patterns.ml 75 KB
Newer Older
1
exception Error of string
2
open Ident
3

4
5
6
7
8
let print_lab ppf l = 
  if (l == LabelPool.dummy_max) 
  then Format.fprintf ppf "<dummy_max>"
  else Label.print ppf (LabelPool.value l)

9
10
11
(*
To be sure not to use generic comparison ...
*)
12
13
14
15
16
17
let (=) : int -> int -> bool = (==)
let (<) : int -> int -> bool = (<)
let (<=) : int -> int -> bool = (<=)
let (<>) : int -> int -> bool = (<>)
let compare = 1

18

19
(* Syntactic algebra *)
20
(* Constraint: any node except Constr has fv<>[] ... *)
21
type d =
22
  | Constr of Types.t
23
  | Cup of descr * descr
24
  | Cap of descr * descr
25
  | Times of node * node
26
  | Xml of node * node
27
  | Record of label * node
28
29
  | Capture of id
  | Constant of id * Types.const
30
  | Dummy
31
32
and node = {
  id : int;
33
  mutable descr : descr;
34
  accept : Types.Node.t;
35
  fv : fv
36
37
38
} and descr = Types.t * fv * d


39

40
let id x = x.id
41
let descr x = x.descr
42
43
let fv x = x.fv
let accept x = Types.internalize x.accept
44
45
46

let printed = ref []
let to_print = ref []
47
let rec print ppf (a,_,d) = 
48
  match d with
49
    | Constr t -> Types.Print.print ppf t
50
51
52
53
54
55
56
57
58
    | Cup (p1,p2) -> Format.fprintf ppf "(%a | %a)" print p1 print p2
    | Cap (p1,p2) -> Format.fprintf ppf "(%a & %a)" print p1 print p2
    | Times (n1,n2) -> 
	Format.fprintf ppf "(P%i,P%i)" n1.id n2.id;
	to_print := n1 :: n2 :: !to_print
    | Xml (n1,n2) -> 
	Format.fprintf ppf "XML(P%i,P%i)" n1.id n2.id;
	to_print := n1 :: n2 :: !to_print
    | Record (l,n) -> 
59
	Format.fprintf ppf "{ %a =  P%i }" Label.print (LabelPool.value l) n.id;
60
61
	to_print := n :: !to_print
    | Capture x ->
62
	Format.fprintf ppf "%a" U.print (Id.value x)
63
    | Constant (x,c) ->
64
	Format.fprintf ppf "(%a := %a)" U.print (Id.value x) 
65
	  Types.Print.print_const c
66
67
    | Dummy ->
	Format.fprintf ppf "*DUMMY*"
68

69
let dump_print ppf =
70
  while !to_print != [] do
71
72
73
74
75
76
77
78
79
80
81
    let p = List.hd !to_print in
    to_print := List.tl !to_print;
    if not (List.mem p.id !printed) then
      ( printed := p.id :: !printed;
	Format.fprintf ppf "P%i:=%a\n" p.id print (descr p)
      )
  done

let print ppf d =
  Format.fprintf ppf "%a@\n" print d;
  dump_print ppf
82

83
84
85
86
87
let print_node ppf n =
  Format.fprintf ppf "P%i" n.id;
  to_print := n :: !to_print;
  dump_print ppf

88

89
90
let counter = State.ref "Patterns.counter" 0

91
let dummy = (Types.empty,IdSet.empty,Dummy)
92
93
let make fv =
  incr counter;
94
  { id = !counter; descr = dummy; accept = Types.make (); fv = fv }
95
96

let define x ((accept,fv,_) as d) =
97
  (* assert (x.fv = fv); *)
98
  Types.define x.accept accept;
99
  x.descr <- d
100

101
102
103
104
105
let cons fv d =
  let q = make fv in
  define q d;
  q

106
let constr x = (x,IdSet.empty,Constr x)
107
let cup ((acc1,fv1,_) as x1) ((acc2,fv2,_) as x2) = 
108
109
110
111
112
  if not (IdSet.equal fv1 fv2) then (
    let x = match IdSet.pick (IdSet.diff fv1 fv2) with
      | Some x -> x
      | None -> match IdSet.pick (IdSet.diff fv2 fv1) with Some x -> x 
	  | None -> assert false
113
114
115
    in
    raise 
      (Error 
116
	 ("The capture variable " ^ (U.to_string (Id.value x)) ^ 
117
118
	  " should appear on both side of this | pattern"))
  );
119
  (Types.cup acc1 acc2, IdSet.cup fv1 fv2, Cup (x1,x2))
120
let cap ((acc1,fv1,_) as x1) ((acc2,fv2,_) as x2) = 
121
122
123
  if not (IdSet.disjoint fv1 fv2) then (
    match IdSet.pick (IdSet.cap fv1 fv2) with
      | Some x -> 
124
125
	  raise 
	  (Error 
126
	     ("The capture variable " ^ (U.to_string (Id.value x)) ^ 
127
	      " cannot appear on both side of this & pattern"))
128
      | None -> assert false
129
  );
130
  (Types.cap acc1 acc2, IdSet.cup fv1 fv2, Cap (x1,x2))
131
let times x y =
132
  (Types.times x.accept y.accept, IdSet.cup x.fv y.fv, Times (x,y))
133
let xml x y =
134
  (Types.xml x.accept y.accept, IdSet.cup x.fv y.fv, Xml (x,y))
135
let record l x = 
136
  (Types.record l x.accept, x.fv, Record (l,x))
137
138
let capture x = (Types.any, IdSet.singleton x, Capture x)
let constant x c = (Types.any, IdSet.singleton x, Constant (x,c))
139

140

141
142
143
144
145
146
module Node = struct
  type t = node
  let compare n1 n2 = n1.id - n2.id
  let equal n1 n2 = n1.id == n2.id
  let hash n = n.id

147
  let check n = ()
148
  let dump = print_node
149

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

  module SMemo = Set.Make(Custom.Int)
  let memo = Serialize.Put.mk_property (fun t -> ref SMemo.empty)
  let rec serialize t n = 
    let l = Serialize.Put.get_property memo t in
    Serialize.Put.int t n.id;
    if not (SMemo.mem n.id !l) then (
      l := SMemo.add n.id !l;
      Types.Node.serialize t n.accept;
      IdSet.serialize t n.fv;
      serialize_descr t n.descr
    )
  and serialize_descr s (_,_,d) =
    serialize_d s d
  and serialize_d s = function
    | Constr t ->
	Serialize.Put.bits 3 s 0;
	Types.serialize s t
    | Cup (p1,p2) ->
	Serialize.Put.bits 3 s 1;
	serialize_descr s p1; 
	serialize_descr s p2
    | Cap (p1,p2) ->
	Serialize.Put.bits 3 s 2;
	serialize_descr s p1; 
	serialize_descr s p2
    | Times (p1,p2) ->
	Serialize.Put.bits 3 s 3;
	serialize s p1;
	serialize s p2
    | Xml (p1,p2) ->
	Serialize.Put.bits 3 s 4;
	serialize s p1;
	serialize s p2
    | Record (l,p) ->
	Serialize.Put.bits 3 s 5;
	LabelPool.serialize s l;
	serialize s p
    | Capture x ->
	Serialize.Put.bits 3 s 6;
	Id.serialize s x
    | Constant (x,c) ->
	Serialize.Put.bits 3 s 7;
	Id.serialize s x;
	Types.Const.serialize s c
    | Dummy -> assert false

  module DMemo = Map.Make(Custom.Int)
  let memo = Serialize.Get.mk_property (fun t -> ref DMemo.empty)
  let rec deserialize t = 
    let l = Serialize.Get.get_property memo t in
    let id = Serialize.Get.int t in
    try DMemo.find id !l
    with Not_found ->
      let accept = Types.Node.deserialize t in
      let fv = IdSet.deserialize t in
      incr counter;
207
      let n = { id = !counter; descr = dummy; accept = accept; fv = fv } in
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
      l := DMemo.add id n !l;
      n.descr <- deserialize_descr t;
      n
  and deserialize_descr s =
    match Serialize.Get.bits 3 s with
      | 0 -> constr (Types.deserialize s)
      | 1 ->
	  (* Avoid unnecessary tests *)
	  let (acc1,fv1,_) as x1 = deserialize_descr s in
	  let (acc2,fv2,_) as x2 = deserialize_descr s in
	  (Types.cup acc1 acc2, IdSet.cup fv1 fv2, Cup (x1,x2))
      | 2 ->
	  let (acc1,fv1,_) as x1 = deserialize_descr s in
	  let (acc2,fv2,_) as x2 = deserialize_descr s in
	  (Types.cap acc1 acc2, IdSet.cup fv1 fv2, Cap (x1,x2))
      | 3 ->
	  let x = deserialize s in
	  let y = deserialize s in
	  times x y
      | 4 ->
	  let x = deserialize s in
	  let y = deserialize s in
	  xml x y
      | 5 ->
	  let l = LabelPool.deserialize s in
	  let x = deserialize s in
	  record l x
      | 6 -> capture (Id.deserialize s)
      | 7 ->
	  let x = Id.deserialize s in
	  let c = Types.Const.deserialize s in
	  constant x c
      | _ -> assert false


end
244

245
246
(* Pretty-print *)

247
module Pat = struct
248
  type t = descr
249
  let rec compare (_,_,d1) (_,_,d2) = if d1 == d2 then 0 else
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
    match (d1,d2) with
      | Constr t1, Constr t2 -> Types.compare t1 t2
      | Constr _, _ -> -1 | _, Constr _ -> 1

      | Cup (x1,y1), Cup (x2,y2) | Cap (x1,y1), Cap (x2,y2) ->
	  let c = compare x1 x2 in if c <> 0 then c 
	  else compare y1 y2
      | Cup _, _ -> -1 | _, Cup _ -> 1
      | Cap _, _ -> -1 | _, Cap _ -> 1

      | Times (x1,y1), Times (x2,y2) | Xml (x1,y1), Xml (x2,y2) ->
	  let c = Node.compare x1 x2 in if c <> 0 then c
	  else Node.compare y1 y2
      | Times _, _ -> -1 | _, Times _ -> 1
      | Xml _, _ -> -1 | _, Xml _ -> 1

      | Record (x1,y1), Record (x2,y2) ->
	  let c = LabelPool.compare x1 x2 in if c <> 0 then c
	  else Node.compare y1 y2
      | Record _, _ -> -1 | _, Record _ -> 1

      | Capture x1, Capture x2 ->
	  Id.compare x1 x2
      | Capture _, _ -> -1 | _, Capture _ -> 1

      | Constant (x1,y1), Constant (x2,y2) ->
	  let c = Id.compare x1 x2 in if c <> 0 then c
	  else Types.Const.compare y1 y2
      | Constant _, _ -> -1 | _, Constant _ -> 1

      | Dummy, Dummy -> assert false
281
282
283
284
285
286
287
288
289
290
291
292
293

  let equal p1 p2 = compare p1 p2 == 0

  let rec hash (_,_,d) = match d with
    | Constr t -> 1 + 17 * (Types.hash t)
    | Cup (p1,p2) -> 2 + 17 * (hash p1) + 257 * (hash p2)
    | Cap (p1,p2) -> 3 + 17 * (hash p1) + 257 * (hash p2)
    | Times (q1,q2) -> 4 + 17 * q1.id + 257 * q2.id
    | Xml (q1,q2) -> 5 + 17 * q1.id + 257 * q2.id
    | Record (l,q) -> 6 + 17 * (LabelPool.hash l) + 257 * q.id
    | Capture x -> 7 + (Id.hash x)
    | Constant (x,c) -> 8 + 17 * (Id.hash x) + 257 * (Types.Const.hash c)
    | Dummy -> assert false
294
295
296
end

module Print = struct
297
298
  module M = Map.Make(Pat)
  module S = Set.Make(Pat)
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

  let names = ref M.empty
  let printed = ref S.empty
  let toprint = Queue.create ()
  let id = ref 0

  let rec mark seen ((_,_,d) as p) =
    if (M.mem p !names) then ()
    else if (S.mem p seen) then
      (incr id;
       names := M.add p !id !names;
       Queue.add p toprint)
    else 
      let seen = S.add p seen in
      match d with
	| Cup (p1,p2) | Cap (p1,p2) -> mark seen p1; mark seen p2
	| Times (q1,q2) | Xml (q1,q2) -> mark seen q1.descr; mark seen q2.descr
	| Record (_,q) -> mark seen q.descr
	| _ -> ()

  let rec print ppf p =
    try 
      let i = M.find p !names in
      Format.fprintf ppf "P%i" i
    with Not_found ->
      real_print ppf p
  and real_print ppf (_,_,d) =  match d with
    | Constr t ->
	Types.Print.print ppf t
    | Cup (p1,p2) ->
	Format.fprintf ppf "(%a | %a)" print p1 print p2
    | Cap (p1,p2) ->
	Format.fprintf ppf "(%a & %a)" print p1 print p2
    | Times (q1,q2) ->
	Format.fprintf ppf "(%a,%a)" print q1.descr print q2.descr
    | Xml (q1,{ descr = (_,_,Times(q2,q3)) }) ->
335
	Format.fprintf ppf "<(%a) (%a)>(%a)" print q1.descr print q2.descr print q3.descr
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
    | Xml _ -> assert false
    | Record (l,q) ->
	Format.fprintf ppf "{%a=%a}" Label.print (LabelPool.value l) print q.descr
    | Capture x ->
	Format.fprintf ppf "%a" Ident.print x
    | Constant (x,c) ->
	Format.fprintf ppf "(%a:=%a)" Ident.print x Types.Print.print_const c
    | Dummy -> assert false
      
  let print ppf p =
    mark S.empty p;
    print ppf p;
    let first = ref true in
    (try while true do
       let p = Queue.pop toprint in
       if not (S.mem p !printed) then 
	 ( printed := S.add p !printed;
	   Format.fprintf ppf " %s@ @[%a=%a@]"
	     (if !first then (first := false; "where") else "and")
	     print p
	     real_print p
	);
     done with Queue.Empty -> ());
    id := 0;
    names := M.empty;
    printed := S.empty
362
363
364
365
366
367
368
369
370
371
372


  let print_xs ppf xs =
    Format.fprintf ppf "{";
    let rec aux = function
      | [] -> ()
      | [x] -> Ident.print ppf x
      | x::q -> Ident.print ppf x; Format.fprintf ppf ","; aux q
    in
    aux xs;
    Format.fprintf ppf "}"
373
374
375
end


376
377
378
379

(* Static semantics *)

let cup_res v1 v2 = Types.Positive.cup [v1;v2]
380
let empty_res fv = IdMap.constant (Types.Positive.ty Types.empty) fv
381
382
let times_res v1 v2 = Types.Positive.times v1 v2

383
(* Try with a hash-table *)
384
module MemoFilter = Map.Make 
385
  (struct 
386
     type t = Types.t * node 
387
388
     let compare (t1,n1) (t2,n2) = 
       if n1.id < n2.id then -1 else if n1.id > n2.id then 1 else
389
       Types.compare t1 t2
390
   end)
391
392
393

let memo_filter = ref MemoFilter.empty

394
let rec filter_descr t (_,fv,d) : Types.Positive.v id_map =
395
(* TODO: avoid is_empty t when t is not changing (Cap) *)
396
397
398
399
  if Types.is_empty t 
  then empty_res fv
  else
    match d with
400
      | Constr _ -> IdMap.empty
401
      | Cup ((a,_,_) as d1,d2) ->
402
	  IdMap.merge cup_res
403
404
	    (filter_descr (Types.cap t a) d1)
	    (filter_descr (Types.diff t a) d2)
405
      | Cap (d1,d2) ->
406
	  IdMap.merge cup_res (filter_descr t d1) (filter_descr t d2)
407
408
      | Times (p1,p2) -> filter_prod fv p1 p2 t
      | Xml (p1,p2) -> filter_prod ~kind:`XML fv p1 p2 t
409
410
411
      | Record (l,p) ->
	  filter_node (Types.Record.project t l) p
      | Capture c ->
412
	  IdMap.singleton c (Types.Positive.ty t)
413
      | Constant (c, cst) ->
414
	  IdMap.singleton c (Types.Positive.ty (Types.constant cst))
415
      | Dummy -> assert false
416

417
418
419
420
and filter_prod ?kind fv p1 p2 t =
  List.fold_left 
    (fun accu (d1,d2) ->
       let term = 
421
	 IdMap.merge times_res (filter_node d1 p1) (filter_node d2 p2)
422
       in
423
       IdMap.merge cup_res accu term
424
425
426
427
428
    )
    (empty_res fv)
    (Types.Product.normal ?kind t)


429
and filter_node t p : Types.Positive.v id_map =
430
431
  try MemoFilter.find (t,p) !memo_filter
  with Not_found ->
432
    let (_,fv,_) as d = descr p in
433
    let res = IdMap.map_from_slist (fun _ -> Types.Positive.forward ()) fv in
434
435
    memo_filter := MemoFilter.add (t,p) res !memo_filter;
    let r = filter_descr t (descr p) in
436
    IdMap.collide Types.Positive.define res r;
437
438
439
440
441
    r

let filter t p =
  let r = filter_node t p in
  memo_filter :=  MemoFilter.empty;
442
  IdMap.get (IdMap.map Types.Positive.solve r)
443

444
445
446
447
448
let filter_descr t p =
  let r = filter_descr t p in
  memo_filter :=  MemoFilter.empty;
  IdMap.get (IdMap.map Types.Positive.solve r)

449

450
(* Normal forms for patterns and compilation *)
451

452
453
let min (a:int) (b:int) = if a < b then a else b

454
455
456
let any_basic = Types.Record.or_absent Types.non_constructed


457
module Normal = struct
458

459
  type source = 
460
461
    | SCatch | SConst of Types.const 
    | SLeft | SRight | SRecompose 
462
  type result = source id_map
463

464
465
466
467
468
469
470
  let compare_source s1 s2 =
    if s1 == s2 then 0 
    else match (s1,s2) with
      | SCatch, _ -> -1 | _, SCatch -> 1
      | SLeft, _ -> -1 | _, SLeft -> 1
      | SRight, _ -> -1 | _, SRight -> 1
      | SRecompose, _ -> -1 | _, SRecompose -> 1
471
      | SConst c1, SConst c2 -> Types.Const.compare c1 c2
472
473
474
475
476
477

  let hash_source = function
    | SCatch -> 1
    | SLeft -> 2
    | SRight -> 3
    | SRecompose -> 4
478
    | SConst c -> Types.Const.hash c
479
480
481
482
483
484
485
486
    
  let compare_result r1 r2 =
    IdMap.compare compare_source r1 r2

  let hash_result r =
    IdMap.hash hash_source r


487
488
489
490
491
  let print_result ppf r = Format.fprintf ppf "<result>"
  let print_result_option ppf = function
    | Some x -> Format.fprintf ppf "Some(%a)" print_result x
    | None -> Format.fprintf ppf "None"

492
  module NodeSet = SortedList.Make(Node)
493

494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
  module Nnf = struct
    type t = NodeSet.t * Types.t * IdSet.t (* pl,t;   t <= \accept{pl} *)
	
    let check (pl,t,xs) =
      List.iter (fun p -> assert(Types.subtype t (Types.descr p.accept)))
	(NodeSet.get pl)
    let print ppf (pl,t,xs) =
      Format.fprintf ppf "@[(pl=%a;t=%a)@]" NodeSet.dump pl Types.Print.print t
    let compare (l1,t1,xs1) (l2,t2,xs2) =
      let c = NodeSet.compare l1 l2 in if c <> 0 then c
      else let c = Types.compare t1 t2 in if c <> 0 then c
      else IdSet.compare xs1 xs2
    let hash (l,t,xs) = 
      (NodeSet.hash l) + 17 * (Types.hash t) + 257 * (IdSet.hash xs)
    let equal x y = compare x y == 0
  end
510

511
512
513
514
515
516
517
518
519
520
  module NBasic = struct
    include Custom.Dummy
    let serialize s _ = failwith "Patterns.NLineBasic.serialize"
    type t = result * Types.t
    let compare (r1,t1) (r2,t2) =
      let c = compare_result r1 r2 in if c <> 0 then c
      else Types.compare t1 t2
    let equal x y = compare x y == 0
    let hash (r,t) = hash_result r + 17 * Types.hash t
  end
521
522


523
524
  module NProd = struct
    type t = result * Nnf.t * Nnf.t
525

526
527
528
529
530
531
    let serialize s _ = failwith "Patterns.NLineProd.serialize"
    let deserialize s = failwith "Patterns.NLineProd.deserialize"
    let check x = ()
    let dump ppf (r,x,y) =
      Format.fprintf ppf "@[(result=%a;x=%a;y=%a)@]" 
	print_result r Nnf.print x Nnf.print y
532

533
534
535
536
537
538
539
    let compare (r1,x1,y1) (r2,x2,y2) =
      let c = compare_result r1 r2 in if c <> 0 then c
      else let c = Nnf.compare x1 x2 in if c <> 0 then c
      else Nnf.compare y1 y2
    let equal x y = compare x y == 0
    let hash (r,x,y) = hash_result r + 17 * (Nnf.hash x) + 267 * (Nnf.hash y)
  end
540

541
542
  module NLineBasic = SortedList.Make(NBasic)
  module NLineProd = SortedList.Make(NProd)
543

544
  type record =
545
    | RecNolabel of result option * result option
546
    | RecLabel of label * NLineProd.t
547
  type t = {
548
    nfv    : fv;
549
550
551
552
    na     : Types.t;
    nbasic : NLineBasic.t;
    nprod  : NLineProd.t;
    nxml   : NLineProd.t;
553
    nrecord: record
554
  }
555

556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
  let print_record ppf = function
    | RecLabel (lab,l) ->
	Format.fprintf ppf "RecLabel(@[%a@],@ @[%a@])"
	  Label.print (LabelPool.value lab)
	  NLineProd.dump l
    | RecNolabel (a,b) -> 
	Format.fprintf ppf "RecNolabel(@[%a@],@[%a@])" 
	  print_result_option a
	  print_result_option b
  let print ppf nf =
    Format.fprintf ppf "@[NF{na=%a;@[nrecord=@ @[%a@]@]}@]" 
      Types.Print.print nf.na
      print_record nf.nrecord
      

571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
  include Custom.Dummy
  let compare_record t1 t2 = match t1,t2 with
    | RecNolabel (s1,n1), RecNolabel (s2,n2) ->
	(match (s1,s2,n1,n2) with
	   | Some r1, Some r2, _, _ -> compare_result r1 r2
	   | None, Some _, _, _ -> -1
	   | Some _, None, _, _ -> 1
	   | None,None,Some r1, Some r2 -> compare_result r1 r2
	   | None,None,None, Some _ -> -1
	   | None,None, Some _, None -> 1
	   | None,None, None, None -> 0)
    | RecNolabel (_,_), _ -> -1
    | _, RecNolabel (_,_) -> 1
    | RecLabel (l1,p1), RecLabel (l2,p2) ->
	let c = LabelPool.compare l1 l2 in if c <> 0 then c
	else NLineProd.compare p1 p2
  let compare t1 t2 =
588
589
590
591
    if t1 == t2 then 0
    else
      (* TODO: reorder; remove comparison of nfv ? *)
      let c = IdSet.compare t1.nfv t2.nfv in if c <> 0 then c 
592
      else let c = Types.compare t1.na t2.na in if c <> 0 then c
593
594
595
      else let c = NLineBasic.compare t1.nbasic t2.nbasic in if c <> 0 then c
      else let c = NLineProd.compare t1.nprod t2.nprod in if c <> 0 then c
      else let c = NLineProd.compare t1.nxml t2.nxml in if c <> 0 then c
596
      else compare_record t1.nrecord t2.nrecord
597

598
  let fus = IdMap.union_disj
599

600
  let nempty lab = 
601
    { nfv = IdSet.empty; 
602
      na = Types.empty;
603
604
605
      nbasic = NLineBasic.empty; 
      nprod = NLineProd.empty; 
      nxml = NLineProd.empty;
606
      nrecord = (match lab with 
607
		   | Some l -> RecLabel (l,NLineProd.empty)
608
		   | None -> RecNolabel (None,None))
609
    }
610
  let dummy = nempty None
611
612
613
614
615
616
617


  let ncup nf1 nf2 = 
    (* assert (Types.is_empty (Types.cap nf1.na nf2.na)); *)
    (* assert (nf1.nfv = nf2.nfv); *)
    { nfv = nf1.nfv;
      na      = Types.cup nf1.na nf2.na;
618
619
620
      nbasic  = NLineBasic.cup nf1.nbasic nf2.nbasic;
      nprod   = NLineProd.cup nf1.nprod nf2.nprod;
      nxml    = NLineProd.cup nf1.nxml nf2.nxml;
621
      nrecord = (match (nf1.nrecord,nf2.nrecord) with
622
		   | RecLabel (l1,r1), RecLabel (l2,r2) -> 
623
		       (* assert (l1 = l2); *) RecLabel (l1, NLineProd.cup r1 r2)
624
		   | RecNolabel (x1,y1), RecNolabel (x2,y2) -> 
625
626
		       RecNolabel((if x1 == None then x2 else x1),
				(if y1 == None then y2 else y1))
627
		   | _ -> assert false)
628
629
630
    }

  let double_fold f l1 l2 =
631
632
633
634
635
636
    List.fold_left 
      (fun accu x1 -> List.fold_left (fun accu x2 -> f accu x1 x2) accu l2)
      [] l1

  let double_fold_prod f l1 l2 =
    double_fold f (NLineProd.get l1) (NLineProd.get l2)
637
638
	 
  let ncap nf1 nf2 =
639
    let prod accu (res1,(pl1,t1,xs1),(ql1,s1,ys1)) (res2,(pl2,t2,xs2),(ql2,s2,ys2)) =
640
641
642
643
      let t = Types.cap t1 t2 in
      if Types.is_empty t then accu else
	let s = Types.cap s1 s2  in
	if Types.is_empty s then accu else
644
645
646
	  (fus res1 res2, 
	   (NodeSet.cup pl1 pl2, t, IdSet.cup xs1 xs2),
	   (NodeSet.cup ql1 ql2, s, IdSet.cup ys1 ys2)) 
647
	  :: accu
648
649
650
651
652
653
    in
    let basic accu (res1,t1) (res2,t2) =
      let t = Types.cap t1 t2 in
      if Types.is_empty t then accu else
	(fus res1 res2, t) :: accu
    in
654
    let record r1 r2 = match r1,r2 with
655
      | RecLabel (l1,r1), RecLabel (l2,r2) ->
656
	  (* assert (l1 = l2); *)
657
	  RecLabel(l1, NLineProd.from_list (double_fold_prod prod r1 r2))
658
      | RecNolabel (x1,y1), RecNolabel (x2,y2) ->
659
660
661
662
663
664
	  let x = match x1,x2 with 
	    | Some res1, Some res2 -> Some (fus res1 res2) 
	    | _ -> None
	  and y = match y1,y2 with
	    | Some res1, Some res2 -> Some (fus res1 res2)
	    | _ -> None in
665
	  RecNolabel (x,y)
666
      | _ -> assert false
667
    in
668
    { nfv = IdSet.cup nf1.nfv nf2.nfv;
669
      na = Types.cap nf1.na nf2.na;
670
671
672
673
674
675
      nbasic = NLineBasic.from_list (double_fold basic 
				       (NLineBasic.get nf1.nbasic) 
				       (NLineBasic.get nf2.nbasic));
      nprod = NLineProd.from_list (double_fold_prod prod nf1.nprod nf2.nprod);
      nxml = NLineProd.from_list (double_fold_prod prod nf1.nxml nf2.nxml);
      nrecord = record nf1.nrecord nf2.nrecord;
676
677
    }

678
679
  let nnode p xs = NodeSet.singleton p, Types.descr p.accept, xs
  let nc t = NodeSet.empty, t, IdSet.empty
680
  let ncany = nc Types.any
681
  let ncany_abs = nc Types.Record.any_or_absent
682

683
  let empty_res = IdMap.empty
684

685
686
687
688
689
690
691
  let single_basic src t = NLineBasic.singleton (src, t)
  let single_prod src p q = NLineProd.singleton (src, p,q)

  let ntimes lab acc p q xs = 
    let xsp = IdSet.cap xs p.fv and xsq = IdSet.cap xs q.fv in
    let src_p = IdMap.constant SLeft xsp
    and src_q = IdMap.constant SRight xsq in
692
    let src = IdMap.merge_elem SRecompose src_p src_q in 
693
    { nempty lab with 
694
	nfv = xs;
695
	na = acc;
696
	nprod = single_prod src (nnode p xsp) (nnode q xsq)
697
698
    }

699
700
701
702
  let nxml lab acc p q xs = 
    let xsp = IdSet.cap xs p.fv and xsq = IdSet.cap xs q.fv in
    let src_p = IdMap.constant SLeft xsp
    and src_q = IdMap.constant SRight xsq in
703
    let src = IdMap.merge_elem SRecompose src_p src_q in 
704
    { nempty lab with 
705
	nfv = xs;
706
	na = acc;
707
	nxml =  single_prod src (nnode p xsp) (nnode q xsq)
708
709
    }
    
710
711
  let nrecord lab acc l p xs =
    assert (IdSet.equal xs (fv p));
712
713
714
715
    match lab with
      | None -> assert false
      | Some label ->
	  assert (label <= l);
716
717
718
719
720
721
722
723
724
725
	  let src,lft,rgt =
	    if l == label
	    then SLeft, nnode p xs, ncany
	    else SRight, ncany_abs, nnode (cons p.fv (record l p)) xs
	  in
	  let src = IdMap.constant src xs in
	  { nempty lab with
	      nfv = xs;
	      na = acc;
	      nrecord = RecLabel(label, single_prod src lft rgt) }
726
727

  let nconstr lab t =
728
729
    let aux l = NLineProd.from_list
		(List.map (fun (t1,t2) -> empty_res, nc t1,nc t2) l) in
730
731
732
733
    let record = match lab with
      | None ->
	  let (x,y) = Types.Record.empty_cases t in
	  RecNolabel ((if x then Some empty_res else None), 
734
		      (if y then Some empty_res else None))
735
736
      | Some l ->
	  RecLabel (l,aux (Types.Record.split_normal t l)) in
737
    { nempty lab with
738
	na = t;
739
	nbasic = single_basic empty_res (Types.cap t any_basic);
740
741
742
	nprod = aux (Types.Product.normal t);
	nxml  = aux (Types.Product.normal ~kind:`XML t);
	nrecord = record
743
744
    }

745
746
  let nany lab res =
    { nfv = IdMap.domain res;
747
      na = Types.any;
748
749
750
      nbasic = single_basic res any_basic;
      nprod  = single_prod res ncany ncany;
      nxml   = single_prod res ncany ncany;
751
      nrecord = match lab with
752
753
	| None -> RecNolabel (Some res, Some res)
	| Some lab -> RecLabel (lab, single_prod res ncany_abs ncany)
754
755
    }

756
757
758
759
760
761
762
763
764
765
766
  let nconstant lab x c = nany lab (IdMap.singleton x (SConst c))
  let ncapture lab x = nany lab (IdMap.singleton x SCatch)

  let rec nnormal lab ((acc,fv,d) as p) xs =
    let xs = IdSet.cap xs fv in
    if not (IdSet.equal xs fv) then
      (Format.fprintf Format.std_formatter
	 "ERR: p=%a  xs=%a  fv=%a@." Print.print p Print.print_xs xs Print.print_xs fv;
       exit 1);
    if Types.is_empty acc then nempty lab
    else if IdSet.is_empty xs then nconstr lab acc
767
    else match d with
768
769
      | Constr t -> assert false
      | Cap (p,q) -> ncap (nnormal lab p xs) (nnormal lab q xs)
770
      | Cup ((acc1,_,_) as p,q) -> 
771
772
773
774
775
	  ncup 
	    (nnormal lab p xs) 
	    (ncap (nnormal lab q xs) (nconstr lab (Types.neg acc1)))
      | Times (p,q) -> ntimes lab acc p q xs
      | Xml (p,q) -> nxml lab acc p q xs
776
777
      | Capture x -> ncapture lab x
      | Constant (x,c) -> nconstant lab x c
778
      | Record (l,p) -> nrecord lab acc l p xs
779
      | Dummy -> assert false
780
781
782
783
784
785

(*TODO: when an operand of Cap has its first_label > lab,
  directly shift it*)

  let rec first_label (acc,fv,d) =
    if Types.is_empty acc 
786
    then LabelPool.dummy_max
787
788
789
790
791
792
    else match d with
      | Constr t -> Types.Record.first_label t
      | Cap (p,q) -> min (first_label p) (first_label q)
      | Cup ((acc1,_,_) as p,q) -> min (first_label p) (first_label q)
	    (* should "first_label_type acc1" ? *)
      | Record (l,p) -> l
793
      | _ -> LabelPool.dummy_max
794

795
   
796
797
798
  let print_node_list ppf pl =
    List.iter (fun p -> Format.fprintf ppf "%a;" Node.dump p) pl

799
800
801
802
803
  let normal l t pl xs =
    List.fold_left 
      (fun a p -> ncap a (nnormal l (descr p) xs)) 
      (nconstr l t) 
      pl
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821

(*
  let normal l t pl =
    let nf = normal l t pl in
    (match l with Some l ->
      Format.fprintf Format.std_formatter
	"normal(l=%a;t=%a;pl=%a)=%a@." 
	Label.print (LabelPool.value l)
	Types.Print.print t
	print_node_list pl
	print nf
      | None -> Format.fprintf Format.std_formatter
	"normal(t=%a;pl=%a)=%a@." 
	Types.Print.print t
	print_node_list pl
	print nf);
    nf
*)
822
end
823
824


825
826
module Compile = 
struct
827
  type actions =
828
829
    | AIgnore of result
    | AKind of actions_kind
830
  and actions_kind = {
831
    basic: (Types.t * result) list;
832
833
    atoms: result Atoms.map;
    chars: result Chars.map;
834
    prod: result dispatch dispatch;
835
    xml: result dispatch dispatch;
836
837
838
    record: record option;
  }
  and record = 
839
    | RecLabel of label * result dispatch dispatch
840
    | RecNolabel of result option * result option
841
      
842
  and 'a dispatch =
843
844
845
846
    | Dispatch of dispatcher * 'a array
    | TailCall of dispatcher
    | Ignore of 'a
    | Impossible
847
848

  and result = int * source array
849
  and source = 
850
851
    | Catch | Const of Types.const 
    | Left of int | Right of int | Recompose of int * int
852
853
      
  and return_code = 
854
      Types.t * int *   (* accepted type, arity *)
855
      (int * int id_map) list
856
857

  and interface =
858
859
    [ `Result of int
    | `Switch of interface * interface
860
861
862
863
    | `None ]

  and dispatcher = {
    id : int;
864
    t  : Types.t;
865
    pl : Normal.t array;
866
    label : label option;
867
868
    interface : interface;
    codes : return_code array;
869
870
    mutable actions : actions option;
    mutable printed : bool
871
  }
872

873
874
875
876
877
878
879
  let equal_array f a1 a2 =
    let rec aux i = (i < 0) || ((f a1.(i) a2.(i)) && (aux (i - 1))) in
    let l1 = Array.length a1 and l2 = Array.length a2 in
    (l1 == l2) && (aux (l1 - 1))

  let equal_source s1 s2 =
    (s1 == s2) || match (s1,s2) with
880
      | Const x, Const y -> Types.Const.equal x y 
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
      | Left x, Left y -> x == y
      | Right x, Right y -> x == y
      | Recompose (x1,x2), Recompose (y1,y2) -> (x1 == y1) && (x2 == y2)
      | _ -> false

  let equal_result (r1,s1) (r2,s2) =
    (r1 == r2) && (equal_array equal_source s1 s2)

  let equal_result_dispatch d1 d2 =
    (d1 == d2) || match (d1,d2) with
      | Dispatch (d1,a1), Dispatch (d2,a2) -> (d1 == d2) && (equal_array equal_result a1 a2)
      | TailCall d1, TailCall d2 -> d1 == d2
      | Ignore a1, Ignore a2 -> equal_result a1 a2
      | _ -> false


897
898
  let array_for_all f a =
    let rec aux f a i =
899
      if i == Array.length a then true
900
901
902
903
904
905
      else f a.(i) && (aux f a (succ i))
    in
    aux f a 0

  let array_for_all_i f a =
    let rec aux f a i =
906
      if i == Array.length a then true
907
908
909
910
      else f i a.(i) && (aux f a (succ i))
    in
    aux f a 0

911
  let combine_kind basic prod xml record =
912
913
914
915
916
917
918
    try (
      let rs = [] in
      let rs = match basic with
	| [_,r] -> r :: rs
	| [] -> rs
	| _ -> raise Exit in
      let rs = match prod with
919
920
	| Impossible -> rs
	| Ignore (Ignore r) -> r :: rs
921
	| _ -> raise Exit in
922
      let rs = match xml with
923
924
	| Impossible -> rs
	| Ignore (Ignore r) -> r :: rs
925
	| _ -> raise Exit in
926
927
      let rs = match record with
	| None -> rs
928
929
	| Some (RecLabel (_,Ignore (Ignore r))) -> r :: rs
	| Some (RecNolabel (Some r1, Some r2)) -> r1 :: r2 :: rs
930
931
	| _ -> raise Exit in
      match rs with
932
	| ((_, ret) as r) :: rs when 
933
	    List.for_all ( equal_result r ) rs 
934
	    && array_for_all 
935
936
	      (function Catch | Const _ -> true | _ -> false) ret
	    -> AIgnore r
937
938
	| _ -> raise Exit
    )
939
940
941
942
    with Exit -> 
      AKind 
      { basic = basic;
	atoms = 
943
	  Atoms.mk_map (List.map (fun (t,r) -> Types.Atom.get t, r) basic);
944
	chars = 
945
	  Chars.mk_map (List.map (fun (t,r) -> Types.Char.get t, r) basic);
946
947
	prod = prod; 
	xml = xml; 
948
949
	record = record;
      }
950
      
951
952
  let combine f (disp,act) =
    if Array.length act == 0 then Impossible
953
    else
954
955
      if (array_for_all (fun (_,ar,_) -> ar == 0) disp.codes) 
	 && (array_for_all ( f act.(0) ) act) then
956
	   Ignore act.(0)
957
      else
958
	Dispatch (disp, act)
959
960
961


  let detect_right_tail_call = function
962
    | Dispatch (disp,branches) 
963
964
965
	when
	  array_for_all_i
	    (fun i (code,ret) ->
966
	       (i == code) && 
967
968
	       (array_for_all_i 
		  (fun pos -> 
969
		     function Right j when pos == j -> true | _ -> false)
970
971
972
		  ret
	       )
	    ) branches
973
	  -> TailCall disp
974
975
976
    | x -> x

  let detect_left_tail_call = function
977
    | Dispatch (disp,branches)
978
979
980
981
	when
	  array_for_all_i
	    (fun i -> 
	       function 
982
		 | Ignore (code,ret) ->
983
		     (i == code) &&
984
985
		     (array_for_all_i 
			(fun pos -> 
986
			   function Left j when pos == j -> true | _ -> false)
987
988
989
990
991
			ret
	       )
		 | _ -> false
	    ) branches
 	  ->
992
	 TailCall disp
993
994
    | x -> x
   
995
996
  let cur_id = State.ref "Patterns.cur_id" 0
		 (* TODO: save dispatchers ? *)
997
		 
998
999
1000
  module NfMap = Map.Make(Normal)

  module DispMap = Map.Make(Custom.Pair(Types)(Custom.Array(Normal)))
1001
1002

    (* Try with a hash-table ! *)
1003
    
1004
  let dispatchers = ref DispMap.empty
1005
1006
		
  let timer_disp = Stats.Timer.create "Patterns.dispatcher loop"
1007
1008
1009
1010
1011
1012

  let rec print_iface ppf = function
    | `Result i -> Format.fprintf ppf "Result(%i)" i
    | `Switch (yes,no) -> Format.fprintf ppf "Switch(%a,%a)"
	print_iface yes print_iface no
    | `None -> Format.fprintf ppf "None"
1013
      
1014
  let dispatcher t pl lab : dispatcher =
1015
1016
    try DispMap.find (t,pl) !dispatchers
    with Not_found ->
1017
1018
1019
1020
(*      let ppf = Format.std_formatter in
      Format.fprintf ppf "dispatcher %i:" !cur_id;
      Array.iter (fun x -> Format.fprintf ppf "%a;" Normal.print x) pl;
      Format.fprintf ppf "@."; *)
1021
      let nb = ref 0 in
1022
1023
      let codes = ref [] in
      let rec aux t arity i accu = 
1024
1025
	if i == Array.length pl 
	then (incr nb; codes := (t,arity,accu)::!codes; `Result (!nb - 1))
1026
	else