false


end
234

235
236
(* Pretty-print *)

237
module Pat = struct
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
  type t = descr
  let rec compare (t1,fv1,d1) (t2,fv2,d2) = if d1 == d2 then 0 else
    match (d1,d2) with
      | Constr t1, Constr t2 -> Types.compare t1 t2
      | Constr _, _ -> -1 | _, Constr _ -> 1

      | Cup (x1,y1), Cup (x2,y2) | Cap (x1,y1), Cap (x2,y2) ->
	  let c = compare x1 x2 in if c <> 0 then c 
	  else compare y1 y2
      | Cup _, _ -> -1 | _, Cup _ -> 1
      | Cap _, _ -> -1 | _, Cap _ -> 1

      | Times (x1,y1), Times (x2,y2) | Xml (x1,y1), Xml (x2,y2) ->
	  let c = Node.compare x1 x2 in if c <> 0 then c
	  else Node.compare y1 y2
      | Times _, _ -> -1 | _, Times _ -> 1
      | Xml _, _ -> -1 | _, Xml _ -> 1

      | Record (x1,y1), Record (x2,y2) ->
	  let c = LabelPool.compare x1 x2 in if c <> 0 then c
	  else Node.compare y1 y2
      | Record _, _ -> -1 | _, Record _ -> 1

      | Capture x1, Capture x2 ->
	  Id.compare x1 x2
      | Capture _, _ -> -1 | _, Capture _ -> 1

      | Constant (x1,y1), Constant (x2,y2) ->
	  let c = Id.compare x1 x2 in if c <> 0 then c
	  else Types.Const.compare y1 y2
      | Constant _, _ -> -1 | _, Constant _ -> 1

      | Dummy, Dummy -> assert false
end

module Print = struct
274
275
  module M = Map.Make(Pat)
  module S = Set.Make(Pat)
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338

  let names = ref M.empty
  let printed = ref S.empty
  let toprint = Queue.create ()
  let id = ref 0

  let rec mark seen ((_,_,d) as p) =
    if (M.mem p !names) then ()
    else if (S.mem p seen) then
      (incr id;
       names := M.add p !id !names;
       Queue.add p toprint)
    else 
      let seen = S.add p seen in
      match d with
	| Cup (p1,p2) | Cap (p1,p2) -> mark seen p1; mark seen p2
	| Times (q1,q2) | Xml (q1,q2) -> mark seen q1.descr; mark seen q2.descr
	| Record (_,q) -> mark seen q.descr
	| _ -> ()

  let rec print ppf p =
    try 
      let i = M.find p !names in
      Format.fprintf ppf "P%i" i
    with Not_found ->
      real_print ppf p
  and real_print ppf (_,_,d) =  match d with
    | Constr t ->
	Types.Print.print ppf t
    | Cup (p1,p2) ->
	Format.fprintf ppf "(%a | %a)" print p1 print p2
    | Cap (p1,p2) ->
	Format.fprintf ppf "(%a & %a)" print p1 print p2
    | Times (q1,q2) ->
	Format.fprintf ppf "(%a,%a)" print q1.descr print q2.descr
    | Xml (q1,{ descr = (_,_,Times(q2,q3)) }) ->
	Format.fprintf ppf "<(%a) (%a)>(%a)" print q1.descr print q2.descr print q2.descr
    | Xml _ -> assert false
    | Record (l,q) ->
	Format.fprintf ppf "{%a=%a}" Label.print (LabelPool.value l) print q.descr
    | Capture x ->
	Format.fprintf ppf "%a" Ident.print x
    | Constant (x,c) ->
	Format.fprintf ppf "(%a:=%a)" Ident.print x Types.Print.print_const c
    | Dummy -> assert false
      
  let print ppf p =
    mark S.empty p;
    print ppf p;
    let first = ref true in
    (try while true do
       let p = Queue.pop toprint in
       if not (S.mem p !printed) then 
	 ( printed := S.add p !printed;
	   Format.fprintf ppf " %s@ @[%a=%a@]"
	     (if !first then (first := false; "where") else "and")
	     print p
	     real_print p
	);
     done with Queue.Empty -> ());
    id := 0;
    names := M.empty;
    printed := S.empty
339
340
341
342
343
344
345
346
347
348
349


  let print_xs ppf xs =
    Format.fprintf ppf "{";
    let rec aux = function
      | [] -> ()
      | [x] -> Ident.print ppf x
      | x::q -> Ident.print ppf x; Format.fprintf ppf ","; aux q
    in
    aux xs;
    Format.fprintf ppf "}"
350
351
352
end


353
354
355
356

(* Static semantics *)

let cup_res v1 v2 = Types.Positive.cup [v1;v2]
357
let empty_res fv = IdMap.constant (Types.Positive.ty Types.empty) fv
358
359
let times_res v1 v2 = Types.Positive.times v1 v2

360
(* Try with a hash-table *)
361
module MemoFilter = Map.Make 
362
  (struct 
363
     type t = Types.t * node 
364
365
     let compare (t1,n1) (t2,n2) = 
       if n1.id < n2.id then -1 else if n1.id > n2.id then 1 else
366
       Types.compare t1 t2
367
   end)
368
369
370

let memo_filter = ref MemoFilter.empty

371
let rec filter_descr t (_,fv,d) : Types.Positive.v id_map =
372
(* TODO: avoid is_empty t when t is not changing (Cap) *)
373
374
375
376
  if Types.is_empty t 
  then empty_res fv
  else
    match d with
377
      | Constr _ -> IdMap.empty
378
      | Cup ((a,_,_) as d1,d2) ->
379
	  IdMap.merge cup_res
380
381
	    (filter_descr (Types.cap t a) d1)
	    (filter_descr (Types.diff t a) d2)
382
      | Cap (d1,d2) ->
383
	  IdMap.merge cup_res (filter_descr t d1) (filter_descr t d2)
384
385
      | Times (p1,p2) -> filter_prod fv p1 p2 t
      | Xml (p1,p2) -> filter_prod ~kind:`XML fv p1 p2 t
386
387
388
      | Record (l,p) ->
	  filter_node (Types.Record.project t l) p
      | Capture c ->
389
	  IdMap.singleton c (Types.Positive.ty t)
390
      | Constant (c, cst) ->
391
	  IdMap.singleton c (Types.Positive.ty (Types.constant cst))
392
      | Dummy -> assert false
393

394
395
396
397
and filter_prod ?kind fv p1 p2 t =
  List.fold_left 
    (fun accu (d1,d2) ->
       let term = 
398
	 IdMap.merge times_res (filter_node d1 p1) (filter_node d2 p2)
399
       in
400
       IdMap.merge cup_res accu term
401
402
403
404
405
    )
    (empty_res fv)
    (Types.Product.normal ?kind t)


406
and filter_node t p : Types.Positive.v id_map =
407
408
  try MemoFilter.find (t,p) !memo_filter
  with Not_found ->
409
    let (_,fv,_) as d = descr p in
410
    let res = IdMap.map_from_slist (fun _ -> Types.Positive.forward ()) fv in
411
412
    memo_filter := MemoFilter.add (t,p) res !memo_filter;
    let r = filter_descr t (descr p) in
413
    IdMap.collide Types.Positive.define res r;
414
415
416
417
418
    r

let filter t p =
  let r = filter_node t p in
  memo_filter :=  MemoFilter.empty;
419
  IdMap.get (IdMap.map Types.Positive.solve r)
420

421
422
423
424
425
let filter_descr t p =
  let r = filter_descr t p in
  memo_filter :=  MemoFilter.empty;
  IdMap.get (IdMap.map Types.Positive.solve r)

426

427
(* Normal forms for patterns and compilation *)
428

429
430
let min (a:int) (b:int) = if a < b then a else b

431
432
433
let any_basic = Types.Record.or_absent Types.non_constructed


434
module Normal = struct
435

436
  type source = 
437
438
    | SCatch | SConst of Types.const 
    | SLeft | SRight | SRecompose 
439
  type result = source id_map
440

441
442
443
444
445
446
447
  let compare_source s1 s2 =
    if s1 == s2 then 0 
    else match (s1,s2) with
      | SCatch, _ -> -1 | _, SCatch -> 1
      | SLeft, _ -> -1 | _, SLeft -> 1
      | SRight, _ -> -1 | _, SRight -> 1
      | SRecompose, _ -> -1 | _, SRecompose -> 1
448
      | SConst c1, SConst c2 -> Types.Const.compare c1 c2
449
450
451
452
453
454

  let hash_source = function
    | SCatch -> 1
    | SLeft -> 2
    | SRight -> 3
    | SRecompose -> 4
455
    | SConst c -> Types.Const.hash c
456
457
458
459
460
461
462
463
    
  let compare_result r1 r2 =
    IdMap.compare compare_source r1 r2

  let hash_result r =
    IdMap.hash hash_source r


464
465
466
467
468
  let print_result ppf r = Format.fprintf ppf "<result>"
  let print_result_option ppf = function
    | Some x -> Format.fprintf ppf "Some(%a)" print_result x
    | None -> Format.fprintf ppf "None"

469
  module NodeSet = 
470
471
    SortedList.Make(Node)

472

473
  type nnf = NodeSet.t * Types.t (* pl,t;   t <= \accept{pl} *)
474

475
476
477
478
479
480
481
482
  let check_nnf (pl,t) =
    List.iter (fun p -> assert(Types.subtype t (Types.descr p.accept)))
      (NodeSet.get pl)

  let print_nnf ppf (pl,t) =
    Format.fprintf ppf "@[(pl=%a;t=%a)@]" NodeSet.dump pl Types.Print.print t
			    

483
484
  let compare_nnf (l1,t1) (l2,t2) =
    let c = NodeSet.compare l1 l2 in if c <> 0 then c
485
    else Types.compare t1 t2
486
487

  let hash_nnf (l,t) =
488
    (NodeSet.hash l) + 17 * (Types.hash t)
489
490
491
492

  module NLineBasic = 
    SortedList.Make(
      struct
493
	include Custom.Dummy
494
	let serialize s _ = failwith "Patterns.NLineBasic.serialize"
495
	type t = result * Types.t
496
497
	let compare (r1,t1) (r2,t2) =
	  let c = compare_result r1 r2 in if c <> 0 then c
498
	  else Types.compare t1 t2
499
	let equal x y = compare x y == 0
500
	let hash (r,t) = hash_result r + 17 * Types.hash t
501
502
503
504
505
506
      end
    )

  module NLineProd = 
    SortedList.Make(
      struct
507
(*	include Custom.Dummy*)
508
	let serialize s _ = failwith "Patterns.NLineProd.serialize"
509
510
511
512
513
514
515
	let deserialize s = failwith "Patterns.NLineProd.deserialize"
	let check x = ()
	let dump ppf (r,x,y) =
	  Format.fprintf ppf "@[(result=%a;x=%a;y=%a)@]" 
	    print_result r
	    print_nnf x
	    print_nnf y
516
	type t = result * nnf * nnf
517
518
519
520
	let compare (r1,x1,y1) (r2,x2,y2) =
	  let c = compare_result r1 r2 in if c <> 0 then c
	  else let c = compare_nnf x1 x2 in if c <> 0 then c
	  else compare_nnf y1 y2
521
	let equal x y = compare x y == 0
522
523
524
525
526
	let hash (r,x,y) =
	  hash_result r + 17 * (hash_nnf x) + 267 * (hash_nnf y)
      end
    )

527
  type record =
528
    | RecNolabel of result option * result option
529
    | RecLabel of label * NLineProd.t
530
  type t = {
531
    nfv    : fv;
532
    ncatchv: fv;
533
534
535
536
    na     : Types.t;
    nbasic : NLineBasic.t;
    nprod  : NLineProd.t;
    nxml   : NLineProd.t;
537
    nrecord: record
538
  }
539

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
  let print_record ppf = function
    | RecLabel (lab,l) ->
	Format.fprintf ppf "RecLabel(@[%a@],@ @[%a@])"
	  Label.print (LabelPool.value lab)
	  NLineProd.dump l
    | RecNolabel (a,b) -> 
	Format.fprintf ppf "RecNolabel(@[%a@],@[%a@])" 
	  print_result_option a
	  print_result_option b
  let print ppf nf =
    Format.fprintf ppf "@[NF{na=%a;@[nrecord=@ @[%a@]@]}@]" 
      Types.Print.print nf.na
      print_record nf.nrecord
      

555
556
557
558
559
560
  let compare_nf t1 t2 =
    if t1 == t2 then 0
    else
      (* TODO: reorder; remove comparison of nfv ? *)
      let c = IdSet.compare t1.nfv t2.nfv in if c <> 0 then c 
      else let c = IdSet.compare t1.ncatchv t2.ncatchv in if c <> 0 then c
561
      else let c = Types.compare t1.na t2.na in if c <> 0 then c
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
      else let c = NLineBasic.compare t1.nbasic t2.nbasic in if c <> 0 then c
      else let c = NLineProd.compare t1.nprod t2.nprod in if c <> 0 then c
      else let c = NLineProd.compare t1.nxml t2.nxml in if c <> 0 then c
      else match t1.nrecord, t2.nrecord with
	| RecNolabel (s1,n1), RecNolabel (s2,n2) ->
	    let c = match (s1,s2) with
	      | None,None -> 0
	      | Some r1, Some r2 -> compare_result r1 r2
	      | None, _ -> -1
	      | _, None -> 1 in
	    if c <> 0 then c 
	    else (match (n1,n2) with
	      | None,None -> 0
	      | Some r1, Some r2 -> compare_result r1 r2
	      | None, _ -> -1
	      | _, None -> 1)
	| RecNolabel (_,_), _ -> -1
	| _, RecNolabel (_,_) -> 1
	| RecLabel (l1,p1), RecLabel (l2,p2) ->
	    let c = LabelPool.compare l1 l2 in if c <> 0 then c
	    else NLineProd.compare p1 p2
583

584
  let fus = IdMap.union_disj
585

586
587
588
  let nempty lab = 
    { nfv = IdSet.empty; ncatchv = IdSet.empty; 
      na = Types.empty;
589
590
591
      nbasic = NLineBasic.empty; 
      nprod = NLineProd.empty; 
      nxml = NLineProd.empty;
592
      nrecord = (match lab with 
593
		   | Some l -> RecLabel (l,NLineProd.empty)
594
		   | None -> RecNolabel (None,None))
595
    }
596
  let dummy = nempty None
597
598
599
600
601
602


  let ncup nf1 nf2 = 
    (* assert (Types.is_empty (Types.cap nf1.na nf2.na)); *)
    (* assert (nf1.nfv = nf2.nfv); *)
    { nfv = nf1.nfv;
603
      ncatchv = IdSet.cap nf1.ncatchv nf2.ncatchv;
604
      na      = Types.cup nf1.na nf2.na;
605
606
607
      nbasic  = NLineBasic.cup nf1.nbasic nf2.nbasic;
      nprod   = NLineProd.cup nf1.nprod nf2.nprod;
      nxml    = NLineProd.cup nf1.nxml nf2.nxml;
608
      nrecord = (match (nf1.nrecord,nf2.nrecord) with
609
		   | RecLabel (l1,r1), RecLabel (l2,r2) -> 
610
		       (* assert (l1 = l2); *) RecLabel (l1, NLineProd.cup r1 r2)
611
		   | RecNolabel (x1,y1), RecNolabel (x2,y2) -> 
612
613
		       RecNolabel((if x1 == None then x2 else x1),
				(if y1 == None then y2 else y1))
614
		   | _ -> assert false)
615
616
617
    }

  let double_fold f l1 l2 =
618
619
620
621
622
623
    List.fold_left 
      (fun accu x1 -> List.fold_left (fun accu x2 -> f accu x1 x2) accu l2)
      [] l1

  let double_fold_prod f l1 l2 =
    double_fold f (NLineProd.get l1) (NLineProd.get l2)
624
625
	 
  let ncap nf1 nf2 =
626
    let prod accu (res1,(pl1,t1),(ql1,s1)) (res2,(pl2,t2),(ql2,s2)) =
627
628
629
630
      let t = Types.cap t1 t2 in
      if Types.is_empty t then accu else
	let s = Types.cap s1 s2  in
	if Types.is_empty s then accu else
631
632
	  (fus res1 res2, (NodeSet.cup pl1 pl2,t),(NodeSet.cup ql1 ql2,s)) 
	  :: accu
633
634
635
636
637
638
    in
    let basic accu (res1,t1) (res2,t2) =
      let t = Types.cap t1 t2 in
      if Types.is_empty t then accu else
	(fus res1 res2, t) :: accu
    in
639
    let record r1 r2 = match r1,r2 with
640
      | RecLabel (l1,r1), RecLabel (l2,r2) ->
641
	  (* assert (l1 = l2); *)
642
	  RecLabel(l1, NLineProd.from_list (double_fold_prod prod r1 r2))
643
      | RecNolabel (x1,y1), RecNolabel (x2,y2) ->
644
645
646
647
648
649
	  let x = match x1,x2 with 
	    | Some res1, Some res2 -> Some (fus res1 res2) 
	    | _ -> None
	  and y = match y1,y2 with
	    | Some res1, Some res2 -> Some (fus res1 res2)
	    | _ -> None in
650
	  RecNolabel (x,y)
651
      | _ -> assert false
652
    in
653
654
    { nfv = IdSet.cup nf1.nfv nf2.nfv;
      ncatchv = IdSet.cup nf1.ncatchv nf2.ncatchv;
655
      na = Types.cap nf1.na nf2.na;
656
657
658
659
660
661
      nbasic = NLineBasic.from_list (double_fold basic 
				       (NLineBasic.get nf1.nbasic) 
				       (NLineBasic.get nf2.nbasic));
      nprod = NLineProd.from_list (double_fold_prod prod nf1.nprod nf2.nprod);
      nxml = NLineProd.from_list (double_fold_prod prod nf1.nxml nf2.nxml);
      nrecord = record nf1.nrecord nf2.nrecord;
662
663
    }

664
665
666
667
  let nnode p = NodeSet.singleton p, Types.descr p.accept
  let nc t = NodeSet.empty, t
  let ncany = nc Types.any

668
  let empty_res = IdMap.empty
669

670
  let ntimes lab acc p q = 
671
672
673
    let src_p = IdMap.constant SLeft p.fv
    and src_q = IdMap.constant SRight q.fv in
    let src = IdMap.merge_elem SRecompose src_p src_q in 
674
    { nempty lab with 
675
	nfv = IdSet.cup p.fv q.fv; 
676
	na = acc;
677
	nprod = NLineProd.singleton (src, nnode p, nnode q);
678
679
    }

680
  let nxml lab acc p q = 
681
682
683
    let src_p = IdMap.constant SLeft p.fv
    and src_q = IdMap.constant SRight q.fv in
    let src = IdMap.merge_elem SRecompose src_p src_q in 
684
    { nempty lab with 
685
	nfv = IdSet.cup p.fv q.fv; 
686
	na = acc;
687
	nxml =  NLineProd.singleton (src, nnode p, nnode q);
688
689
    }
    
690
691
692
693
694
695
696
697
698
699
  let nrecord lab acc l p =
    match lab with
      | None -> assert false
      | Some label ->
	  assert (label <= l);
	  if l == label then
	    let src = IdMap.constant SLeft p.fv in
	    { nempty lab with
		nfv = p.fv;
		na = acc;
700
		nrecord = RecLabel(label, 
701
				 NLineProd.singleton (src,nnode p, ncany))}
702
703
704
705
706
707
708
709
	  else
	    let src = IdMap.constant SRight p.fv in
	    let p' = make p.fv in  (* optimize this ... *)
	      (* cache the results to avoid looping ... *)
	    define p' (record l p);
	    { nempty lab with
		nfv = p.fv;
		na = acc;
710
711
712
713
		nrecord = 
		      RecLabel(label,
		        NLineProd.singleton(src,nc Types.Record.any_or_absent, 
 			 nnode p') )}
714
715
716
	  

  let nconstr lab t =
717
718
    let aux l = NLineProd.from_list
		(List.map (fun (t1,t2) -> empty_res, nc t1,nc t2) l) in
719
720
721
722
    let record = 
      match lab with
	| None ->
	    let (x,y) = Types.Record.empty_cases t in
723
	    RecNolabel ((if x then Some empty_res else None), 
724
725
		      (if y then Some empty_res else None))
	| Some l ->
726
727
728
729
730
731
732
733
734
735
(*
	    let ppf = Format.std_formatter in
	    Format.fprintf ppf "Constr record t=%a l=%a@."
	      Types.Print.print t Label.print (LabelPool.value l);
	    let sp = Types.Record.split_normal t l in
	    List.iter (fun (t1,t2) ->
			 Format.fprintf ppf "t1=%a t2=%a@."
			   Types.Print.print t1
			   Types.Print.print t2) sp;
*)
736
	    RecLabel (l,aux (Types.Record.split_normal t l))
737
738
    in	      
    { nempty lab with
739
	na = t;
740
	nbasic = NLineBasic.singleton (empty_res, Types.cap t any_basic);
741
742
743
	nprod = aux (Types.Product.normal t);
	nxml  = aux (Types.Product.normal ~kind:`XML t);
	nrecord = record
744
745
    }

746
  let nconstant lab x c = 
747
748
749
    let l = IdMap.singleton x (SConst c) in
    { nfv = IdSet.singleton x;
      ncatchv = IdSet.empty;
750
      na = Types.any;
751
752
753
      nbasic = NLineBasic.singleton (l,any_basic); 
      nprod  = NLineProd.singleton (l,ncany,ncany);
      nxml   = NLineProd.singleton (l,ncany,ncany);
754
      nrecord = match lab with
755
	| None -> RecNolabel (Some l, Some l)
756
	| Some lab -> 
757
758
759
	    RecLabel (lab, NLineProd.singleton 
			(l,nc Types.Record.any_or_absent,
				 ncany))
760
761
    }

762
  let ncapture lab x = 
763
764
765
    let l = IdMap.singleton x SCatch in
    { nfv = IdSet.singleton x;
      ncatchv = IdSet.singleton x;
766
      na = Types.any;
767
768
769
      nbasic = NLineBasic.singleton (l,any_basic); 
      nprod  = NLineProd.singleton (l,ncany,ncany);
      nxml   = NLineProd.singleton (l,ncany,ncany);
770
      nrecord = match lab with
771
	| None -> RecNolabel (Some l, Some l)
772
	| Some lab -> 
773
774
775
	    RecLabel (lab, NLineProd.singleton 
			(l,nc Types.Record.any_or_absent,
			         ncany))
776
777
    }

778
  let rec nnormal lab (acc,fv,d) =
779
    if Types.is_empty acc 
780
    then nempty lab
781
    else match d with
782
783
      | Constr t -> nconstr lab t
      | Cap (p,q) -> ncap (nnormal lab p) (nnormal lab q)
784
      | Cup ((acc1,_,_) as p,q) -> 
785
786
787
788
789
790
791
	  ncup (nnormal lab p) (ncap (nnormal lab q) 
				  (nconstr lab (Types.neg acc1)))
      | Times (p,q) -> ntimes lab acc p q
      | Xml (p,q) -> nxml lab acc p q
      | Capture x -> ncapture lab x
      | Constant (x,c) -> nconstant lab x c
      | Record (l,p) -> nrecord lab acc l p
792
      | Dummy -> assert false
793
794
795
796
797
798

(*TODO: when an operand of Cap has its first_label > lab,
  directly shift it*)

  let rec first_label (acc,fv,d) =
    if Types.is_empty acc 
799
    then LabelPool.dummy_max
800
801
802
803
804
805
    else match d with
      | Constr t -> Types.Record.first_label t
      | Cap (p,q) -> min (first_label p) (first_label q)
      | Cup ((acc1,_,_) as p,q) -> min (first_label p) (first_label q)
	    (* should "first_label_type acc1" ? *)
      | Record (l,p) -> l
806
      | _ -> LabelPool.dummy_max
807

808
809
810
   
  let remove_catchv n =
    let ncv = n.ncatchv in
811
812
813
814
    let nlinesbasic l = 
      NLineBasic.map (fun (res,x) -> (IdMap.diff res ncv,x)) l in
    let nlinesprod l  = 
      NLineProd.map (fun (res,x,y) -> (IdMap.diff res ncv,x,y)) l in
815
    { nfv     = IdSet.diff n.nfv ncv;
816
817
      ncatchv = n.ncatchv;
      na      = n.na;
818
819
820
      nbasic  = nlinesbasic n.nbasic;
      nprod   = nlinesprod n.nprod;
      nxml    = nlinesprod n.nxml;
821
      nrecord = (match n.nrecord with
822
		   | RecNolabel (x,y) ->
823
824
825
826
827
828
		       let x = match x with 
			 | Some res -> Some (IdMap.diff res ncv) 
			 | None -> None in
		       let y = match y with 
			 | Some res -> Some (IdMap.diff res ncv) 
			 | None -> None in
829
		       RecNolabel (x,y)
830
		   | RecLabel (lab,l) -> RecLabel (lab, nlinesprod l))
831
832
    }

833
834
835
  let print_node_list ppf pl =
    List.iter (fun p -> Format.fprintf ppf "%a;" Node.dump p) pl

836
  let normal l t pl =
837
    remove_catchv
838
839
840
841
      (List.fold_left 
	 (fun a p -> ncap a (nnormal l (descr p))) 
	 (nconstr l t) 
	 pl)
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859

(*
  let normal l t pl =
    let nf = normal l t pl in
    (match l with Some l ->
      Format.fprintf Format.std_formatter
	"normal(l=%a;t=%a;pl=%a)=%a@." 
	Label.print (LabelPool.value l)
	Types.Print.print t
	print_node_list pl
	print nf
      | None -> Format.fprintf Format.std_formatter
	"normal(t=%a;pl=%a)=%a@." 
	Types.Print.print t
	print_node_list pl
	print nf);
    nf
*)
860
end
861
862


863
864
module Compile = 
struct
865
  type actions =
866
867
    | AIgnore of result
    | AKind of actions_kind
868
  and actions_kind = {
869
    basic: (Types.t * result) list;
870
871
    atoms: result Atoms.map;
    chars: result Chars.map;
872
    prod: result dispatch dispatch;
873
    xml: result dispatch dispatch;
874
875
876
    record: record option;
  }
  and record = 
877
    | RecLabel of label * result dispatch dispatch
878
    | RecNolabel of result option * result option
879
      
880
  and 'a dispatch =
881
882
883
884
    | Dispatch of dispatcher * 'a array
    | TailCall of dispatcher
    | Ignore of 'a
    | Impossible
885
886

  and result = int * source array
887
  and source = 
888
889
    | Catch | Const of Types.const 
    | Left of int | Right of int | Recompose of int * int
890
891
      
  and return_code = 
892
      Types.t * int *   (* accepted type, arity *)
893
      (int * int id_map) list
894
895

  and interface =
896
897
    [ `Result of int
    | `Switch of interface * interface
898
899
900
901
    | `None ]

  and dispatcher = {
    id : int;
902
    t  : Types.t;
903
    pl : Normal.t array;
904
    label : label option;
905
906
    interface : interface;
    codes : return_code array;
907
908
    mutable actions : actions option;
    mutable printed : bool
909
  }
910

911
912
913
914
915
916
917
  let equal_array f a1 a2 =
    let rec aux i = (i < 0) || ((f a1.(i) a2.(i)) && (aux (i - 1))) in
    let l1 = Array.length a1 and l2 = Array.length a2 in
    (l1 == l2) && (aux (l1 - 1))

  let equal_source s1 s2 =
    (s1 == s2) || match (s1,s2) with
918
      | Const x, Const y -> Types.Const.equal x y 
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
      | Left x, Left y -> x == y
      | Right x, Right y -> x == y
      | Recompose (x1,x2), Recompose (y1,y2) -> (x1 == y1) && (x2 == y2)
      | _ -> false

  let equal_result (r1,s1) (r2,s2) =
    (r1 == r2) && (equal_array equal_source s1 s2)

  let equal_result_dispatch d1 d2 =
    (d1 == d2) || match (d1,d2) with
      | Dispatch (d1,a1), Dispatch (d2,a2) -> (d1 == d2) && (equal_array equal_result a1 a2)
      | TailCall d1, TailCall d2 -> d1 == d2
      | Ignore a1, Ignore a2 -> equal_result a1 a2
      | _ -> false


935
936
  let array_for_all f a =
    let rec aux f a i =
937
      if i == Array.length a then true
938
939
940
941
942
943
      else f a.(i) && (aux f a (succ i))
    in
    aux f a 0

  let array_for_all_i f a =
    let rec aux f a i =
944
      if i == Array.length a then true
945
946
947
948
      else f i a.(i) && (aux f a (succ i))
    in
    aux f a 0

949
  let combine_kind basic prod xml record =
950
951
952
953
954
955
956
    try (
      let rs = [] in
      let rs = match basic with
	| [_,r] -> r :: rs
	| [] -> rs
	| _ -> raise Exit in
      let rs = match prod with
957
958
	| Impossible -> rs
	| Ignore (Ignore r) -> r :: rs
959
	| _ -> raise Exit in
960
      let rs = match xml with
961
962
	| Impossible -> rs
	| Ignore (Ignore r) -> r :: rs
963
	| _ -> raise Exit in
964
965
      let rs = match record with
	| None -> rs
966
967
	| Some (RecLabel (_,Ignore (Ignore r))) -> r :: rs
	| Some (RecNolabel (Some r1, Some r2)) -> r1 :: r2 :: rs
968
969
	| _ -> raise Exit in
      match rs with
970
	| ((_, ret) as r) :: rs when 
971
	    List.for_all ( equal_result r ) rs 
972
	    && array_for_all 
973
974
	      (function Catch | Const _ -> true | _ -> false) ret
	    -> AIgnore r
975
976
	| _ -> raise Exit
    )
977
978
979
980
    with Exit -> 
      AKind 
      { basic = basic;
	atoms = 
981
	  Atoms.mk_map (List.map (fun (t,r) -> Types.Atom.get t, r) basic);
982
	chars = 
983
	  Chars.mk_map (List.map (fun (t,r) -> Types.Char.get t, r) basic);
984
985
	prod = prod; 
	xml = xml; 
986
987
	record = record;
      }
988
      
989
990
  let combine f (disp,act) =
    if Array.length act == 0 then Impossible
991
    else
992
993
      if (array_for_all (fun (_,ar,_) -> ar == 0) disp.codes) 
	 && (array_for_all ( f act.(0) ) act) then
994
	   Ignore act.(0)
995
      else