typer.ml 54.1 KB
Newer Older
1
(* TODO:
2
 - rewrite type-checking of operators to propagate constraint
3
4
 - optimize computation of pattern free variables
 - check whether it is worth using recursive hash-consing internally
5
6
*)

7
8
9
open Location
open Ast
open Ident
10

11
12
let debug_schema = false

13
let warning loc msg =
14
  Format.fprintf !Location.warning_ppf "Warning %a:@\n%a%s@." 
15
16
    Location.print_loc (loc,`Full)
    Location.html_hilight (loc,`Full)
17
18
    msg

19
20
21
22
23
24
25
26
27
exception NonExhaustive of Types.descr
exception Constraint of Types.descr * Types.descr
exception ShouldHave of Types.descr * string
exception ShouldHave2 of Types.descr * string * Types.descr
exception WrongLabel of Types.descr * label
exception UnboundId of id * bool
exception UnboundExtId of Types.CompUnit.t * id
exception Error of string

28
29
30

exception Warning of string * Types.t

31
32
33
34
let raise_loc loc exn = raise (Location (loc,`Full,exn))
let raise_loc_str loc ofs exn = raise (Location (loc,`Char ofs,exn))
let error loc msg = raise_loc loc (Error msg)

35
36
type item =
  | Type of Types.t
37
  | Val of Types.t
38

39
40
module UEnv = Map.Make(U)

41
type t = {
42
  ids : item Env.t;
43
  ns: Ns.table;
44
  cu: Types.CompUnit.t UEnv.t;
45
  schemas: string UEnv.t
46
}
47

48
49
50
51
52
let hash _ = failwith "Typer.hash"
let compare _ _ = failwith "Typer.compare"
let dump ppf _ = failwith "Typer.dump"
let equal _ _ = failwith "Typer.equal"
let check _ = failwith "Typer.check"
53
54

(* TODO: filter out builtin defs ? *)
55
56
57
58
let serialize_item s = function
  | Type t -> Serialize.Put.bits 1 s 0; Types.serialize s t
  | Val t -> Serialize.Put.bits 1 s 1; Types.serialize s t

59
let serialize s env =
60
  Serialize.Put.env Id.serialize serialize_item Env.iter s env.ids;
61
  Ns.serialize_table s env.ns
62

63
64
65
66
67
let deserialize_item s = match Serialize.Get.bits 1 s with
  | 0 -> Type (Types.deserialize s)
  | 1 -> Val (Types.deserialize s)
  | _ -> assert false

68
let deserialize s =
69
  let ids = Serialize.Get.env Id.deserialize deserialize_item Env.add Env.empty s in
70
  let ns = Ns.deserialize_table s in
71
  { ids = ids; ns = ns; cu = UEnv.empty; schemas = UEnv.empty }
72
73


74
75
let empty_env = {
  ids = Env.empty;
76
  ns = Ns.empty_table;
77
  cu = UEnv.empty;
78
  schemas = UEnv.empty
79
80
}

81
82
let from_comp_unit = ref (fun cu -> assert false)

83
let enter_cu x cu env =
84
  { env with cu = UEnv.add x cu env.cu }
85

86
87
88
let find_cu x env =
  try UEnv.find x env.cu
  with Not_found -> Types.CompUnit.mk x
89
90


91
92
93
94
95
96
let enter_schema x uri env =
  { env with schemas = UEnv.add x uri env.schemas }
let find_schema x env =
  try UEnv.find x env.schemas
  with Not_found -> raise (Error (Printf.sprintf "%s: no such schema" (U.get_str x)))

97
98
99
100
101
102
103
104
let enter_type id t env =
  { env with ids = Env.add id (Type t) env.ids }
let enter_types l env =
  { env with ids = 
      List.fold_left (fun accu (id,t) -> Env.add id (Type t) accu) env.ids l }
let find_type id env =
  match Env.find id env.ids with
    | Type t -> t
105
    | Val _ -> raise Not_found
106

107
let find_type_global loc cu id env =
108
  let cu = find_cu cu env in
109
110
111
  let env = !from_comp_unit cu in
  find_type id env

112
let enter_value id t env = 
113
  { env with ids = Env.add id (Val t) env.ids }
114
115
let enter_values l env =
  { env with ids = 
116
      List.fold_left (fun accu (id,t) -> Env.add id (Val t) accu) env.ids l }
117
118
119
let enter_values_dummy l env =
  { env with ids = 
      List.fold_left (fun accu id -> Env.add id (Val Types.empty) accu) env.ids l }
120
121
let find_value id env =
  match Env.find id env.ids with
122
    | Val t -> t
123
    | _ -> raise Not_found
124
125
126
let find_value_global cu id env =
  let env = !from_comp_unit cu in
  find_value id env
127
	
128
129
130
131
132
133
let value_name_ok id env =
  try match Env.find id env.ids with
    | Val t -> true
    | _ -> false
  with Not_found -> true

134
135
136
137
let iter_values env f =
  Env.iter (fun x ->
	      function Val t -> f x t;
		| _ -> ()) env.ids
138

139

140
141
142
143
144
145
146
147
148
let register_types cu env =
  let prefix = U.concat (Types.CompUnit.value cu) (U.mk ":") in
  Env.iter (fun x ->
	      function 
		| Type t ->
		    let n = U.concat prefix (Id.value x) in
		    Types.Print.register_global n t
		| _ -> ()) env.ids

149

150
(* Namespaces *)
151

152
let set_ns_table_for_printer env = 
153
  Ns.InternalPrinter.set_table env.ns
154

155
let get_ns_table tenv = tenv.ns
156

157
let enter_ns p ns env =
158
  { env with ns = Ns.add_prefix p ns env.ns }
159

160
161
162
163
164
let protect_error_ns loc f x =
  try f x
  with Ns.UnknownPrefix ns ->
    raise_loc_generic loc 
    ("Undefined namespace prefix " ^ (U.to_string ns))
165

166
let parse_atom env loc t =
167
  let (ns,l) = protect_error_ns loc (Ns.map_tag env.ns) t in
168
169
170
  Atoms.V.mk ns l
 
let parse_ns env loc ns =
171
  protect_error_ns loc (Ns.map_prefix env.ns) ns
172

173
let parse_label env loc t =
174
  let (ns,l) = protect_error_ns loc (Ns.map_attr env.ns) t in
175
  LabelPool.mk (ns,l)
176

177
178
179
180
181
182
183
184
185
186
187
188
189
let parse_record env loc f r =
  let r = List.map (fun (l,x) -> (parse_label env loc l, f x)) r in
  LabelMap.from_list (fun _ _ -> raise_loc_generic loc "Duplicated record field") r

let rec const env loc = function
  | LocatedExpr (loc,e) -> const env loc e
  | Pair (x,y) -> Types.Pair (const env loc x, const env loc y)
  | Xml (x,y) -> Types.Xml (const env loc x, const env loc y)
  | RecordLitt x -> Types.Record (parse_record env loc (const env loc) x)
  | String (i,j,s,c) -> Types.String (i,j,s,const env loc c)
  | Atom t -> Types.Atom (parse_atom env loc t)
  | Integer i -> Types.Integer i
  | Char c -> Types.Char c
190
  | Const c -> c
191
192
193
194
  | _ -> raise_loc_generic loc "This should be a scalar or structured constant"

(* I. Transform the abstract syntax of types and patterns into
      the internal form *)
195

196

197
(* Schema *)
198

199
200
201
let is_registered_schema env s = UEnv.mem s env.schemas

(* uri -> schema binding *)
202
let schemas = State.ref "Typer.schemas" (Hashtbl.create 3)
203
204
205

let schema_types = State.ref "Typer.schema_types" (Hashtbl.create 51)
let schema_elements = State.ref "Typer.schema_elements" (Hashtbl.create 51)
206
let schema_attributes = State.ref "Typer.schema_attributes" (Hashtbl.create 51)
207
208
209
210
let schema_attribute_groups =
  State.ref "Typer.schema_attribute_groups" (Hashtbl.create 51)
let schema_model_groups =
  State.ref "Typer.schema_model_groups" (Hashtbl.create 51)
211

212
213


214
215
  (* raise Not_found *)

216
217
218
219

let get_schema_fwd = ref (fun _ -> assert false)

let find_schema_descr_uri kind uri name =
220
  try
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
    ignore (!get_schema_fwd uri);
    let elt () = Hashtbl.find !schema_elements (uri, name) in
    let typ () = Hashtbl.find !schema_types (uri, name) in
    let att () = Hashtbl.find !schema_attributes (uri, name) in
    let att_group () = Hashtbl.find !schema_attribute_groups (uri, name) in
    let mod_group () = Hashtbl.find !schema_model_groups (uri, name) in
    let rec do_try n = function
      | [] -> raise Not_found
      | f :: rem -> (try f () with Not_found -> do_try n rem)
    in
    match kind with
      | Some `Element -> do_try "element" [ elt ]
      | Some `Type -> do_try "type" [ typ ]
      | Some `Attribute -> do_try "atttribute" [ att ]
      | Some `Attribute_group -> do_try "attribute group" [ att_group ]
      | Some `Model_group -> do_try "model group" [ mod_group ]
      | None ->
          (* policy for unqualified schema component resolution. This order should
           * be consistent with Schema_component.get_component *)
          do_try "component" [ elt; typ; att; att_group; mod_group ]
    with Not_found ->    
242
      raise (Error (Printf.sprintf "No %s named '%s' found in schema '%s'"
243
244
245
246
247
248
		      (Schema_common.string_of_component_kind kind) (U.get_str name) uri))

let find_schema_descr env kind schema name =
  let uri = find_schema schema env in
  find_schema_descr_uri kind uri name

249

250
251
252
(* Eliminate Recursion, propagate Sequence Capture Variables *)

let rec seq_vars accu = function
253
  | Epsilon | Elem _ | Guard _ -> accu
254
255
256
257
  | Seq (r1,r2) | Alt (r1,r2) -> seq_vars (seq_vars accu r1) r2
  | Star r | WeakStar r -> seq_vars accu r
  | SeqCapture (v,r) -> seq_vars (IdSet.add v accu) r

258
259
260
261
262
263
264
265
266
267
268
269
270
271
(* We use two intermediate representation from AST types/patterns
   to internal ones:

      AST -(1)-> derecurs -(2)-> slot -(3)-> internal

   (1) eliminate recursion, schema, 
       propagate sequence capture variables, keep regexps

   (2) stratify, detect ill-formed recursion, compile regexps

   (3) check additional constraints on types / patterns;
       deep (recursive) hash-consing
*)     

272
273
274
275
type derecurs_slot = {
  ploc : Location.loc;
  pid  : int;
  mutable ploop : bool;
276
  mutable pdescr : derecurs;
277
} and derecurs =
278
  | PDummy
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
  | PAlias of derecurs_slot
  | PType of Types.descr
  | POr of derecurs * derecurs
  | PAnd of derecurs * derecurs
  | PDiff of derecurs * derecurs
  | PTimes of derecurs * derecurs
  | PXml of derecurs * derecurs
  | PArrow of derecurs * derecurs
  | POptional of derecurs
  | PRecord of bool * derecurs label_map
  | PCapture of id
  | PConstant of id * Types.const
  | PRegexp of derecurs_regexp * derecurs
and derecurs_regexp =
  | PEpsilon
  | PElem of derecurs
295
  | PGuard of derecurs
296
297
298
299
300
  | PSeq of derecurs_regexp * derecurs_regexp
  | PAlt of derecurs_regexp * derecurs_regexp
  | PStar of derecurs_regexp
  | PWeakStar of derecurs_regexp

301
302
let pregexp r q = PRegexp (r,q)

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

type descr = 
  | IDummy
  | IType of Types.descr
  | IOr of descr * descr
  | IAnd of descr * descr
  | IDiff of descr * descr
  | ITimes of slot * slot
  | IXml of slot * slot
  | IArrow of slot * slot
  | IOptional of descr
  | IRecord of bool * slot label_map
  | ICapture of id
  | IConstant of id * Types.const
and slot = {
  mutable fv : fv option;
  mutable hash : int option;
  mutable rank1: int; mutable rank2: int;
  mutable gen1 : int; mutable gen2: int;
  mutable d    : descr;
323
}
324
325
326
327
328
329
330
331
332
333
334
335
336
    

let counter = ref 0
let mk_derecurs_slot loc = 
  incr counter; 
  { ploop = false; ploc = loc; pid = !counter; pdescr = PDummy }
	  
let mk_slot () = 
  { d=IDummy; fv=None; hash=None; rank1=0; rank2=0; gen1=0; gen2=0 } 


(* This environment is used in phase (1) to eliminate recursion *)
type penv = {
337
  penv_tenv : t;
338
339
340
341
  penv_derec : derecurs_slot Env.t;
}

let penv tenv = { penv_tenv = tenv; penv_derec = Env.empty }
342

343
let rec hash_derecurs = function
344
  | PDummy -> assert false
345
346
347
  | PAlias s -> 
      s.pid
  | PType t -> 
348
      1 + 17 * (Types.hash t)
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
  | POr (p1,p2) -> 
      2 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PAnd (p1,p2) -> 
      3 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PDiff (p1,p2) -> 
      4 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PTimes (p1,p2) -> 
      5 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PXml (p1,p2) -> 
      6 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PArrow (p1,p2) -> 
      7 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | POptional p -> 
      8 + 17 * (hash_derecurs p)
  | PRecord (o,r) -> 
      (if o then 9 else 10) + 17 * (LabelMap.hash hash_derecurs r)
  | PCapture x -> 
      11 + 17 * (Id.hash x)
  | PConstant (x,c) -> 
368
      12 + 17 * (Id.hash x) + 257 * (Types.Const.hash c)
369
370
  | PRegexp (p,q) -> 
      13 + 17 * (hash_derecurs_regexp p) + 257 * (hash_derecurs q)
371
and hash_derecurs_regexp = function
372
373
374
375
376
377
378
379
380
381
382
383
  | PEpsilon -> 
      1
  | PElem p -> 
      2 + 17 * (hash_derecurs p)
  | PSeq (p1,p2) -> 
      3 + 17 * (hash_derecurs_regexp p1) + 257 * (hash_derecurs_regexp p2)
  | PAlt (p1,p2) -> 
      4 + 17 * (hash_derecurs_regexp p1) + 257 * (hash_derecurs_regexp p2)
  | PStar p -> 
      5 + 17 * (hash_derecurs_regexp p)
  | PWeakStar p -> 
      6 + 17 * (hash_derecurs_regexp p)
384
385
  | PGuard p ->
      7 + 17 * (hash_derecurs p)
386
387

let rec equal_derecurs p1 p2 = (p1 == p2) || match p1,p2 with
388
389
390
  | PAlias s1, PAlias s2 -> 
      s1 == s2
  | PType t1, PType t2 -> 
391
      Types.equal t1 t2
392
393
394
395
396
  | POr (p1,q1), POr (p2,q2)
  | PAnd (p1,q1), PAnd (p2,q2)
  | PDiff (p1,q1), PDiff (p2,q2)
  | PTimes (p1,q1), PTimes (p2,q2)
  | PXml (p1,q1), PXml (p2,q2)
397
398
399
400
401
402
403
404
405
  | PArrow (p1,q1), PArrow (p2,q2) -> 
      (equal_derecurs p1 p2) && (equal_derecurs q1 q2)
  | POptional p1, POptional p2 -> 
      equal_derecurs p1 p2
  | PRecord (o1,r1), PRecord (o2,r2) -> 
      (o1 == o2) && (LabelMap.equal equal_derecurs r1 r2)
  | PCapture x1, PCapture x2 -> 
      Id.equal x1 x2
  | PConstant (x1,c1), PConstant (x2,c2) -> 
406
      (Id.equal x1 x2) && (Types.Const.equal c1 c2)
407
408
  | PRegexp (p1,q1), PRegexp (p2,q2) -> 
      (equal_derecurs_regexp p1 p2) && (equal_derecurs q1 q2)
409
410
  | _ -> false
and equal_derecurs_regexp r1 r2 = match r1,r2 with
411
412
413
414
  | PEpsilon, PEpsilon -> 
      true
  | PElem p1, PElem p2 -> 
      equal_derecurs p1 p2
415
416
  | PGuard p1, PGuard p2 ->
      equal_derecurs p1 p2
417
  | PSeq (p1,q1), PSeq (p2,q2) 
418
419
  | PAlt (p1,q1), PAlt (p2,q2) -> 
      (equal_derecurs_regexp p1 p2) && (equal_derecurs_regexp q1 q2)
420
  | PStar p1, PStar p2
421
422
  | PWeakStar p1, PWeakStar p2 -> 
      equal_derecurs_regexp p1 p2
423
  | _ -> false
424

425
426
427
428
429
430
431
432
433
434
435
module DerecursTable = Hashtbl.Make(
  struct 
    type t = derecurs 
    let hash = hash_derecurs
    let equal = equal_derecurs
  end
)

module RE = Hashtbl.Make(
  struct 
    type t = derecurs_regexp * derecurs 
436
437
438
439
    let hash (p,q) = 
      (hash_derecurs_regexp p) + 17 * (hash_derecurs q)
    let equal (p1,q1) (p2,q2) = 
      (equal_derecurs_regexp p1 p2) && (equal_derecurs q1 q2)
440
441
  end
)
442

443
444
445
446
let gen = ref 0
let rank = ref 0
	     
let rec hash_descr = function
447
  | IDummy -> assert false
448
  | IType x -> Types.hash x
449
450
451
452
453
454
455
456
457
  | IOr (d1,d2) -> 1 + 17 * (hash_descr d1) + 257 * (hash_descr d2)
  | IAnd (d1,d2) -> 2 + 17 * (hash_descr d1) + 257 * (hash_descr d2)
  | IDiff (d1,d2) -> 3 + 17 * (hash_descr d1) + 257 * (hash_descr d2)
  | IOptional d -> 4 + 17 * (hash_descr d)
  | ITimes (s1,s2) -> 5 + 17 * (hash_slot s1) + 257 * (hash_slot s2)
  | IXml (s1,s2) -> 6 + 17 * (hash_slot s1) + 257 * (hash_slot s2)
  | IArrow (s1,s2) -> 7 + 17 * (hash_slot s1) + 257 * (hash_slot s2)
  | IRecord (o,r) -> (if o then 8 else 9) + 17 * (LabelMap.hash hash_slot r)
  | ICapture x -> 10 + 17 * (Id.hash x)
458
  | IConstant (x,y) -> 11 + 17 * (Id.hash x) + 257 * (Types.Const.hash y)
459
460
461
462
463
and hash_slot s =
  if s.gen1 = !gen then 13 * s.rank1
  else (
    incr rank;
    s.rank1 <- !rank; s.gen1 <- !gen;
464
    hash_descr s.d
465
466
467
468
  )
    
let rec equal_descr d1 d2 = 
  match (d1,d2) with
469
  | IType x1, IType x2 -> Types.equal x1 x2
470
471
472
473
474
475
476
  | IOr (x1,y1), IOr (x2,y2) 
  | IAnd (x1,y1), IAnd (x2,y2) 
  | IDiff (x1,y1), IDiff (x2,y2) -> (equal_descr x1 x2) && (equal_descr y1 y2)
  | IOptional x1, IOptional x2 -> equal_descr x1 x2
  | ITimes (x1,y1), ITimes (x2,y2) 
  | IXml (x1,y1), IXml (x2,y2) 
  | IArrow (x1,y1), IArrow (x2,y2) -> (equal_slot x1 x2) && (equal_slot y1 y2)
477
478
  | IRecord (o1,r1), IRecord (o2,r2) -> 
      (o1 = o2) && (LabelMap.equal equal_slot r1 r2)
479
  | ICapture x1, ICapture x2 -> Id.equal x1 x2
480
  | IConstant (x1,y1), IConstant (x2,y2) -> 
481
      (Id.equal x1 x2) && (Types.Const.equal y1 y2)
482
483
484
485
486
487
488
489
  | _ -> false
and equal_slot s1 s2 =
  ((s1.gen1 = !gen) && (s2.gen2 = !gen) && (s1.rank1 = s2.rank2))
  ||
  ((s1.gen1 <> !gen) && (s2.gen2 <> !gen) && (
     incr rank;
     s1.rank1 <- !rank; s1.gen1 <- !gen;
     s2.rank2 <- !rank; s2.gen2 <- !gen;
490
     equal_descr s1.d s2.d
491
492
   ))
  
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
module SlotTable = Hashtbl.Make(
  struct
    type t = slot
	
    let hash s =
      match s.hash with
	| Some h -> h
	| None ->
	    incr gen; rank := 0; 
	    let h = hash_slot s in
	    s.hash <- Some h;
	    h
	      
    let equal s1 s2 = 
      (s1 == s2) || 
      (incr gen; rank := 0; 
       let e = equal_slot s1 s2 in
       (*     if e then Printf.eprintf "Recursive hash-consing: Equal\n";  *)
       e)
  end)


515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
let pempty = PType Types.empty

let por p1 p2 =
  if p1 == pempty then p2 else
    if p2 == pempty then p1 else
      POr (p1,p2)

let pand p1 p2 =
  if (p1 == pempty) || (p2 == pempty) then pempty else PAnd (p1,p2)

let rec remove_regexp r q = match r with
  | PEpsilon ->
      q
  | PElem p ->
      PTimes (p, q)
  | PGuard p ->
      pand p q
  | PSeq (r1,r2) ->
      remove_regexp r1 (remove_regexp r2 q)
  | PAlt (r1,r2) ->
      por (remove_regexp r1 q) (remove_regexp r2 q)
  | PStar r ->
      let x = mk_derecurs_slot noloc in
      let res = POr (PAlias x, q) in
      x.pdescr <- remove_regexp2 r res pempty;
      res
  | PWeakStar r ->
      let x = mk_derecurs_slot noloc in
      let res = POr (q, PAlias x) in
      x.pdescr <- remove_regexp2 r res pempty;
      res

and remove_regexp2 r q_nonempty q_empty =
  if q_nonempty == q_empty then remove_regexp r q_empty
  else match r with
    | PEpsilon ->
        q_empty
    | PElem p ->
        PTimes (p, q_nonempty)
    | PGuard p ->
	pand p q_empty
    | PSeq (r1,r2) ->
        remove_regexp2 r1
        (remove_regexp2 r2 q_nonempty q_nonempty)
        (remove_regexp2 r2 q_nonempty q_empty)
    | PAlt (r1,r2) ->
        por
        (remove_regexp2 r1 q_nonempty q_empty)
        (remove_regexp2 r2 q_nonempty q_empty)
    | PStar r ->
        let x = mk_derecurs_slot noloc in
        x.pdescr <- remove_regexp2 r (POr (PAlias x, q_nonempty)) pempty;
        por (PAlias x) q_empty
    | PWeakStar r ->
        let x = mk_derecurs_slot noloc in
        x.pdescr <- remove_regexp2 r (POr (q_nonempty, PAlias x)) pempty;
        por q_empty (PAlias x)

573
let rec derecurs env p = match p.descr with
574
  | PatVar v -> derecurs_var env p.loc v
575
  | SchemaVar (kind, schema_name, component_name) ->
576
      PType (find_schema_descr env.penv_tenv kind schema_name component_name)
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
  | Recurs (p,b) -> derecurs (derecurs_def env b) p
  | Internal t -> PType t
  | NsT ns -> PType (Types.atom (Atoms.any_in_ns (parse_ns env.penv_tenv p.loc ns)))
  | Or (p1,p2) -> POr (derecurs env p1, derecurs env p2)
  | And (p1,p2) -> PAnd (derecurs env p1, derecurs env p2)
  | Diff (p1,p2) -> PDiff (derecurs env p1, derecurs env p2)
  | Prod (p1,p2) -> PTimes (derecurs env p1, derecurs env p2)
  | XmlT (p1,p2) -> PXml (derecurs env p1, derecurs env p2)
  | Arrow (p1,p2) -> PArrow (derecurs env p1, derecurs env p2)
  | Optional p -> POptional (derecurs env p)
  | Record (o,r) -> PRecord (o, parse_record env.penv_tenv p.loc (derecurs env) r)
  | Constant (x,c) -> PConstant (x,const env.penv_tenv p.loc c)
  | Cst c -> PType (Types.constant (const env.penv_tenv p.loc c))
  | Regexp (r,q) -> 
      let constant_nil t v = 
	PAnd (t, PConstant (v, Types.Atom Sequence.nil_atom)) in
      let vars = seq_vars IdSet.empty r in
      let q = IdSet.fold constant_nil (derecurs env q) vars in
      let r = derecurs_regexp (fun p -> p) env r in
      PRegexp (r, q)
597
598
599
	(* Note: computing remove_regexp here is slower (because
	   of caching ?) *)

600
601
602
603
604
and derecurs_regexp vars env = function
  | Epsilon -> 
      PEpsilon
  | Elem p -> 
      PElem (vars (derecurs env p))
605
606
  | Guard p ->
      PGuard (vars (derecurs env p))
607
608
609
610
611
612
613
614
615
616
617
  | Seq (p1,p2) -> 
      PSeq (derecurs_regexp vars env p1, derecurs_regexp vars env p2)
  | Alt (p1,p2) -> 
      PAlt (derecurs_regexp vars env p1, derecurs_regexp vars env p2)
  | Star p -> 
      PStar (derecurs_regexp vars env p)
  | WeakStar p -> 
      PWeakStar (derecurs_regexp vars env p)
  | SeqCapture (x,p) -> 
      derecurs_regexp (fun p -> PAnd (vars p, PCapture x)) env p

618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
and derecurs_var env loc v =
  match Ns.split_qname v with
    | "", v ->
	let v = ident v in
	(try PAlias (Env.find v env.penv_derec)
	 with Not_found -> 
	   try PType (find_type v env.penv_tenv)
	   with Not_found -> PCapture v)
    | cu, v -> 
	try 
	  let cu = U.mk cu in
	  PType (find_type_global loc cu (ident v) env.penv_tenv)
	with Not_found ->
	  raise_loc_generic loc 
	  ("Unbound external type " ^ cu ^ ":" ^ (U.to_string v))

634
635
636
637
638
639
640
641
and derecurs_def env b =
  let b = List.map (fun (v,p) -> (v,p,mk_derecurs_slot p.loc)) b in
  let n = 
    List.fold_left (fun env (v,p,s) -> Env.add v s env) env.penv_derec b in
  let env = { env with penv_derec = n } in
  List.iter (fun (v,p,s) -> s.pdescr <- derecurs env p) b;
  env

642

643
644
645
646
647
let rec fv_slot s =
  match s.fv with
    | Some x -> x
    | None ->
	if s.gen1 = !gen then IdSet.empty 
648
	else (s.gen1 <- !gen; fv_descr s.d)
649
and fv_descr = function
650
  | IDummy -> assert false
651
  | IType _ -> IdSet.empty
652
653
654
655
656
657
658
  | IOr (d1,d2)
  | IAnd (d1,d2)  
  | IDiff (d1,d2) -> IdSet.cup (fv_descr d1) (fv_descr d2)
  | IOptional d -> fv_descr d
  | ITimes (s1,s2)  
  | IXml (s1,s2)  
  | IArrow (s1,s2) -> IdSet.cup (fv_slot s1) (fv_slot s2)
659
660
  | IRecord (o,r) -> 
      List.fold_left IdSet.cup IdSet.empty (LabelMap.map_to_list fv_slot r)
661
  | ICapture x | IConstant (x,_) -> IdSet.singleton x
662

663
664
665
666
667
668
669
670
let compute_fv s =
  match s.fv with
    | Some x -> ()
    | None ->
	incr gen;
	let x = fv_slot s in
	s.fv <- Some x
	  
671
672
673
let check_no_capture loc s =
  match IdSet.pick s with
    | Some x ->  
674
	raise_loc_generic loc ("Capture variable not allowed: " ^ (Ident.to_string x))
675
    | None -> ()
676
    
677
678
679
let compile_slot_hash = DerecursTable.create 67
let compile_hash = DerecursTable.create 67

680
681
let todo_defs = ref []
let todo_fv = ref []
682
683
684
685
686
687
688
689

let rec compile p =
  try DerecursTable.find compile_hash p
  with Not_found ->
    let c = real_compile p in
    DerecursTable.replace compile_hash p c;
    c
and real_compile = function
690
  | PDummy -> assert false
691
692
693
694
  | PAlias v ->
      if v.ploop then
	raise_loc_generic v.ploc ("Unguarded recursion on type/pattern");
      v.ploop <- true;
695
      let r = compile v.pdescr in
696
697
698
699
700
701
702
703
704
705
706
707
708
      v.ploop <- false;
      r
  | PType t -> IType t
  | POr (t1,t2) -> IOr (compile t1, compile t2)
  | PAnd (t1,t2) -> IAnd (compile t1, compile t2)
  | PDiff (t1,t2) -> IDiff (compile t1, compile t2)
  | PTimes (t1,t2) -> ITimes (compile_slot t1, compile_slot t2)
  | PXml (t1,t2) -> IXml (compile_slot t1, compile_slot t2)
  | PArrow (t1,t2) -> IArrow (compile_slot t1, compile_slot t2)
  | POptional t -> IOptional (compile t)
  | PRecord (o,r) ->  IRecord (o, LabelMap.map compile_slot r)
  | PConstant (x,v) -> IConstant (x,v)
  | PCapture x -> ICapture x
709
710
  | PRegexp (r,q) -> compile (remove_regexp r q)

711
712
and compile_slot p =
  try DerecursTable.find compile_slot_hash p
713
  with Not_found ->
714
715
716
    let s = mk_slot () in
    todo_defs := (s,p) :: !todo_defs;
    todo_fv := s :: !todo_fv;
717
    DerecursTable.add compile_slot_hash p s;
718
    s
719

720
      
721
let timer_fv = Stats.Timer.create "Typer.fv"
722
let rec flush_defs () = 
723
724
725
726
  match !todo_defs with
    | [] -> 
	Stats.Timer.start timer_fv;
	List.iter compute_fv !todo_fv;
727
728
	todo_fv := [];
	Stats.Timer.stop timer_fv ()
729
730
731
732
    | (s,p)::t -> 
	todo_defs := t; 
	s.d <- compile p; 
	flush_defs ()
733
734
735
736
737
738
739
740
741
742
743
744
745
746
	
let typ_nodes = SlotTable.create 67
let pat_nodes = SlotTable.create 67
		  
let rec typ = function
  | IType t -> t
  | IOr (s1,s2) -> Types.cup (typ s1) (typ s2)
  | IAnd (s1,s2) ->  Types.cap (typ s1) (typ s2)
  | IDiff (s1,s2) -> Types.diff (typ s1) (typ s2)
  | ITimes (s1,s2) -> Types.times (typ_node s1) (typ_node s2)
  | IXml (s1,s2) -> Types.xml (typ_node s1) (typ_node s2)
  | IArrow (s1,s2) -> Types.arrow (typ_node s1) (typ_node s2)
  | IOptional s -> Types.Record.or_absent (typ s)
  | IRecord (o,r) -> Types.record' (o, LabelMap.map typ_node r)
747
  | IDummy | ICapture _ | IConstant (_,_) -> assert false
748
      
749
and typ_node s : Types.Node.t =
750
751
752
753
  try SlotTable.find typ_nodes s
  with Not_found ->
    let x = Types.make () in
    SlotTable.add typ_nodes s x;
754
    Types.define x (typ s.d);
755
756
757
758
759
760
761
762
    x
      
let rec pat d : Patterns.descr =
  if IdSet.is_empty (fv_descr d)
  then Patterns.constr (typ d)
  else pat_aux d
    
and pat_aux = function
763
  | IDummy -> assert false
764
765
766
767
768
769
  | IOr (s1,s2) -> Patterns.cup (pat s1) (pat s2)
  | IAnd (s1,s2) -> Patterns.cap (pat s1) (pat s2)
  | IDiff (s1,s2) when IdSet.is_empty (fv_descr s2) ->
      let s2 = Types.neg (typ s2) in
      Patterns.cap (pat s1) (Patterns.constr s2)
  | IDiff _ ->
770
      raise (Patterns.Error "Differences are not allowed in patterns")
771
772
773
  | ITimes (s1,s2) -> Patterns.times (pat_node s1) (pat_node s2)
  | IXml (s1,s2) -> Patterns.xml (pat_node s1) (pat_node s2)
  | IOptional _ -> 
774
      raise (Patterns.Error "Optional fields are not allowed in record patterns")
775
776
777
778
779
780
781
782
783
784
785
786
787
788
  | IRecord (o,r) ->
      let pats = ref [] in
      let aux l s = 
	if IdSet.is_empty (fv_slot s) then typ_node s
	else
	  ( pats := Patterns.record l (pat_node s) :: !pats;
	    Types.any_node )
      in
      let constr = Types.record' (o,LabelMap.mapi aux r) in
      List.fold_left Patterns.cap (Patterns.constr constr) !pats
	(* TODO: can avoid constr when o=true, and all fields have fv *)
  | ICapture x -> Patterns.capture x
  | IConstant (x,c) -> Patterns.constant x c
  | IArrow _ ->
789
      raise (Patterns.Error "Arrows are not allowed in patterns")
790
791
792
793
794
795
  | IType _ -> assert false
      
and pat_node s : Patterns.node =
  try SlotTable.find pat_nodes s
  with Not_found ->
    let x = Patterns.make (fv_slot s) in
796
797
    try
      SlotTable.add pat_nodes s x;
798
      Patterns.define x (pat s.d);
799
800
801
      x
    with exn -> SlotTable.remove pat_nodes s; raise exn
      (* For the toplevel ... *)
802

803

804
module Ids = Set.Make(Id)
805
let type_defs env b =
806
807
808
809
810
811
812
813
814
815
  ignore 
    (List.fold_left 
       (fun seen (v,p) ->
	  if Ids.mem v seen then 
	    raise_loc_generic p.loc 
	      ("Multiple definitions for the type identifer " ^ 
	       (Ident.to_string v));
	  Ids.add v seen
       ) Ids.empty b);

816
817
  let penv = derecurs_def (penv env) b in
  let b = List.map (fun (v,p) -> (v,p,compile (derecurs penv p))) b in
818
819
820
821
  flush_defs ();
  let b = 
    List.map 
      (fun (v,p,s) -> 
822
	 check_no_capture p.loc (fv_descr s);
823
824
825
	 let t = typ s in
	 if (p.loc <> noloc) && (Types.is_empty t) then
	   warning p.loc 
826
	     ("This definition yields an empty type for " ^ (Ident.to_string v));
827
	 (v,t)) b in
828
  List.iter (fun (v,t) -> Types.Print.register_global (Id.value v) t) b;
829
  b
830
831


832
833
834
835
836
let dump_types ppf env =
  Env.iter (fun v -> 
	      function 
		  (Type _) -> Format.fprintf ppf " %a" Ident.print v
		| _ -> ()) env.ids
837
838
let dump_type ppf env name =
  try
839
    (match Env.find (Ident.ident name) env.ids with
840
841
    | Type t -> Types.Print.print ppf t
    | _ -> raise Not_found)
842
843
  with Not_found ->
    raise (Error (Printf.sprintf "Type %s not found" (U.get_str name)))
844

845
846
847
let dump_schema_type ppf env (k, s, n) =
  let uri = find_schema s env in
  let descr = find_schema_descr_uri k uri n in
848
  Types.Print.print ppf descr
849

850
let dump_ns ppf env =
851
  Ns.dump_table ppf env.ns
852

853

854
855
let do_typ loc r = 
  let s = compile_slot r in
856
  flush_defs ();
857
858
  check_no_capture loc (fv_slot s);
  typ_node s
859
   
860
861
let typ env p =
  do_typ p.loc (derecurs (penv env) p)
862
    
863
864
let pat env p = 
  let s = compile_slot (derecurs (penv env) p) in
865
866
867
  flush_defs ();
  try pat_node s
  with Patterns.Error e -> raise_loc_generic p.loc e
868
    | Location (loc,_,exn) when loc = noloc -> raise (Location (p.loc, `Full, exn))
869
870


871
872
(* II. Build skeleton *)

873

874
type type_fun = Types.t -> bool -> Types.t
875

876
module Fv = IdSet
877

878
879
880
type branch = Branch of Typed.branch * branch list

let cur_branch : branch list ref = ref []
881

882
let exp loc fv e =
883
884
  fv,
  { Typed.exp_loc = loc;
885
    Typed.exp_typ = Types.empty;
886
    Typed.exp_descr = e;
887
  }
888

889
let ops = Hashtbl.create 13
890
891
let register_op op arity f = Hashtbl.add ops op (arity,f)
let typ_op op = snd (Hashtbl.find ops op)
892

893
894
895
896
897
let is_op env s = 
  if (Env.mem (ident s) env.ids) then None
  else 
    try let s = U.get_str s in Some (s, fst (Hashtbl.find ops s))
    with Not_found -> None
898

899
900
let rec expr env loc = function
  | LocatedExpr (loc,e) -> expr env loc e
901
  | Forget (e,t) ->
902
      let (fv,e) = expr env loc e and t = typ env t in
903
      exp loc fv (Typed.Forget (e,t))
904
  | Var s -> var env loc s
905
  | Apply (e1,e2) -> 
906
907
908
909
910
911
912
913
      let (fv1,e1) = expr env loc e1 and (fv2,e2) = expr env loc e2 in
      let fv = Fv.cup fv1 fv2 in
      (match e1.Typed.exp_descr with
	 | Typed.Op (op,arity,args) when arity > 0 -> 
	     exp loc fv (Typed.Op (op,arity - 1,args @ [e2]))
	 | _ ->
	     exp loc fv (Typed.Apply (e1,e2)))
  | Abstraction a -> abstraction env loc a
914
  | (Integer _ | Char _ | Atom _ | Const _) as c -> 
915
      exp loc Fv.empty (Typed.Cst (const env loc c))
916
  | Pair (e1,e2) ->
917
      let (fv1,e1) = expr env loc e1 and (fv2,e2) = expr env loc e2 in
918
919
      exp loc (Fv.cup fv1 fv2) (Typed.Pair (e1,e2))
  | Xml (e1,e2) ->
920
      let (fv1,e1) = expr env loc e1 and (fv2,e2) = expr env loc e2 in
921
922
      exp loc (Fv.cup fv1 fv2) (Typed.Xml (e1,e2))
  | Dot (e,l) ->
923
924
      let (fv,e) = expr env loc e in
      exp loc fv (Typed.Dot (e,parse_label env loc l))
925
  | RemoveField (e,l) ->
926
927
      let (fv,e) = expr env loc e in
      exp loc fv (Typed.RemoveField (e,parse_label env loc l))
928
929
  | RecordLitt r -> 
      let fv = ref Fv.empty in
930
      let r = parse_record env loc
931
		(fun e -> 
932
		   let (fv2,e) = expr env loc e 
933
934
935
		   in fv := Fv.cup !fv fv2; e)
		r in
      exp loc !fv (Typed.RecordLitt r)
936
  | String (i,j,s,e) ->
937
      let (fv,e) = expr env loc e in
938
      exp loc fv (Typed.String (i,j,s,e))
939
  | Match (e,b) -> 
940
941
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
942
      exp loc (Fv.cup fv1 fv2) (Typed.Match (e, b))
943
  | Map (e,b) ->
944
945
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
946
947
      exp loc (Fv.cup fv1 fv2) (Typed.Map (e, b))
  | Transform (e,b) ->
948
949
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
950
      exp loc (Fv.cup fv1 fv2) (Typed.Transform (e, b))
951
  | Xtrans (e,b) ->
952
953
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
954
      exp loc (Fv.cup fv1 fv2) (Typed.Xtrans (e, b))
955
  | Validate (e,kind,schema,elt) ->
956
      let (fv,e) = expr env loc e in
957
958
      let uri = find_schema schema env in
      exp loc fv (Typed.Validate (e, kind, uri, elt))
959
  | Try (e,b) ->
960
961
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
962
      exp loc (Fv.cup fv1 fv2) (Typed.Try (e, b))
963
  | NamespaceIn (pr,ns,e) ->
964
965
      let env = enter_ns pr ns env in
      expr env loc e
966
  | Ref (e,t) ->
967
      let (fv,e) = expr env loc e and t = typ env t in
968
      exp loc fv (Typed.Ref (e,t))
969
  | External (s,args) ->
970
      extern loc env s args
971
972
973
974
975
976
977
978
979
980
	
and extern loc env s args = 
  let args = List.map (typ env) args in
  try
    let (i,t) = Externals.resolve s args in
    exp loc Fv.empty (Typed.External (t,i))
  with exn -> raise_loc loc exn
    
and var env loc s =
  match is_op env s with
981
982
983
984
985
    | Some (s,arity) -> 
	let need_ns = s = "print_xml" || s = "print_xml_utf8" in
	let e = Typed.Op (s, arity, []) in
	let e = if need_ns then Typed.NsTable (env.ns,e) else e in
	exp loc Fv.empty e
986
987
988
989
990
991
992
993
994
995
    | None ->
	match Ns.split_qname s with
	  | "", id -> 
	      let s = U.get_str id in
	      if String.contains s '.' then
		extern loc env s []
	      else
		let id = ident id in
		(try ignore (find_value id env)
		 with Not_found -> raise_loc loc (UnboundId (id, Env.mem id env.ids)));
996
	  exp loc (Fv.singleton id) (Typed.Var id)
997
998
999
1000
	  | cu, id -> 
	      let cu = find_cu (U.mk cu) env in
	      let id = ident id in
	      let t =
For faster browsing, not all history is shown. View entire blame