boolVar.ml 14.3 KB
Newer Older
1 2 3 4
let (<) : int -> int -> bool = (<)
let (>) : int -> int -> bool = (>)
let (=) : int -> int -> bool = (=)

5
(* this is the the of the Constructor container *)
6
module type E = sig
7 8 9 10 11 12 13 14 15 16 17 18
  type elem
  include Custom.T

  val empty : t
  val full  : t
  val cup   : t -> t -> t
  val cap   : t -> t -> t
  val diff  : t -> t -> t
  val atom  : elem -> t

end

19
module type S = sig
20
  type s
21
  type elem = s Var.pairvar
22 23 24 25 26
  type 'a bdd =
    [ `True
    | `False
    | `Split of int * 'a * ('a bdd) * ('a bdd) * ('a bdd) ]

27
  include Custom.T with type t = elem bdd
28

29
  (* returns the union of all leaves in the BDD *)
30
  val leafconj: t -> s
31

32
  val get: t -> (elem list * elem list) list
33 34 35

  val empty : t
  val full  : t
Pietro Abate's avatar
Pietro Abate committed
36 37 38
  (* same as full, but we keep it for the moment to avoid chaging 
   * the code everywhere *)
  val any  : t
39 40 41 42
  val cup   : t -> t -> t
  val cap   : t -> t -> t
  val diff  : t -> t -> t
  val atom  : elem -> t
43
  val neg_atom  : elem -> t
44

45 46
  val trivially_disjoint: t -> t -> bool

47
  (* vars a : return a bdd that is ( Any ^ Var a ) *)
48
  val vars  : Var.var -> t
49 50 51 52 53 54 55 56 57

  val iter: (elem-> unit) -> t -> unit

  val compute: empty:'b -> full:'b -> cup:('b -> 'b -> 'b) 
    -> cap:('b -> 'b -> 'b) -> diff:('b -> 'b -> 'b) ->
    atom:(elem -> 'b) -> t -> 'b

  val is_empty : t -> bool

58
  val pp_print : Format.formatter -> t -> unit
59

60
  val print : ?f:(Format.formatter -> elem -> unit) -> t -> (Format.formatter -> unit) list
61

62
(*
63
  val extractvars : t -> [> `Var of Var.t ] bdd * t 
64
*)
65 66
end

67 68 69 70
(*
module type MAKE = functor (T : E) -> S with type elem = T.t Custom.pairvar 
*)

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
(* ternary BDD
 * where the nodes are Atm of X.t | Var of String.t
 * Variables are always before Values
 * All the leaves are then base types 
 *
 * we add a third case when two leaves of the bdd are of the same
 * kind, that's it Val of t1 , Val of t2
 *
 * This representation can be used for all kinds.
 * Intervals, Atoms and Chars can be always merged (for union and intersection)
 * Products can be merged for intersections
 * Arrows can be never merged
 *
 * extract_var : copy the orginal tree and on one copy put to zero all 
 * leaves that have an Atm on the other all leaves that have a Var
 *
 * *)

89
module Make(T : E) : S with type s = T.t =
90 91 92
struct
  (* ternary decision trees . cf section 11.3.3 Frish PhD *)
  (* plus variables *)
93 94
  (* `Atm are containers (Atoms, Chars, Intervals, Pairs ... )
   * `Var are String
95
   *)
96
  type s = T.t
97 98
  module X = Var.Make(T)
  type elem = s Var.pairvar
99 100 101 102 103 104 105
  type 'a bdd =
    [ `True
    | `False
    | `Split of int * 'a * ('a bdd) * ('a bdd) * ('a bdd) ]
  type t = elem bdd

  let rec equal_aux eq a b =
106 107
    (a == b) ||
    match (a,b) with
108
      | `Split (h1,x1,p1,i1,n1), `Split (h2,x2,p2,i2,n2) ->
109
	  (h1 == h2) &&
110 111
	  (equal_aux eq p1 p2) && (equal_aux eq i1 i2) &&
	  (equal_aux eq n1 n2) && (eq x1 x2)
112 113
      | _ -> false

114 115
  let equal = equal_aux X.equal

116 117 118 119 120 121
(* Idea: add a mutable "unique" identifier and set it to
   the minimum of the two when egality ... *)

  let rec compare a b =
    if (a == b) then 0 
    else match (a,b) with
122
      | `Split (h1,x1, p1,i1,n1), `Split (h2,x2, p2,i2,n2) ->
123 124 125 126 127
	  if h1 < h2 then -1 else if h1 > h2 then 1 
	  else let c = X.compare x1 x2 in if c <> 0 then c
	  else let c = compare p1 p2 in if c <> 0 then c
	  else let c = compare i1 i2 in if c <> 0 then c 
	  else compare n1 n2
128 129 130 131
      | `True,_  -> -1
      | _, `True -> 1
      | `False,_ -> -1
      | _,`False -> 1
132 133

  let rec hash = function
134 135 136
    | `True -> 1
    | `False -> 0
    | `Split(h, _,_,_,_) -> h
137 138

  let compute_hash x p i n = 
139
	(X.hash x) + 17 * (hash p) + 257 * (hash i) + 16637 * (hash n)
140 141

  let rec check = function
142
    | `True -> ()
143 144
    | `False -> ()
    | `Split (h,x,p,i,n) ->
145
	assert (h = compute_hash x p i n);
146 147 148
	(match p with `Split (_,y,_,_,_) -> assert (X.compare x y < 0) | _ -> ());
	(match i with `Split (_,y,_,_,_) -> assert (X.compare x y < 0) | _ -> ());
	(match n with `Split (_,y,_,_,_) -> assert (X.compare x y < 0) | _ -> ());
149 150 151 152
	X.check x; check p; check i; check n

  let atom x =
    let h = X.hash x + 17 in (* partial evaluation of compute_hash... *)
153
    `Split (h, x,`True,`False,`False)
154 155 156
 
  let neg_atom x =
    let h = X.hash x + 16637 in (* partial evaluation of compute_hash... *)
157 158 159 160 161 162
    `Split (h, x,`False,`False,`True)

  let vars v =
    let a = atom (`Atm T.full) in 
    let h = compute_hash v a `False `False in 
    ( `Split (h,v,a,`False,`False) :> t )
163 164

  let rec iter f = function
165
    | `Split (_, x, p,i,n) -> f x; iter f p; iter f i; iter f n
166 167 168
    | _ -> ()

  let rec dump ppf = function
169 170 171 172 173
    | `True -> Format.fprintf ppf "+"
    | `False -> Format.fprintf ppf "-"
    | `Split (_,x, p,i,n) -> 
	Format.fprintf ppf "%a(@[%a,%a,%a@])" 
	X.dump x (*X.hash x*) dump p dump i dump n
174 175

  let rec print f ppf = function
176 177 178
    | `True -> Format.fprintf ppf "Any"
    | `False -> Format.fprintf ppf "Empty"
    | `Split (_, x, p,i, n) ->
179 180 181
	let flag = ref false in
	let b () = if !flag then Format.fprintf ppf " | " else flag := true in
	(match p with 
182 183
	   | `True -> b(); Format.fprintf ppf "%a" f x
	   | `False -> ()
184 185
	   | _ -> b (); Format.fprintf ppf "%a & @[(%a)@]" f x (print f) p );
	(match i with 
186 187
	   | `True -> assert false;
	   | `False -> ()
188 189
	   | _ -> b(); print f ppf i);
	(match n with 
190 191
	   | `True -> b (); Format.fprintf ppf "@[~%a@]" f x
	   | `False -> ()
192
	   | _ -> b (); Format.fprintf ppf "@[~%a@] & @[(%a)@]" f x (print f) n)
193 194 195

  let pp_print = print X.dump 

196 197 198 199
  let print ?(f=X.dump) = function
    | `True -> [] (* [] a bdd cannot be of this type *)
    | `False -> [ fun ppf -> Format.fprintf ppf "Empty" ]
    | c -> [ fun ppf -> print f ppf c ]
200

201 202 203 204
  (* return a list of pairs, where each pair holds the list
   * of positive and negative elements on a branch *)
  let get x =
    let rec aux accu pos neg = function
205
      | `True -> (List.rev pos, List.rev neg) :: accu
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
      | `False -> accu
      | `Split (_,x, p,i,n) ->
        (*OPT: can avoid creating this list cell when pos or neg =`False *)
        let accu = aux accu (x::pos) neg p in
        let accu = aux accu pos (x::neg) n in
        let accu = aux accu pos neg i in
        accu
    in aux [] [] [] x

  let leafconj x = 
    let rec aux accu = function
      | `True -> accu
      | `False -> accu
      | `Split (_,`Atm x, `True,`False,`False) -> x :: accu
      | `Split (_,`Atm x, _,_,_) -> assert false
      | `Split (_,`Var x, p,i,n) ->
        let accu = aux accu p in
        let accu = aux accu n in
        let accu = aux accu i in
        accu
    in
    List.fold_left T.cup T.empty (aux [] x)
228 229 230

  let compute ~empty ~full ~cup ~cap ~diff ~atom b =
    let rec aux = function
231 232 233
      | `True -> full
      | `False -> empty
      | `Split(_,x, p,i,n) ->
234 235 236 237 238 239 240 241 242 243
	  let p = cap (atom x) (aux p)
	  and i = aux i
	  and n = diff (aux n) (atom x) in
	  cup (cup p i) n
    in
    aux b
      
(* Invariant: correct hash value *)

  let split0 x pos ign neg =
244
    `Split (compute_hash x pos ign neg, x, pos, ign, neg)
245

246 247 248
  let empty = `False
  let full = split0 (`Atm T.full) `True `False `False
  let any = full
249 250 251 252

  let is_empty t = (t == empty)

(* Invariants:
253
     `Split (x, pos,ign,neg) ==>  (ign <> `True), (pos <> neg)
254 255 256 257
*)

  let rec has_true = function
    | [] -> false
258
    | `True :: _ -> true
259 260
    | _ :: l -> has_true l

261 262 263 264
  let rec has_same a = function
    | [] -> false
    | b :: l -> (equal a b) || (has_same a l)

265 266
  (* split removes redundant subtrees from the positive and negative
   * branch if they are present in the lazy union branch *)
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
  let rec split x p i n =
    if X.equal (`Atm T.empty) x then `False
    (* 0?p:i:n -> 0 *)
    else if i == `True then `True 
    (* x?p:1:n -> 1 *)
    else if equal p n then p ++ i
    else let p = simplify p [i] and n = simplify n [i] in
    (* x?p:i:n when p = n -> bdd of (p ++ i) *)
    if equal p n then p ++ i 
    else split0 x p i n

  (* simplify t l -> bdd of ( t // l ) *)
  and simplify a l =
    match a with
      | `False -> `False
      | `True -> if has_true l then `False else `True
      | `Split (_,`Atm x, `False,`False,`True) ->
          split (`Atm(T.diff T.full x)) `True `False `False
      | `Split (_,x,p,i,n) ->
        if (has_true l) || (has_same a l) then `False
        else s_aux2 a x p i n [] [] [] l
  and s_aux2 a x p i n ap ai an = function
    | [] -> 
      let p = simplify p ap 
      and n = simplify n an
      and i = simplify i ai in
      if equal p n then p ++ i else split0 x p i n
    | b :: l -> s_aux3 a x p i n ap ai an l b 
  and s_aux3 a x p i n ap ai an l = function
    | `False -> s_aux2 a x p i n ap ai an l
    | `True -> assert false
    | `Split (_,x2,p2,i2,n2) as b ->
      if equal a b then `False 
      else let c = X.compare x2 x in
      if c < 0 then s_aux3 a x p i n ap ai an l i2
      else if c > 0 then s_aux2 a x p i n (b :: ap) (b :: ai) (b :: an) l
      else s_aux2 a x p i n (p2 :: i2 :: ap) (i2 :: ai) (n2 :: i2 :: an) l

  (* Inv : all leafs are of type Atm and they are always merged *)
  (* union *)
  and ( ++ ) a b = if a == b then a
  else match (a,b) with
    | `True, _ | _, `True -> `True
    | `False, a | a, `False -> a
311

312 313
    | `Split (_,`Atm x1, `True,`False,`False), `Split (_,`Atm x2, `True,`False,`False) ->
        split (`Atm (T.cup x1 x2)) `True `False `False
314

315 316 317 318 319
    | `Split (_,`Atm x1, `False,`False,`True), `Split (_,`Atm x2, `False,`False,`True) ->
        assert false
        (*
        split (`Atm (T.cup (T.diff T.full x1) (T.diff T.full x2))) `True `False `False
        *)
320

321 322 323 324 325
    | `Split (_,`Atm x1, `True,`False,`False), `Split (_,`Atm x2, `False,`False,`True) ->
        assert false
        (*
        split (`Atm (T.cup x1 (T.diff T.full x2))) `True `False `False
        *)
326

327 328 329 330 331 332 333 334 335 336 337
    | `Split (_,`Atm x1, `False,`False,`True), `Split (_,`Atm x2, `True,`False,`False) ->
        assert false
        (*
        split (`Atm (T.cup (T.diff T.full x1) x2)) `True `False `False
        *)
    
    | `Split (_,x1, p1,i1,n1), `Split (_,x2, p2,i2,n2) ->
      let c = X.compare x1 x2 in
      if c = 0 then split x1 (p1 ++ p2) (i1 ++ i2) (n1 ++ n2)
      else if c < 0 then split x1 p1 (i1 ++ b) n1
      else split x2 p2 (i2 ++ a) n2
338 339 340 341 342 343

(* seems better not to make ++ and this split mutually recursive;
   is the invariant still inforced ? *)

  (* intersection *)
  let rec ( ** ) a b = if a == b then a else match (a,b) with
344 345
    | `True, a | a, `True -> a
    | `False, _ | _, `False -> `False
346

347 348
    | `Split (_,`Atm x1, `True,`False,`False), `Split (_,`Atm x2, `True,`False,`False) ->
        split (`Atm(T.cap x1 x2)) `True `False `False
349

350 351
    | `Split (_,`Atm x1, `False,`False,`True), `Split (_,`Atm x2, `False,`False,`True) ->
        split (`Atm(T.cap (T.diff T.full x1) (T.diff T.full x2))) `True `False `False
352

353 354
    | `Split (_,`Atm x1, `True,`False,`False), `Split (_,`Atm x2, `False,`False,`True) ->
        split (`Atm(T.cap x1 (T.diff T.full x2))) `True `False `False
355

356 357
    | `Split (_,`Atm x1, `False,`False,`True), `Split (_,`Atm x2, `True,`False,`False) ->
        split (`Atm(T.cap (T.diff T.full x1) x2)) `True `False `False
358

359
    | `Split (_,x1, p1,i1,n1), `Split (_,x2, p2,i2,n2) ->
360 361 362 363 364 365 366 367 368 369
	let c = X.compare x1 x2 in
	if c = 0 then
	  split x1 
	    (p1 ** (p2 ++ i2) ++ (p2 ** i1))
	    (i1 ** i2)
	    (n1 ** (n2 ++ i2) ++ (n2 ** i1))  
	else if c < 0 then split x1 (p1 ** b) (i1 ** b) (n1 ** b)
	else split x2 (p2 ** a) (i2 ** a) (n2 ** a)

  let rec trivially_disjoint a b =
370
    if a == b then a == `False
371
    else match (a,b) with
372 373 374
      | `True, a | a, `True -> a == `False
      | `False, _ | _, `False -> true
      | `Split (_,x1, p1,i1,n1), `Split (_,x2, p2,i2,n2) ->
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
	  let c = X.compare x1 x2 in
	  if c = 0 then
(* try expanding -> p1 p2; p1 i2; i1 p2; i1 i2 ... *)
	    trivially_disjoint (p1 ++ i1) (p2 ++ i2) &&
	    trivially_disjoint (n1 ++ i1) (n2 ++ i2)
	  else if c < 0 then
	    trivially_disjoint p1 b &&
	    trivially_disjoint i1 b &&
	    trivially_disjoint n1 b
	  else
	    trivially_disjoint p2 a &&
	    trivially_disjoint i2 a &&
	    trivially_disjoint n2 a

  let rec neg = function
390 391 392 393 394 395 396 397
    | `True -> `False
    | `False -> `True
    | `Split (_,`Atm x, `True,`False,`False) -> split0 (`Atm(T.diff T.full x)) `True `False `False
    | `Split (_,`Atm x, `False,`False,`True) -> split0 (`Atm(T.diff T.full x)) `True `False `False
    | `Split (_,x, p,i,`False) -> split x `False (neg (i ++ p)) (neg i)
    | `Split (_,x, `False,i,n) -> split x (neg i) (neg (i ++ n)) `False 
    | `Split (_,x, p,`False,n) -> split x (neg p) (neg (p ++ n)) (neg n)  
    | `Split (_,x, p,i,n) -> split x (neg (i ++ p)) `False (neg (i ++ n))
398 399 400
	      
  let rec ( // ) a b =
    let negatm = T.diff T.full in
401
    if a == b then `False 
402
    else match (a,b) with
403 404 405
      | `False,_ | _, `True -> `False
      | a, `False -> a
      | `True, b -> neg b
406

407 408
      | `Split (_,`Atm x1, `True,`False,`False), `Split (_,`Atm x2, `True,`False,`False) ->
          split (`Atm(T.diff x1 x2)) `True `False `False
409

410 411
      | `Split (_,`Atm x1, `False,`False,`True), `Split (_,`Atm x2, `False,`False,`True) ->
          split (`Atm(T.diff (negatm x1) (negatm x2))) `True `False `False
412

413 414
      | `Split (_,`Atm x1, `True,`False,`False), `Split (_,`Atm x2, `False,`False,`True) ->
          split (`Atm(T.diff x1 (negatm x2))) `True `False `False
415

416 417
      | `Split (_,`Atm x1, `False,`False,`True), `Split (_,`Atm x2, `True,`False,`False) ->
          split (`Atm(T.diff (negatm x1) x2)) `True `False `False
418

419
      | `Split (_,x1, p1,i1,n1), `Split (_,x2, p2,i2,n2) ->
420 421
	  let c = X.compare x1 x2 in
	  if c = 0 then
422
	    if (i2 == `False) && (n2 == `False) 
423 424
	    then split x1 (p1 // p2) (i1 // p2) (n1 ++ i1)
	    else 
425
	      split x1 ((p1++i1) // (p2 ++ i2)) `False ((n1++i1) // (n2 ++ i2))
426 427 428
	  else if c < 0 then
	    split x1 (p1 // b) (i1 // b) (n1 // b) 
	  else
429
	    split x2 (a // (i2 ++ p2)) `False (a // (i2 ++ n2))
430 431 432 433 434
	      
  let cup = ( ++ )
  let cap = ( ** )
  let diff = ( // )

435
(*
436
  (* return a couple of trees (v,a)
437 438 439
   * v = only variables as leaves
   * a = only atoms as leaves
   *)
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
  let rec extractvars = function
    (* `True or `False can only be under a variable *)
    | `True -> `True,`False
    | `False -> `False,`False
    | `Split (_,`Atm _, `True,`False,`False) as x -> `False, x
    | `Split (_,`Atm _, _,_,_) -> assert false
    | `Split (_,((`Var y) as x),p,i,n) ->
        let p1,p2 = extractvars p in
        let i1,i2 = extractvars i in
        let n1,n2 = extractvars n in
        (* let v = `Split (compute_hash x p1 i1 n1,x,p1,i1,n1) in   *)
        let v = (fst(gensplit Pervasives.compare (fun x -> x) (fun x -> x) (fun _ -> false)) x p1 i1 n1) in
        let t = split x p2 i2 n2 in
        assert(v <> `True);
        (v,t)
455
*)
Pietro Abate's avatar
Pietro Abate committed
456

457
end