typer.ml 44.2 KB
Newer Older
1
(* TODO:
2
 - rewrite type-checking of operators to propagate constraint
3
4
 - optimize computation of pattern free variables
 - check whether it is worth using recursive hash-consing internally
5
6
*)

7
8
9
open Location
open Ast
open Ident
10

11
let warning loc msg =
12
  Format.fprintf !Location.warning_ppf "Warning %a:@\n%a%s@." 
13
14
    Location.print_loc (loc,`Full)
    Location.html_hilight (loc,`Full)
15
16
    msg

17
18
type item =
  | Type of Types.t
19
  | Val of Types.t
20

21
type t = {
22
  ids : item Env.t;
23
24
  ns: Ns.table;
  cu: Types.CompUnit.t Env.t;
25
}
26

27
28
29
30
31
let hash _ = failwith "Typer.hash"
let compare _ _ = failwith "Typer.compare"
let dump ppf _ = failwith "Typer.dump"
let equal _ _ = failwith "Typer.equal"
let check _ = failwith "Typer.check"
32
33

(* TODO: filter out builtin defs ? *)
34
35
36
37
let serialize_item s = function
  | Type t -> Serialize.Put.bits 1 s 0; Types.serialize s t
  | Val t -> Serialize.Put.bits 1 s 1; Types.serialize s t

38
let serialize s env =
39
  Serialize.Put.env Id.serialize serialize_item Env.iter s env.ids;
40
  Ns.serialize_table s env.ns
41

42
43
44
45
46
let deserialize_item s = match Serialize.Get.bits 1 s with
  | 0 -> Type (Types.deserialize s)
  | 1 -> Val (Types.deserialize s)
  | _ -> assert false

47
let deserialize s =
48
49
  let ids = 
    Serialize.Get.env Id.deserialize deserialize_item Env.add Env.empty s in
50
  let ns = Ns.deserialize_table s in
51
  { ids = ids; ns = ns; cu = Env.empty }
52
53


54
55
let empty_env = {
  ids = Env.empty;
56
57
  ns = Ns.empty_table;
  cu = Env.empty;
58
59
}

60
61
let from_comp_unit = ref (fun cu -> assert false)

62
63
64
65
66
67
68
69
let enter_type id t env =
  { env with ids = Env.add id (Type t) env.ids }
let enter_types l env =
  { env with ids = 
      List.fold_left (fun accu (id,t) -> Env.add id (Type t) accu) env.ids l }
let find_type id env =
  match Env.find id env.ids with
    | Type t -> t
70
    | Val _ -> raise Not_found
71

72
73
74
75
76
let find_type_global cu id env =
  let cu = Env.find cu env.cu in
  let env = !from_comp_unit cu in
  find_type id env

77
let enter_value id t env = 
78
  { env with ids = Env.add id (Val t) env.ids }
79
80
let enter_values l env =
  { env with ids = 
81
      List.fold_left (fun accu (id,t) -> Env.add id (Val t) accu) env.ids l }
82
83
let find_value id env =
  match Env.find id env.ids with
84
    | Val t -> t
85
    | _ -> raise Not_found
86
87
88
let find_value_global cu id env =
  let env = !from_comp_unit cu in
  find_value id env
89
	
90
91
92
93
94
95
let value_name_ok id env =
  try match Env.find id env.ids with
    | Val t -> true
    | _ -> false
  with Not_found -> true

96
97
98
99
let iter_values env f =
  Env.iter (fun x ->
	      function Val t -> f x t;
		| _ -> ()) env.ids
100

101
102
103
104

let enter_cu x cu env =
  { env with cu = Env.add (ident x) cu env.cu }

105
106
107
108
let find_cu x env =
  try Env.find x env.cu
  with Not_found -> failwith ("Unbound compunit prefix " ^ (Ident.to_string x))

109
(* Namespaces *)
110

111
let set_ns_table_for_printer env = 
112
  Ns.InternalPrinter.set_table env.ns
113

114
let get_ns_table tenv = tenv.ns
115

116
let enter_ns p ns env =
117
  { env with ns = Ns.add_prefix p ns env.ns }
118

119
120
121
122
123
let protect_error_ns loc f x =
  try f x
  with Ns.UnknownPrefix ns ->
    raise_loc_generic loc 
    ("Undefined namespace prefix " ^ (U.to_string ns))
124

125
let parse_atom env loc t =
126
  let (ns,l) = protect_error_ns loc (Ns.map_tag env.ns) t in
127
128
129
  Atoms.V.mk ns l
 
let parse_ns env loc ns =
130
  protect_error_ns loc (Ns.map_prefix env.ns) ns
131

132
let parse_label env loc t =
133
  let (ns,l) = protect_error_ns loc (Ns.map_attr env.ns) t in
134
  LabelPool.mk (ns,l)
135

136
137
138
139
140
141
142
143
144
145
146
147
148
let parse_record env loc f r =
  let r = List.map (fun (l,x) -> (parse_label env loc l, f x)) r in
  LabelMap.from_list (fun _ _ -> raise_loc_generic loc "Duplicated record field") r

let rec const env loc = function
  | LocatedExpr (loc,e) -> const env loc e
  | Pair (x,y) -> Types.Pair (const env loc x, const env loc y)
  | Xml (x,y) -> Types.Xml (const env loc x, const env loc y)
  | RecordLitt x -> Types.Record (parse_record env loc (const env loc) x)
  | String (i,j,s,c) -> Types.String (i,j,s,const env loc c)
  | Atom t -> Types.Atom (parse_atom env loc t)
  | Integer i -> Types.Integer i
  | Char c -> Types.Char c
149
  | Const c -> c
150
151
152
153
  | _ -> raise_loc_generic loc "This should be a scalar or structured constant"

(* I. Transform the abstract syntax of types and patterns into
      the internal form *)
154

155
exception NonExhaustive of Types.descr
156
exception Constraint of Types.descr * Types.descr
157
exception ShouldHave of Types.descr * string
158
exception ShouldHave2 of Types.descr * string * Types.descr
159
exception WrongLabel of Types.descr * label
160
exception UnboundId of id * bool
161
exception Error of string
162

163
164
let raise_loc loc exn = raise (Location (loc,`Full,exn))
let raise_loc_str loc ofs exn = raise (Location (loc,`Char ofs,exn))
165
let error loc msg = raise_loc loc (Error msg)
166

167
168
169
  (* Schema datastructures *)

module StringSet = Set.Make (String)
170
171
172

  (* just to remember imported schemas *)
let schemas = State.ref "Typer.schemas" StringSet.empty
173
174
175

let schema_types = State.ref "Typer.schema_types" (Hashtbl.create 51)
let schema_elements = State.ref "Typer.schema_elements" (Hashtbl.create 51)
176
let schema_attributes = State.ref "Typer.schema_attributes" (Hashtbl.create 51)
177

178
179
180
181
182
183
184
185
(* Eliminate Recursion, propagate Sequence Capture Variables *)

let rec seq_vars accu = function
  | Epsilon | Elem _ -> accu
  | Seq (r1,r2) | Alt (r1,r2) -> seq_vars (seq_vars accu r1) r2
  | Star r | WeakStar r -> seq_vars accu r
  | SeqCapture (v,r) -> seq_vars (IdSet.add v accu) r

186
187
188
189
190
191
192
193
194
195
196
197
198
199
(* We use two intermediate representation from AST types/patterns
   to internal ones:

      AST -(1)-> derecurs -(2)-> slot -(3)-> internal

   (1) eliminate recursion, schema, 
       propagate sequence capture variables, keep regexps

   (2) stratify, detect ill-formed recursion, compile regexps

   (3) check additional constraints on types / patterns;
       deep (recursive) hash-consing
*)     

200
201
202
203
type derecurs_slot = {
  ploc : Location.loc;
  pid  : int;
  mutable ploop : bool;
204
  mutable pdescr : derecurs;
205
} and derecurs =
206
  | PDummy
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
  | PAlias of derecurs_slot
  | PType of Types.descr
  | POr of derecurs * derecurs
  | PAnd of derecurs * derecurs
  | PDiff of derecurs * derecurs
  | PTimes of derecurs * derecurs
  | PXml of derecurs * derecurs
  | PArrow of derecurs * derecurs
  | POptional of derecurs
  | PRecord of bool * derecurs label_map
  | PCapture of id
  | PConstant of id * Types.const
  | PRegexp of derecurs_regexp * derecurs
and derecurs_regexp =
  | PEpsilon
  | PElem of derecurs
  | PSeq of derecurs_regexp * derecurs_regexp
  | PAlt of derecurs_regexp * derecurs_regexp
  | PStar of derecurs_regexp
  | PWeakStar of derecurs_regexp

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

type descr = 
  | IDummy
  | IType of Types.descr
  | IOr of descr * descr
  | IAnd of descr * descr
  | IDiff of descr * descr
  | ITimes of slot * slot
  | IXml of slot * slot
  | IArrow of slot * slot
  | IOptional of descr
  | IRecord of bool * slot label_map
  | ICapture of id
  | IConstant of id * Types.const
and slot = {
  mutable fv : fv option;
  mutable hash : int option;
  mutable rank1: int; mutable rank2: int;
  mutable gen1 : int; mutable gen2: int;
  mutable d    : descr;
248
}
249
250
251
252
253
254
255
256
257
258
259
260
261
    

let counter = ref 0
let mk_derecurs_slot loc = 
  incr counter; 
  { ploop = false; ploc = loc; pid = !counter; pdescr = PDummy }
	  
let mk_slot () = 
  { d=IDummy; fv=None; hash=None; rank1=0; rank2=0; gen1=0; gen2=0 } 


(* This environment is used in phase (1) to eliminate recursion *)
type penv = {
262
  penv_tenv : t;
263
264
265
266
  penv_derec : derecurs_slot Env.t;
}

let penv tenv = { penv_tenv = tenv; penv_derec = Env.empty }
267

268
let rec hash_derecurs = function
269
  | PDummy -> assert false
270
271
272
  | PAlias s -> 
      s.pid
  | PType t -> 
273
      1 + 17 * (Types.hash t)
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
  | POr (p1,p2) -> 
      2 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PAnd (p1,p2) -> 
      3 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PDiff (p1,p2) -> 
      4 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PTimes (p1,p2) -> 
      5 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PXml (p1,p2) -> 
      6 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PArrow (p1,p2) -> 
      7 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | POptional p -> 
      8 + 17 * (hash_derecurs p)
  | PRecord (o,r) -> 
      (if o then 9 else 10) + 17 * (LabelMap.hash hash_derecurs r)
  | PCapture x -> 
      11 + 17 * (Id.hash x)
  | PConstant (x,c) -> 
293
      12 + 17 * (Id.hash x) + 257 * (Types.Const.hash c)
294
295
  | PRegexp (p,q) -> 
      13 + 17 * (hash_derecurs_regexp p) + 257 * (hash_derecurs q)
296
and hash_derecurs_regexp = function
297
298
299
300
301
302
303
304
305
306
307
308
  | PEpsilon -> 
      1
  | PElem p -> 
      2 + 17 * (hash_derecurs p)
  | PSeq (p1,p2) -> 
      3 + 17 * (hash_derecurs_regexp p1) + 257 * (hash_derecurs_regexp p2)
  | PAlt (p1,p2) -> 
      4 + 17 * (hash_derecurs_regexp p1) + 257 * (hash_derecurs_regexp p2)
  | PStar p -> 
      5 + 17 * (hash_derecurs_regexp p)
  | PWeakStar p -> 
      6 + 17 * (hash_derecurs_regexp p)
309
310

let rec equal_derecurs p1 p2 = (p1 == p2) || match p1,p2 with
311
312
313
  | PAlias s1, PAlias s2 -> 
      s1 == s2
  | PType t1, PType t2 -> 
314
      Types.equal t1 t2
315
316
317
318
319
  | POr (p1,q1), POr (p2,q2)
  | PAnd (p1,q1), PAnd (p2,q2)
  | PDiff (p1,q1), PDiff (p2,q2)
  | PTimes (p1,q1), PTimes (p2,q2)
  | PXml (p1,q1), PXml (p2,q2)
320
321
322
323
324
325
326
327
328
  | PArrow (p1,q1), PArrow (p2,q2) -> 
      (equal_derecurs p1 p2) && (equal_derecurs q1 q2)
  | POptional p1, POptional p2 -> 
      equal_derecurs p1 p2
  | PRecord (o1,r1), PRecord (o2,r2) -> 
      (o1 == o2) && (LabelMap.equal equal_derecurs r1 r2)
  | PCapture x1, PCapture x2 -> 
      Id.equal x1 x2
  | PConstant (x1,c1), PConstant (x2,c2) -> 
329
      (Id.equal x1 x2) && (Types.Const.equal c1 c2)
330
331
  | PRegexp (p1,q1), PRegexp (p2,q2) -> 
      (equal_derecurs_regexp p1 p2) && (equal_derecurs q1 q2)
332
333
  | _ -> false
and equal_derecurs_regexp r1 r2 = match r1,r2 with
334
335
336
337
  | PEpsilon, PEpsilon -> 
      true
  | PElem p1, PElem p2 -> 
      equal_derecurs p1 p2
338
  | PSeq (p1,q1), PSeq (p2,q2) 
339
340
  | PAlt (p1,q1), PAlt (p2,q2) -> 
      (equal_derecurs_regexp p1 p2) && (equal_derecurs_regexp q1 q2)
341
  | PStar p1, PStar p2
342
343
  | PWeakStar p1, PWeakStar p2 -> 
      equal_derecurs_regexp p1 p2
344
  | _ -> false
345

346
347
348
349
350
351
352
353
354
355
356
module DerecursTable = Hashtbl.Make(
  struct 
    type t = derecurs 
    let hash = hash_derecurs
    let equal = equal_derecurs
  end
)

module RE = Hashtbl.Make(
  struct 
    type t = derecurs_regexp * derecurs 
357
358
359
360
    let hash (p,q) = 
      (hash_derecurs_regexp p) + 17 * (hash_derecurs q)
    let equal (p1,q1) (p2,q2) = 
      (equal_derecurs_regexp p1 p2) && (equal_derecurs q1 q2)
361
362
  end
)
363

364
365
366
367
let gen = ref 0
let rank = ref 0
	     
let rec hash_descr = function
368
  | IDummy -> assert false
369
  | IType x -> Types.hash x
370
371
372
373
374
375
376
377
378
  | IOr (d1,d2) -> 1 + 17 * (hash_descr d1) + 257 * (hash_descr d2)
  | IAnd (d1,d2) -> 2 + 17 * (hash_descr d1) + 257 * (hash_descr d2)
  | IDiff (d1,d2) -> 3 + 17 * (hash_descr d1) + 257 * (hash_descr d2)
  | IOptional d -> 4 + 17 * (hash_descr d)
  | ITimes (s1,s2) -> 5 + 17 * (hash_slot s1) + 257 * (hash_slot s2)
  | IXml (s1,s2) -> 6 + 17 * (hash_slot s1) + 257 * (hash_slot s2)
  | IArrow (s1,s2) -> 7 + 17 * (hash_slot s1) + 257 * (hash_slot s2)
  | IRecord (o,r) -> (if o then 8 else 9) + 17 * (LabelMap.hash hash_slot r)
  | ICapture x -> 10 + 17 * (Id.hash x)
379
  | IConstant (x,y) -> 11 + 17 * (Id.hash x) + 257 * (Types.Const.hash y)
380
381
382
383
384
and hash_slot s =
  if s.gen1 = !gen then 13 * s.rank1
  else (
    incr rank;
    s.rank1 <- !rank; s.gen1 <- !gen;
385
    hash_descr s.d
386
387
388
389
  )
    
let rec equal_descr d1 d2 = 
  match (d1,d2) with
390
  | IType x1, IType x2 -> Types.equal x1 x2
391
392
393
394
395
396
397
  | IOr (x1,y1), IOr (x2,y2) 
  | IAnd (x1,y1), IAnd (x2,y2) 
  | IDiff (x1,y1), IDiff (x2,y2) -> (equal_descr x1 x2) && (equal_descr y1 y2)
  | IOptional x1, IOptional x2 -> equal_descr x1 x2
  | ITimes (x1,y1), ITimes (x2,y2) 
  | IXml (x1,y1), IXml (x2,y2) 
  | IArrow (x1,y1), IArrow (x2,y2) -> (equal_slot x1 x2) && (equal_slot y1 y2)
398
399
  | IRecord (o1,r1), IRecord (o2,r2) -> 
      (o1 = o2) && (LabelMap.equal equal_slot r1 r2)
400
  | ICapture x1, ICapture x2 -> Id.equal x1 x2
401
  | IConstant (x1,y1), IConstant (x2,y2) -> 
402
      (Id.equal x1 x2) && (Types.Const.equal y1 y2)
403
404
405
406
407
408
409
410
  | _ -> false
and equal_slot s1 s2 =
  ((s1.gen1 = !gen) && (s2.gen2 = !gen) && (s1.rank1 = s2.rank2))
  ||
  ((s1.gen1 <> !gen) && (s2.gen2 <> !gen) && (
     incr rank;
     s1.rank1 <- !rank; s1.gen1 <- !gen;
     s2.rank2 <- !rank; s2.gen2 <- !gen;
411
     equal_descr s1.d s2.d
412
413
   ))
  
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
module SlotTable = Hashtbl.Make(
  struct
    type t = slot
	
    let hash s =
      match s.hash with
	| Some h -> h
	| None ->
	    incr gen; rank := 0; 
	    let h = hash_slot s in
	    s.hash <- Some h;
	    h
	      
    let equal s1 s2 = 
      (s1 == s2) || 
      (incr gen; rank := 0; 
       let e = equal_slot s1 s2 in
       (*     if e then Printf.eprintf "Recursive hash-consing: Equal\n";  *)
       e)
  end)


let rec derecurs env p = match p.descr with
  | PatVar v ->
438
439
440
441
442
443
444
445
446
447
448
449
450
      (match Ns.split_qname v with
	 | "", v ->
	     let v = ident v in
	     (try PAlias (Env.find v env.penv_derec)
	      with Not_found -> 
		try PType (find_type v env.penv_tenv)
		with Not_found -> PCapture v)
	 | cu, v -> 
	     try 
	       let cu = ident (U.mk cu) in
	       PType (find_type_global cu (ident v) env.penv_tenv)
	     with Not_found ->
	       failwith ("Unbound external type " ^ cu ^ ":" ^ (U.to_string v)))
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
  | SchemaVar (kind, schema, item) ->
      PType (derecurs_schema env kind schema item)
  | Recurs (p,b) -> derecurs (derecurs_def env b) p
  | Internal t -> PType t
  | NsT ns -> PType (Types.atom (Atoms.any_in_ns (parse_ns env.penv_tenv p.loc ns)))
  | Or (p1,p2) -> POr (derecurs env p1, derecurs env p2)
  | And (p1,p2) -> PAnd (derecurs env p1, derecurs env p2)
  | Diff (p1,p2) -> PDiff (derecurs env p1, derecurs env p2)
  | Prod (p1,p2) -> PTimes (derecurs env p1, derecurs env p2)
  | XmlT (p1,p2) -> PXml (derecurs env p1, derecurs env p2)
  | Arrow (p1,p2) -> PArrow (derecurs env p1, derecurs env p2)
  | Optional p -> POptional (derecurs env p)
  | Record (o,r) -> PRecord (o, parse_record env.penv_tenv p.loc (derecurs env) r)
  | Constant (x,c) -> PConstant (x,const env.penv_tenv p.loc c)
  | Cst c -> PType (Types.constant (const env.penv_tenv p.loc c))
  | Regexp (r,q) -> 
      let constant_nil t v = 
	PAnd (t, PConstant (v, Types.Atom Sequence.nil_atom)) in
      let vars = seq_vars IdSet.empty r in
      let q = IdSet.fold constant_nil (derecurs env q) vars in
      let r = derecurs_regexp (fun p -> p) env r in
      PRegexp (r, q)
and derecurs_regexp vars env = function
  | Epsilon -> 
      PEpsilon
  | Elem p -> 
      PElem (vars (derecurs env p))
  | Seq (p1,p2) -> 
      PSeq (derecurs_regexp vars env p1, derecurs_regexp vars env p2)
  | Alt (p1,p2) -> 
      PAlt (derecurs_regexp vars env p1, derecurs_regexp vars env p2)
  | Star p -> 
      PStar (derecurs_regexp vars env p)
  | WeakStar p -> 
      PWeakStar (derecurs_regexp vars env p)
  | SeqCapture (x,p) -> 
      derecurs_regexp (fun p -> PAnd (vars p, PCapture x)) env p


and derecurs_def env b =
  let b = List.map (fun (v,p) -> (v,p,mk_derecurs_slot p.loc)) b in
  let n = 
    List.fold_left (fun env (v,p,s) -> Env.add v s env) env.penv_derec b in
  let env = { env with penv_derec = n } in
  List.iter (fun (v,p,s) -> s.pdescr <- derecurs env p) b;
  env

and derecurs_schema env kind schema item =
  let elt () = fst (Hashtbl.find !schema_elements (schema, item)) in
  let typ () = Hashtbl.find !schema_types (schema, item) in
  let att () = Hashtbl.find !schema_attributes (schema, item) in
  let rec do_try n = function
    | [] -> 
	let s = Printf.sprintf 
		  "No %s named '%s' found in schema '%s'" n item schema in
	failwith s
    | f :: rem -> (try f () with Not_found -> do_try n rem)  in
  match kind with
    | `Element -> do_try "element" [ elt ]
    | `Type -> do_try "type" [ typ ]
    | `Attribute -> do_try "atttribute" [ att ]
    | `Any -> do_try "item" [ elt; typ; att ]

    
515
516
517
518
519
let rec fv_slot s =
  match s.fv with
    | Some x -> x
    | None ->
	if s.gen1 = !gen then IdSet.empty 
520
	else (s.gen1 <- !gen; fv_descr s.d)
521
and fv_descr = function
522
  | IDummy -> assert false
523
  | IType _ -> IdSet.empty
524
525
526
527
528
529
530
  | IOr (d1,d2)
  | IAnd (d1,d2)  
  | IDiff (d1,d2) -> IdSet.cup (fv_descr d1) (fv_descr d2)
  | IOptional d -> fv_descr d
  | ITimes (s1,s2)  
  | IXml (s1,s2)  
  | IArrow (s1,s2) -> IdSet.cup (fv_slot s1) (fv_slot s2)
531
532
  | IRecord (o,r) -> 
      List.fold_left IdSet.cup IdSet.empty (LabelMap.map_to_list fv_slot r)
533
  | ICapture x | IConstant (x,_) -> IdSet.singleton x
534

535
536
537
538
539
540
541
542
let compute_fv s =
  match s.fv with
    | Some x -> ()
    | None ->
	incr gen;
	let x = fv_slot s in
	s.fv <- Some x
	  
543
544
545
let check_no_capture loc s =
  match IdSet.pick s with
    | Some x ->  
546
	raise_loc_generic loc ("Capture variable not allowed: " ^ (Ident.to_string x))
547
    | None -> ()
548
    
549
550
551
let compile_slot_hash = DerecursTable.create 67
let compile_hash = DerecursTable.create 67

552
553
let todo_defs = ref []
let todo_fv = ref []
554
555
556
557
558
559
560
561

let rec compile p =
  try DerecursTable.find compile_hash p
  with Not_found ->
    let c = real_compile p in
    DerecursTable.replace compile_hash p c;
    c
and real_compile = function
562
  | PDummy -> assert false
563
564
565
566
  | PAlias v ->
      if v.ploop then
	raise_loc_generic v.ploc ("Unguarded recursion on type/pattern");
      v.ploop <- true;
567
      let r = compile v.pdescr in
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
      v.ploop <- false;
      r
  | PType t -> IType t
  | POr (t1,t2) -> IOr (compile t1, compile t2)
  | PAnd (t1,t2) -> IAnd (compile t1, compile t2)
  | PDiff (t1,t2) -> IDiff (compile t1, compile t2)
  | PTimes (t1,t2) -> ITimes (compile_slot t1, compile_slot t2)
  | PXml (t1,t2) -> IXml (compile_slot t1, compile_slot t2)
  | PArrow (t1,t2) -> IArrow (compile_slot t1, compile_slot t2)
  | POptional t -> IOptional (compile t)
  | PRecord (o,r) ->  IRecord (o, LabelMap.map compile_slot r)
  | PConstant (x,v) -> IConstant (x,v)
  | PCapture x -> ICapture x
  | PRegexp (r,q) -> compile_regexp r q
and compile_regexp r q =
  let memo = RE.create 17 in
584
585
586
  let add accu i = 
    match accu with None -> Some i | Some j -> Some (IOr (j,i)) in
  let get = function Some x -> x | None -> assert false in
587
  let rec queue accu = function
588
589
590
    | PRegexp (r,q) -> aux accu r q 
    | _ -> add accu (compile q)
  and aux accu r q =
591
592
593
594
    if RE.mem memo (r,q) then accu
    else (
      RE.add memo (r,q) ();
      match r with
595
	| PEpsilon -> queue accu q
596
597
598
599
600
601
602
603
604
605
606
	| PElem p ->
(* Be careful not to create pairs with same second component *)
	    let rec extract = function
	      | PConstant (x,v) -> `Const (x,v)
	      | POr (x,y) ->
		  (match extract x, extract y with
		    | `Pat x, `Pat y -> `Pat (POr (x,y))
		    | x, y -> `Or (x,y))
	      | p -> `Pat p
	    in
	    let rec mk accu = function
607
608
609
610
	      | `Const (x,v) -> 
		  (match queue None q with 
		    | Some q -> add accu (IAnd (IConstant (x,v), q))
		    | None -> accu)
611
	      | `Or (x,y) -> mk (mk accu x) y
612
613
	      | `Pat p -> 
		  add accu (ITimes (compile_slot p, compile_slot q))
614
615
	    in
	    mk accu (extract p)
616
617
618
619
620
621
	| PSeq (r1,r2) -> aux accu r1 (PRegexp (r2,q))
	| PAlt (r1,r2) -> aux (aux accu r1 q) r2 q
	| PStar r1 -> aux (aux accu r1 (PRegexp (r,q))) PEpsilon q
	| PWeakStar r1 -> aux (aux accu PEpsilon q) r1 (PRegexp (r,q))
    )
  in
622
  get (aux None r q)
623
624
and compile_slot p =
  try DerecursTable.find compile_slot_hash p
625
  with Not_found ->
626
627
628
    let s = mk_slot () in
    todo_defs := (s,p) :: !todo_defs;
    todo_fv := s :: !todo_fv;
629
    DerecursTable.add compile_slot_hash p s;
630
    s
631

632
      
633
let timer_fv = Stats.Timer.create "Typer.fv"
634
let rec flush_defs () = 
635
636
637
638
  match !todo_defs with
    | [] -> 
	Stats.Timer.start timer_fv;
	List.iter compute_fv !todo_fv;
639
640
	todo_fv := [];
	Stats.Timer.stop timer_fv ()
641
642
643
644
    | (s,p)::t -> 
	todo_defs := t; 
	s.d <- compile p; 
	flush_defs ()
645
646
647
648
649
650
651
652
653
654
655
656
657
658
	
let typ_nodes = SlotTable.create 67
let pat_nodes = SlotTable.create 67
		  
let rec typ = function
  | IType t -> t
  | IOr (s1,s2) -> Types.cup (typ s1) (typ s2)
  | IAnd (s1,s2) ->  Types.cap (typ s1) (typ s2)
  | IDiff (s1,s2) -> Types.diff (typ s1) (typ s2)
  | ITimes (s1,s2) -> Types.times (typ_node s1) (typ_node s2)
  | IXml (s1,s2) -> Types.xml (typ_node s1) (typ_node s2)
  | IArrow (s1,s2) -> Types.arrow (typ_node s1) (typ_node s2)
  | IOptional s -> Types.Record.or_absent (typ s)
  | IRecord (o,r) -> Types.record' (o, LabelMap.map typ_node r)
659
  | IDummy | ICapture _ | IConstant (_,_) -> assert false
660
      
661
and typ_node s : Types.Node.t =
662
663
664
665
  try SlotTable.find typ_nodes s
  with Not_found ->
    let x = Types.make () in
    SlotTable.add typ_nodes s x;
666
    Types.define x (typ s.d);
667
668
669
670
671
672
673
674
    x
      
let rec pat d : Patterns.descr =
  if IdSet.is_empty (fv_descr d)
  then Patterns.constr (typ d)
  else pat_aux d
    
and pat_aux = function
675
  | IDummy -> assert false
676
677
678
679
680
681
  | IOr (s1,s2) -> Patterns.cup (pat s1) (pat s2)
  | IAnd (s1,s2) -> Patterns.cap (pat s1) (pat s2)
  | IDiff (s1,s2) when IdSet.is_empty (fv_descr s2) ->
      let s2 = Types.neg (typ s2) in
      Patterns.cap (pat s1) (Patterns.constr s2)
  | IDiff _ ->
682
      raise (Patterns.Error "Differences are not allowed in patterns")
683
684
685
  | ITimes (s1,s2) -> Patterns.times (pat_node s1) (pat_node s2)
  | IXml (s1,s2) -> Patterns.xml (pat_node s1) (pat_node s2)
  | IOptional _ -> 
686
      raise (Patterns.Error "Optional fields are not allowed in record patterns")
687
688
689
690
691
692
693
694
695
696
697
698
699
700
  | IRecord (o,r) ->
      let pats = ref [] in
      let aux l s = 
	if IdSet.is_empty (fv_slot s) then typ_node s
	else
	  ( pats := Patterns.record l (pat_node s) :: !pats;
	    Types.any_node )
      in
      let constr = Types.record' (o,LabelMap.mapi aux r) in
      List.fold_left Patterns.cap (Patterns.constr constr) !pats
	(* TODO: can avoid constr when o=true, and all fields have fv *)
  | ICapture x -> Patterns.capture x
  | IConstant (x,c) -> Patterns.constant x c
  | IArrow _ ->
701
      raise (Patterns.Error "Arrows are not allowed in patterns")
702
703
704
705
706
707
  | IType _ -> assert false
      
and pat_node s : Patterns.node =
  try SlotTable.find pat_nodes s
  with Not_found ->
    let x = Patterns.make (fv_slot s) in
708
709
    try
      SlotTable.add pat_nodes s x;
710
      Patterns.define x (pat s.d);
711
712
713
      x
    with exn -> SlotTable.remove pat_nodes s; raise exn
      (* For the toplevel ... *)
714

715

716
let type_defs env b =
717
718
  List.iter 
    (fun (v,p) ->
719
720
       if Env.mem v env.ids
       then raise_loc_generic p.loc ("Identifier " ^ (Ident.to_string v) ^ " is already bound")
721
    ) b;
722
723
  let penv = derecurs_def (penv env) b in
  let b = List.map (fun (v,p) -> (v,p,compile (derecurs penv p))) b in
724
725
726
727
  flush_defs ();
  let b = 
    List.map 
      (fun (v,p,s) -> 
728
	 check_no_capture p.loc (fv_descr s);
729
730
731
	 let t = typ s in
	 if (p.loc <> noloc) && (Types.is_empty t) then
	   warning p.loc 
732
	     ("This definition yields an empty type for " ^ (Ident.to_string v));
733
	 (v,t)) b in
734
  List.iter (fun (v,t) -> Types.Print.register_global (Id.value v) t) b;
735
  b
736
737


738
739
740
741
742
let dump_types ppf env =
  Env.iter (fun v -> 
	      function 
		  (Type _) -> Format.fprintf ppf " %a" Ident.print v
		| _ -> ()) env.ids
743

744
let dump_ns ppf env =
745
  Ns.dump_table ppf env.ns
746

747

748
749
let do_typ loc r = 
  let s = compile_slot r in
750
  flush_defs ();
751
752
  check_no_capture loc (fv_slot s);
  typ_node s
753
   
754
755
let typ env p =
  do_typ p.loc (derecurs (penv env) p)
756
    
757
758
let pat env p = 
  let s = compile_slot (derecurs (penv env) p) in
759
760
761
  flush_defs ();
  try pat_node s
  with Patterns.Error e -> raise_loc_generic p.loc e
762
    | Location (loc,_,exn) when loc = noloc -> raise (Location (p.loc, `Full, exn))
763
764


765
766
(* II. Build skeleton *)

767

768
769
770
771
772
type type_fun = Types.t -> bool -> Types.t
let mk_unary_op = ref (fun _ _ -> assert false)
let typ_unary_op = ref (fun _ _ _ -> assert false)
let mk_binary_op = ref (fun _ _ -> assert false)
let typ_binary_op = ref (fun _ _ _ _ -> assert false)
773
774


775
module Fv = IdSet
776

777
778
779
type branch = Branch of Typed.branch * branch list

let cur_branch : branch list ref = ref []
780

781
let exp loc fv e =
782
783
  fv,
  { Typed.exp_loc = loc;
784
    Typed.exp_typ = Types.empty;
785
    Typed.exp_descr = e;
786
  }
787
788


789
790
let rec expr env loc = function
  | LocatedExpr (loc,e) -> expr env loc e
791
  | Forget (e,t) ->
792
      let (fv,e) = expr env loc e and t = typ env t in
793
794
      exp loc fv (Typed.Forget (e,t))
  | Var s -> 
795
796
797
798
      (match Ns.split_qname s with
	| "", id -> let id = ident id in
	  exp loc (Fv.singleton id) (Typed.Var id)
	| cu, id -> 
799
	    let cu = find_cu (ident (U.mk cu)) env in
800
	    exp loc Fv.empty (Typed.ExtVar (cu, ident id)))
801
  | Apply (e1,e2) -> 
802
      let (fv1,e1) = expr env loc e1 and (fv2,e2) = expr env loc e2 in
803
804
      exp loc (Fv.cup fv1 fv2) (Typed.Apply (e1,e2))
  | Abstraction a ->
805
      let iface = List.map (fun (t1,t2) -> (typ env t1, typ env t2)) 
806
807
808
809
810
811
812
		    a.fun_iface in
      let t = List.fold_left 
		(fun accu (t1,t2) -> Types.cap accu (Types.arrow t1 t2)) 
		Types.any iface in
      let iface = List.map 
		    (fun (t1,t2) -> (Types.descr t1, Types.descr t2)) 
		    iface in
813
      let (fv0,body) = branches env a.fun_body in
814
815
816
817
818
819
820
821
822
823
824
      let fv = match a.fun_name with
	| None -> fv0
	| Some f -> Fv.remove f fv0 in
      let e = Typed.Abstraction 
		{ Typed.fun_name = a.fun_name;
		  Typed.fun_iface = iface;
		  Typed.fun_body = body;
		  Typed.fun_typ = t;
		  Typed.fun_fv = fv
		} in
      exp loc fv e
825
  | (Integer _ | Char _ | Atom _ | Const _) as c -> 
826
      exp loc Fv.empty (Typed.Cst (const env loc c))
827
  | Pair (e1,e2) ->
828
      let (fv1,e1) = expr env loc e1 and (fv2,e2) = expr env loc e2 in
829
830
      exp loc (Fv.cup fv1 fv2) (Typed.Pair (e1,e2))
  | Xml (e1,e2) ->
831
      let (fv1,e1) = expr env loc e1 and (fv2,e2) = expr env loc e2 in
832
833
      exp loc (Fv.cup fv1 fv2) (Typed.Xml (e1,e2))
  | Dot (e,l) ->
834
835
      let (fv,e) = expr env loc e in
      exp loc fv (Typed.Dot (e,parse_label env loc l))
836
  | RemoveField (e,l) ->
837
838
      let (fv,e) = expr env loc e in
      exp loc fv (Typed.RemoveField (e,parse_label env loc l))
839
840
  | RecordLitt r -> 
      let fv = ref Fv.empty in
841
      let r = parse_record env loc
842
		(fun e -> 
843
		   let (fv2,e) = expr env loc e 
844
845
846
		   in fv := Fv.cup !fv fv2; e)
		r in
      exp loc !fv (Typed.RecordLitt r)
847
  | String (i,j,s,e) ->
848
      let (fv,e) = expr env loc e in
849
      exp loc fv (Typed.String (i,j,s,e))
850
  | Op (op,le) ->
851
      let (fvs,ltes) = List.split (List.map (expr env loc) le) in
852
      let fv = List.fold_left Fv.cup Fv.empty fvs in
853
      (try
854
855
856
	 (match ltes with
	    | [e] -> exp loc fv (Typed.UnaryOp (!mk_unary_op op env, e))
	    | [e1;e2] -> exp loc fv (Typed.BinaryOp (!mk_binary_op op env, e1,e2))
857
858
859
	    | _ -> assert false)
       with Not_found -> assert false)

860
  | Match (e,b) -> 
861
862
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
863
      exp loc (Fv.cup fv1 fv2) (Typed.Match (e, b))
864
  | Map (e,b) ->
865
866
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
867
868
      exp loc (Fv.cup fv1 fv2) (Typed.Map (e, b))
  | Transform (e,b) ->
869
870
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
871
      exp loc (Fv.cup fv1 fv2) (Typed.Transform (e, b))
872
  | Xtrans (e,b) ->
873
874
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
875
      exp loc (Fv.cup fv1 fv2) (Typed.Xtrans (e, b))
876
  | Validate (e,schema,elt) ->
877
      let (fv,e) = expr env loc e in
878
      exp loc fv (Typed.Validate (e, schema, elt))
879
  | Try (e,b) ->
880
881
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
882
      exp loc (Fv.cup fv1 fv2) (Typed.Try (e, b))
883
  | NamespaceIn (pr,ns,e) ->
884
885
      let env = enter_ns pr ns env in
      expr env loc e
886
  | Ref (e,t) ->
887
      let (fv,e) = expr env loc e and t = typ env t in
888
      exp loc fv (Typed.Ref (e,t))
889
	      
890
  and branches env b = 
891
    let fv = ref Fv.empty in
892
    let accept = ref Types.empty in
893
    let branch (p,e) = 
894
895
      let cur_br = !cur_branch in
      cur_branch := [];
896
      let (fv2,e) = expr env noloc e in
897
      let br_loc = merge_loc p.loc e.Typed.exp_loc in
898
      let p = pat env p in
899
900
901
902
903
904
      (match Fv.pick (Fv.diff (Patterns.fv p) fv2) with
	| None -> ()
	| Some x ->
	    let x = U.to_string (Id.value x) in
	    warning br_loc 
	      ("The capture variable " ^ x ^ 
905
	       " is declared in the pattern but not used in the body of this branch. It might be a misspelled type or name (if not use _ instead)."));
906
907
908
909
910
911
912
913
914
      let fv2 = Fv.diff fv2 (Patterns.fv p) in
      fv := Fv.cup !fv fv2;
      accept := Types.cup !accept (Types.descr (Patterns.accept p));
      let br = 
	{ 
	  Typed.br_loc = br_loc;
	  Typed.br_used = br_loc = noloc;
	  Typed.br_pat = p;
	  Typed.br_body = e } in
915
      cur_branch := Branch (br, !cur_branch) :: cur_br;
916
917
      br in
    let b = List.map branch b in
918
919
920
921
    (!fv, 
     { 
       Typed.br_typ = Types.empty; 
       Typed.br_branches = b; 
922
923
       Typed.br_accept = !accept;
       Typed.br_compiled = None;
924
925
     } 
    )
926

927
let expr env e = snd (expr env noloc e)
928

929
930
let let_decl env p e =
  { Typed.let_pat = pat env p;
931
    Typed.let_body = expr env e;
932
933
    Typed.let_compiled = None }

934
935
936

(* Hide global "typing/parsing" environment *)

937

938
939
(* III. Type-checks *)

940
941
open Typed

942
943
let require loc t s = 
  if not (Types.subtype t s) then raise_loc loc (Constraint (t, s))
944

945
let verify loc t s = 
946
947
  require loc t s; t

948
949
950
951
952
let check_str loc ofs t s = 
  if not (Types.subtype t s) then raise_loc_str loc ofs (Constraint (t, s));
  t

let should_have loc constr s = 
953
954
  raise_loc loc (ShouldHave (constr,s))

955
956
957
let should_have_str loc ofs constr s = 
  raise_loc_str loc ofs (ShouldHave (constr,s))

958
959
960
961
962
963
964
965
966
967
968
let flatten loc arg constr precise =
  let constr' = Sequence.star 
		  (Sequence.approx (Types.cap Sequence.any constr)) in
  let sconstr' = Sequence.star constr' in
  let exact = Types.subtype constr' constr in
  if exact then
    let t = arg sconstr' precise in
    if precise then Sequence.flatten t else constr
  else
    let t = arg sconstr' true in
    Sequence.flatten t
969

970
971
let rec type_check env e constr precise = 
  let d = type_check' e.exp_loc env e.exp_descr constr precise in
972
  let d = if precise then d else constr in
973
974
975
  e.exp_typ <- Types.cup e.exp_typ d;
  d

976
and type_check' loc env e constr precise = match e with
977
978
979
  | Forget (e,t) ->
      let t = Types.descr t in
      ignore (type_check env e t false);
980
      verify loc t constr
981

982
  | Abstraction a ->
983
984
985
      let t =
	try Types.Arrow.check_strenghten a.fun_typ constr 
	with Not_found -> 
986
987
	  should_have loc constr
	    "but the interface of the abstraction is not compatible"
988
      in
989