typer.ml 15.6 KB
Newer Older
1
2
(* I. Transform the abstract syntax of types and patterns into
      the internal form *)
3
4
5
6

open Location
open Ast

7
8
exception Pattern of string
exception NonExhaustive of Types.descr
9
exception MultipleLabel of Types.label
10
exception Constraint of Types.descr * Types.descr * string
11
exception ShouldHave of Types.descr * string
12
exception WrongLabel of Types.descr * Types.label
13
14

let raise_loc loc exn = raise (Location (loc,exn))
15
16
17
18

(* Internal representation as a graph (desugar recursive types and regexp),
   to compute freevars, etc... *)

19
type ti = {
20
21
22
23
24
25
26
27
  id : int; 
  mutable loc' : loc;
  mutable fv : string SortedList.t option; 
  mutable descr': descr;
  mutable type_node: Types.node option;
  mutable pat_node: Patterns.node option
} 
and descr =
28
   [ `Alias of string * ti
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
   | `Type of Types.descr
   | `Or of ti * ti
   | `And of ti * ti
   | `Diff of ti * ti
   | `Times of ti * ti
   | `Arrow of ti * ti
   | `Record of Types.label * bool * ti
   | `Capture of Patterns.capture
   | `Constant of Patterns.capture * Types.const
   ]
    


module S = struct type t = string let compare = compare end
module StringMap = Map.Make(S)
module StringSet = Set.Make(S)

let mk' =
  let counter = ref 0 in
48
  fun loc ->
49
    incr counter;
50
51
    let rec x = { 
      id = !counter; 
52
      loc' = loc; 
53
54
55
56
57
      fv = None; 
      descr' = `Alias ("__dummy__", x);  
      type_node = None; 
      pat_node = None 
    } in
58
59
60
    x

let cons loc d =
61
  let x = mk' loc in
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
  x.descr' <- d;
  x
    
(* Note:
   Compilation of Regexp is implemented as a ``rewriting'' of
   the parsed syntax, in order to be able to print its result
   (for debugging for instance)
   
   It would be possible (and a little more efficient) to produce
   directly ti nodes.
*)
    
module Regexp = struct
  let memo = Hashtbl.create 51
  let defs = ref []
  let name =
    let c = ref 0 in
    fun () ->
      incr c;
      "#" ^ (string_of_int !c)

  let rec seq_vars accu = function
    | Epsilon | Elem _ -> accu
    | Seq (r1,r2) | Alt (r1,r2) -> seq_vars (seq_vars accu r1) r2
    | Star r | WeakStar r -> seq_vars accu r
    | SeqCapture (v,r) -> seq_vars (StringSet.add v accu) r

  let rec propagate vars = function
    | Epsilon -> `Epsilon
    | Elem x -> `Elem (vars,x)
    | Seq (r1,r2) -> `Seq (propagate vars r1,propagate vars r2)
    | Alt (r1,r2) -> `Alt (propagate vars r1, propagate vars r2)
    | Star r -> `Star (propagate vars r)
    | WeakStar r -> `WeakStar (propagate vars r)
    | SeqCapture (v,x) -> propagate (StringSet.add v vars) x

  let cup r1 r2 = 
    match (r1,r2) with
      | (_, `Empty) -> r1
      | (`Empty, _) -> r2
      | (`Res t1, `Res t2) -> `Res (mk noloc (Or (t1,t2)))

  let rec compile fin e seq : [`Res of Ast.ppat | `Empty] = 
    if List.mem seq e then `Empty
    else 
      let e = seq :: e in
      match seq with
	| [] ->
	    `Res fin
	| `Epsilon :: rest -> 
	    compile fin e rest
	| `Elem (vars,x) :: rest -> 
	    let capt = StringSet.fold
			 (fun v t -> mk noloc (And (t, (mk noloc (Capture v)))))
			 vars x in
	    `Res (mk noloc (Prod (capt, guard_compile fin rest)))
	| `Seq (r1,r2) :: rest -> 
	    compile fin e (r1 :: r2 :: rest)
	| `Alt (r1,r2) :: rest -> 
	    cup (compile fin e (r1::rest)) (compile fin e (r2::rest))
	| `Star r :: rest -> cup (compile fin e (r::seq)) (compile fin e rest) 
	| `WeakStar r :: rest -> cup (compile fin e rest) (compile fin e (r::seq))

  and guard_compile fin seq =
    try Hashtbl.find memo seq 
    with
	Not_found ->
          let n = name () in
	  let v = mk noloc (PatVar n) in
          Hashtbl.add memo seq v;
	  let d = compile fin [] seq in
	  (match d with
	     | `Empty -> assert false
	     | `Res d -> defs := (n,d) :: !defs);
	  v


  let atom_nil = Types.mk_atom "nil"
  let constant_nil v t = 
    mk noloc (And (t, (mk noloc (Constant (v, Types.Atom atom_nil)))))

  let compile regexp queue : ppat =
    let vars = seq_vars StringSet.empty regexp in
    let fin = StringSet.fold constant_nil vars queue in
    let n = guard_compile fin [propagate StringSet.empty regexp] in
    Hashtbl.clear memo;
    let d = !defs in
    defs := [];
    mk noloc (Recurs (n,d))
end

let compile_regexp = Regexp.compile


let rec compile env { loc = loc; descr = d } : ti = 
  match (d : Ast.ppat') with
  | PatVar s -> 
      (try StringMap.find s env
160
161
       with Not_found -> 
	 raise_loc loc (Pattern ("Undefined type variable " ^ s))
162
      )
163
  | Recurs (t, b) -> compile (compile_many env b) t
164
165
166
167
168
169
170
171
172
173
174
  | Regexp (r,q) -> compile env (Regexp.compile r q)
  | Internal t -> cons loc (`Type t)
  | Or (t1,t2) -> cons loc (`Or (compile env t1, compile env t2))
  | And (t1,t2) -> cons loc (`And (compile env t1, compile env t2))
  | Diff (t1,t2) -> cons loc (`Diff (compile env t1, compile env t2))
  | Prod (t1,t2) -> cons loc (`Times (compile env t1, compile env t2))
  | Arrow (t1,t2) -> cons loc (`Arrow (compile env t1, compile env t2))
  | Record (l,o,t) -> cons loc (`Record (l,o,compile env t))
  | Constant (x,v) -> cons loc (`Constant (x,v))
  | Capture x -> cons loc (`Capture x)

175
176
177
178
179
180
181
182
and compile_many env b = 
  let b = List.map (fun (v,t) -> (v,t,mk' t.loc)) b in
  let env = 
    List.fold_left (fun env (v,t,x) -> StringMap.add v x env) env b in
  List.iter (fun (v,t,x) -> x.descr' <- `Alias (v, compile env t)) b;
  env


183
184
185
186
187
188
let rec comp_fv seen s =
  match s.fv with
    | Some l -> l
    | None ->
	let l = 
	  match s.descr' with
189
	    | `Alias (_,x) -> if List.memq s seen then [] else comp_fv (s :: seen) x
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
	    | `Or (s1,s2) 
	    | `And (s1,s2)
	    | `Diff (s1,s2)
	    | `Times (s1,s2)
	    | `Arrow (s1,s2) -> SortedList.cup (comp_fv seen s1) (comp_fv seen s2)
	    | `Record (l,opt,s) -> comp_fv seen s
	    | `Type _ -> []
	    | `Capture x
	    | `Constant (x,_) -> [x]
	in
	if seen = [] then s.fv <- Some l;
	l


let fv = comp_fv []

let rec typ seen s : Types.descr =
  match s.descr' with
208
209
210
211
212
    | `Alias (v,x) ->
	if List.memq s seen then 
	  raise_loc s.loc' 
	    (Pattern 
	       ("Unguarded recursion on variable " ^ v ^ " in this type"))
213
214
215
216
217
218
219
220
	else typ (s :: seen) x
    | `Type t -> t
    | `Or (s1,s2) -> Types.cup (typ seen s1) (typ seen s2)
    | `And (s1,s2) ->  Types.cap (typ seen s1) (typ seen s2)
    | `Diff (s1,s2) -> Types.diff (typ seen s1) (typ seen s2)
    | `Times (s1,s2) ->	Types.times (typ_node s1) (typ_node s2)
    | `Arrow (s1,s2) ->	Types.arrow (typ_node s1) (typ_node s2)
    | `Record (l,o,s) -> Types.record l o (typ_node s)
221
    | `Capture _ | `Constant _ -> assert false
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

and typ_node s : Types.node =
  match s.type_node with
    | Some x -> x
    | None ->
	let x = Types.make () in
	s.type_node <- Some x;
	let t = typ [] s in
	Types.define x t;
	x

let type_node s = Types.internalize (typ_node s)

let rec pat seen s : Patterns.descr =
  if fv s = [] then Patterns.constr (type_node s) else
  match s.descr' with
238
239
240
241
242
    | `Alias (v,x) ->
	if List.memq s seen then 
	  raise_loc s.loc' 
	    (Pattern 
	       ("Unguarded recursion on variable " ^ v ^ " in this pattern"))
243
244
245
246
247
248
	else pat (s :: seen) x
    | `Or (s1,s2) -> Patterns.cup (pat seen s1) (pat seen s2)
    | `And (s1,s2) -> Patterns.cap (pat seen s1) (pat seen s2)
    | `Diff (s1,s2) when fv s2 = [] ->
	let s2 = Types.cons (Types.neg (Types.descr (type_node s2)))in
	Patterns.cap (pat seen s1) (Patterns.constr s2)
249
250
    | `Diff _ ->
	raise_loc s.loc' (Pattern "Difference not allowed in patterns")
251
252
    | `Times (s1,s2) -> Patterns.times (pat_node s1) (pat_node s2)
    | `Record (l,false,s) -> Patterns.record l (pat_node s)
253
254
255
    | `Record _ ->
	raise_loc s.loc' 
	  (Pattern "Optional field not allowed in record patterns")
256
257
    | `Capture x ->  Patterns.capture x
    | `Constant (x,c) -> Patterns.constant x c
258
259
260
    | `Arrow _ ->
	raise_loc s.loc' (Pattern "Arrow not allowed in patterns")
    | `Type _ -> assert false
261
262
263
264
265
266
267
268
269
270
271

and pat_node s : Patterns.node =
  match s.pat_node with
    | Some x -> x
    | None ->
	let x = Patterns.make (fv s) in
	s.pat_node <- Some x;
	let t = pat [] s in
	Patterns.define x t;
	x

272
273
274
let global_types = ref StringMap.empty

let mk_typ e =
275
  if fv e = [] then type_node e 
276
277
278
279
280
  else raise_loc e.loc' (Pattern "Capture variables are not allowed in types")
    

let typ e =
  mk_typ (compile !global_types e)
281
282

let pat e =
283
  let e = compile !global_types e in
284
285
  pat_node e

286
287
let register_global_types b =
  let env = compile_many !global_types b in
288
289
290
291
  List.iter (fun (v,_) -> 
	       let d = Types.descr (mk_typ (StringMap.find v env)) in
	       Types.Print.register_global v d
	    ) b;
292
  global_types := env
293
294


295
296
(* II. Build skeleton *)

297
298
module Fv = StringSet

299
let rec expr { loc = loc; descr = d } = 
300
  let (fv,td) = 
301
    match d with
302
      | DebugTyper t -> (Fv.empty, Typed.DebugTyper (typ t))
303
304
305
306
      | Var s -> (Fv.singleton s, Typed.Var s)
      | Apply (e1,e2) -> 
	  let (fv1,e1) = expr e1 and (fv2,e2) = expr e2 in
	  (Fv.union fv1 fv2, Typed.Apply (e1,e2))
307
      | Abstraction a ->
308
309
310
311
	  let iface = List.map (fun (t1,t2) -> (typ t1, typ t2)) a.fun_iface in
	  let t = List.fold_left 
		    (fun accu (t1,t2) -> Types.cap accu (Types.arrow t1 t2)) 
		    Types.any iface in
312
313
314
	  let iface = List.map 
			(fun (t1,t2) -> (Types.descr t1, Types.descr t2)) 
			iface in
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
	  let (fv0,body) = branches a.fun_body in
	  let fv = match a.fun_name with
	    | None -> fv0
	    | Some f -> Fv.remove f fv0 in
	  (fv,
	   Typed.Abstraction 
	     { Typed.fun_name = a.fun_name;
	       Typed.fun_iface = iface;
	       Typed.fun_body = body;
	       Typed.fun_typ = t;
	       Typed.fun_fv = Fv.elements fv0
	     }
	  )
      | Cst c -> (Fv.empty, Typed.Cst c)
      | Pair (e1,e2) ->
	  let (fv1,e1) = expr e1 and (fv2,e2) = expr e2 in
	  (Fv.union fv1 fv2, Typed.Pair (e1,e2))
332
333
      | Dot (e,l) ->
	  let (fv,e) = expr e in
334
	  (fv,  Typed.Dot (e,l))
335
336
337
      | RecordLitt r -> 
	  (* XXX TODO: check that no label appears twice *)
	  let fv = ref Fv.empty in
338
	  let labs = ref [] in
339
340
341
	  let r = List.map 
		    (fun (l,e) -> 
		       let (fv2,e) = expr e in
342
343
344
		       if (List.mem l !labs) then 
			 raise_loc loc (MultipleLabel l);
		       labs := l :: !labs;
345
346
347
348
		       fv := Fv.union !fv fv2;
		       (l,e)
		    ) r in
	  (!fv, Typed.RecordLitt r)
349
350
351
352
      | Op (op,le) ->
	  let (fvs,ltes) = List.split (List.map expr le) in
	  let fv = List.fold_left Fv.union Fv.empty fvs in
	  (fv, Typed.Op (op,ltes))
353
354
355
356
357
358
359
360
      | Match (e,b) -> 
	  let (fv1,e) = expr e
	  and (fv2,b) = branches b in
	  (Fv.union fv1 fv2, Typed.Match (e, b))
      | Map (e,b) ->
	  let (fv1,e) = expr e
	  and (fv2,b) = branches b in
	  (Fv.union fv1 fv2, Typed.Map (e, b))
361
  in
362
363
  fv,
  { Typed.exp_loc = loc;
364
365
366
367
    Typed.exp_typ = Types.empty;
    Typed.exp_descr = td;
  }
	      
368
369
  and branches b = 
    let fv = ref Fv.empty in
370
    let accept = ref Types.empty in
371
372
373
374
    let b = List.map 
	      (fun (p,e) ->
		 let (fv2,e) = expr e in
		 fv := Fv.union !fv fv2;
375
376
		 let p = pat p in
		 accept := Types.cup !accept (Types.descr (Patterns.accept p));
377
		 { Typed.br_used = false;
378
		   Typed.br_pat = p;
379
380
		   Typed.br_body = e }
	      ) b in
381
382
383
384
385
386
387
    (!fv, 
     { 
       Typed.br_typ = Types.empty; 
       Typed.br_branches = b; 
       Typed.br_accept = !accept 
     } 
    )
388
389
390
391
392

module Env = StringMap

open Typed

393
394
395
396

let check loc t s msg =
  if not (Types.subtype t s) then raise_loc loc (Constraint (t, s, msg))

397
398
399
400
let rec type_check env e constr precise = 
 (* Format.fprintf Format.std_formatter "constr=%a precise=%b@\n"
    Types.Print.print_descr constr precise;  *)
  let d = type_check' e.exp_loc env e.exp_descr constr precise in
401
402
403
  e.exp_typ <- Types.cup e.exp_typ d;
  d

404
and type_check' loc env e constr precise = match e with
405
  | Abstraction a ->
406
407
408
409
410
411
412
      let t =
	try Types.Arrow.check_strenghten a.fun_typ constr 
	with Not_found -> 
	  raise_loc loc 
	  (ShouldHave
	     (constr, "but the interface of the abstraction is not compatible"))
      in
413
414
415
      let env = match a.fun_name with
	| None -> env
	| Some f -> Env.add f a.fun_typ env in
416
417
418
419
420
421
422
423
      List.iter 
	(fun (t1,t2) ->
	   ignore (type_check_branches loc env t1 a.fun_body t2 false)
	) a.fun_iface;
      t
  | Match (e,b) ->
      let t = type_check env e b.br_accept true in
      type_check_branches loc env t b constr precise
424
  | Pair (e1,e2) -> 
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
      let rects = Types.Product.get constr in
      if Types.Product.is_empty rects then 
	raise_loc loc (ShouldHave (constr,"but it is a pair."));
      let pi1 = Types.Product.pi1 rects in

      let t1 = type_check env e1 (Types.Product.pi1 rects) 
		 (precise || (Types.Product.need_second rects))in
      let rects = Types.Product.restrict_1 rects t1 in
      let t2 = type_check env e2 (Types.Product.pi2 rects) precise in
      if precise then 
	Types.times (Types.cons t1) (Types.cons t2)
      else
	constr
  | _ -> 
      let t : Types.descr = compute_type' loc env e in
      check loc t constr "";
      t

and compute_type env e =
  type_check env e Types.any true

and compute_type' loc env = function
  | DebugTyper t -> Types.descr t
  | Var s -> Env.find s env
  | Apply (e1,e2) ->
      let t1 = type_check env e1 Types.Arrow.any true in
      let t1 = Types.Arrow.get t1 in
      let dom = Types.Arrow.domain t1 in
      if Types.Arrow.need_arg t1 then
	let t2 = type_check env e2 dom true in
	Types.Arrow.apply t1 t2
      else
	(ignore (type_check env e2 dom false); Types.Arrow.apply_noarg t1)
  | Cst c -> Types.constant c
459
460
461
462
  | Dot (e,l) ->
      let t = type_check env e Types.Record.any true in
         (try (Types.Record.project t l) 
          with Not_found -> raise_loc loc (WrongLabel(t,l)))
463
464
465
466
467
468
469
  | RecordLitt r ->
      List.fold_left 
	(fun accu (l,e) ->
	   let t = compute_type env e in
	   let t = Types.record l false (Types.cons t) in
	   Types.cap accu t
	) Types.Record.any r
470
471
472
  | Op (op, el) ->
      let args = List.map (fun e -> (e.exp_loc, compute_type env e)) el in
      type_op loc op args
473
474
  | Map (e,b) ->
      let t = compute_type env e in
475
476
      Sequence.map (fun t -> type_check_branches loc env t b Types.any true) t
  | _ -> assert false
477

478
and type_check_branches loc env targ brs constr precise =
479
  if Types.is_empty targ then Types.empty 
480
481
  else (
    brs.br_typ <- Types.cup brs.br_typ targ;
482
483
484
    branches_aux loc env targ 
      (if precise then Types.empty else constr) 
      constr precise brs.br_branches
485
  )
486
    
487
and branches_aux loc env targ tres constr precise = function
488
  | [] -> raise_loc loc (NonExhaustive targ)
489
490
491
492
493
494
  | b :: rem ->
      let p = b.br_pat in
      let acc = Types.descr (Patterns.accept p) in

      let targ' = Types.cap targ acc in
      if Types.is_empty targ' 
495
      then branches_aux loc env targ tres constr precise rem
496
497
498
499
500
501
      else 
	( b.br_used <- true;
	  let res = Patterns.filter targ' p in
	  let env' = List.fold_left 
		       (fun env (x,t) -> Env.add x (Types.descr t) env) 
		       env res in
502
503
	  let t = type_check env' b.br_body constr precise in
	  let tres = if precise then Types.cup t tres else tres in
504
505
	  let targ'' = Types.diff targ acc in
	  if (Types.non_empty targ'') then 
506
	    branches_aux loc env targ'' tres constr precise rem 
507
508
	  else
	    tres
509
	)
510
511
512
513
514
515
516

and type_op loc op args =
  match (op,args) with
    | ("+", [loc1,t1; loc2,t2]) ->
	type_int_binop Intervals.add loc1 t1 loc2 t2
    | ("*", [loc1,t1; loc2,t2]) ->
	type_int_binop (fun i1 i2 -> Intervals.any) loc1 t1 loc2 t2
517
518
519
520
521
522
523
524
    | ("@", [loc1,t1; loc2,t2]) ->
	check loc1 t1 Sequence.any
	  "The first argument of @ must be a sequence";
	Sequence.concat t1 t2
    | ("flatten", [loc1,t1]) ->
	check loc1 t1 Sequence.seqseq 
	  "The argument of flatten must be a sequence of sequences";
	Sequence.flatten t1
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
    | _ -> assert false

and type_int_binop f loc1 t1 loc2 t2 =
  if not (Types.Int.is_int t1) then
    raise_loc loc1 
      (Constraint 
	 (t1,Types.Int.any,
	  "The first argument must be an integer"));
  if not (Types.Int.is_int t2) then
    raise_loc loc2
      (Constraint 
	       (t1,Types.Int.any,
		"The second argument must be an integer"));
  Types.Int.put
    (f (Types.Int.get t1) (Types.Int.get t2));