typer.ml 51.5 KB
Newer Older
1
(* TODO:
2
 - rewrite type-checking of operators to propagate constraint
3
4
 - optimize computation of pattern free variables
 - check whether it is worth using recursive hash-consing internally
5
6
*)

7
8
9
open Location
open Ast
open Ident
10

11
12
let debug_schema = false

13
let warning loc msg =
14
  Format.fprintf !Location.warning_ppf "Warning %a:@\n%a%s@." 
15
16
    Location.print_loc (loc,`Full)
    Location.html_hilight (loc,`Full)
17
18
    msg

19
20
type item =
  | Type of Types.t
21
  | Val of Types.t
22

23
type t = {
24
  ids : item Env.t;
25
26
  ns: Ns.table;
  cu: Types.CompUnit.t Env.t;
27
}
28

29
30
31
32
33
let hash _ = failwith "Typer.hash"
let compare _ _ = failwith "Typer.compare"
let dump ppf _ = failwith "Typer.dump"
let equal _ _ = failwith "Typer.equal"
let check _ = failwith "Typer.check"
34
35

(* TODO: filter out builtin defs ? *)
36
37
38
39
let serialize_item s = function
  | Type t -> Serialize.Put.bits 1 s 0; Types.serialize s t
  | Val t -> Serialize.Put.bits 1 s 1; Types.serialize s t

40
let serialize s env =
41
  Serialize.Put.env Id.serialize serialize_item Env.iter s env.ids;
42
  Ns.serialize_table s env.ns
43

44
45
46
47
48
let deserialize_item s = match Serialize.Get.bits 1 s with
  | 0 -> Type (Types.deserialize s)
  | 1 -> Val (Types.deserialize s)
  | _ -> assert false

49
let deserialize s =
50
51
  let ids = 
    Serialize.Get.env Id.deserialize deserialize_item Env.add Env.empty s in
52
  let ns = Ns.deserialize_table s in
53
  { ids = ids; ns = ns; cu = Env.empty }
54
55


56
57
let empty_env = {
  ids = Env.empty;
58
59
  ns = Ns.empty_table;
  cu = Env.empty;
60
61
}

62
63
let from_comp_unit = ref (fun cu -> assert false)

64
65
66
67
68
69
70
71
72
73
let enter_cu x cu env =
  { env with cu = Env.add (ident x) cu env.cu }

let find_cu loc x env =
  try Env.find x env.cu
  with Not_found -> 
    raise_loc_generic loc 
      ("Unbound compunit prefix " ^ (Ident.to_string x))


74
75
76
77
78
79
80
81
let enter_type id t env =
  { env with ids = Env.add id (Type t) env.ids }
let enter_types l env =
  { env with ids = 
      List.fold_left (fun accu (id,t) -> Env.add id (Type t) accu) env.ids l }
let find_type id env =
  match Env.find id env.ids with
    | Type t -> t
82
    | Val _ -> raise Not_found
83

84
85
let find_type_global loc cu id env =
  let cu = find_cu loc cu env in
86
87
88
  let env = !from_comp_unit cu in
  find_type id env

89
let enter_value id t env = 
90
  { env with ids = Env.add id (Val t) env.ids }
91
92
let enter_values l env =
  { env with ids = 
93
      List.fold_left (fun accu (id,t) -> Env.add id (Val t) accu) env.ids l }
94
95
let find_value id env =
  match Env.find id env.ids with
96
    | Val t -> t
97
    | _ -> raise Not_found
98
99
100
let find_value_global cu id env =
  let env = !from_comp_unit cu in
  find_value id env
101
	
102
103
104
105
106
107
let value_name_ok id env =
  try match Env.find id env.ids with
    | Val t -> true
    | _ -> false
  with Not_found -> true

108
109
110
111
let iter_values env f =
  Env.iter (fun x ->
	      function Val t -> f x t;
		| _ -> ()) env.ids
112

113

114
115
116
117
118
119
120
121
122
let register_types cu env =
  let prefix = U.concat (Types.CompUnit.value cu) (U.mk ":") in
  Env.iter (fun x ->
	      function 
		| Type t ->
		    let n = U.concat prefix (Id.value x) in
		    Types.Print.register_global n t
		| _ -> ()) env.ids

123

124
(* Namespaces *)
125

126
let set_ns_table_for_printer env = 
127
  Ns.InternalPrinter.set_table env.ns
128

129
let get_ns_table tenv = tenv.ns
130

131
let enter_ns p ns env =
132
  { env with ns = Ns.add_prefix p ns env.ns }
133

134
135
136
137
138
let protect_error_ns loc f x =
  try f x
  with Ns.UnknownPrefix ns ->
    raise_loc_generic loc 
    ("Undefined namespace prefix " ^ (U.to_string ns))
139

140
let parse_atom env loc t =
141
  let (ns,l) = protect_error_ns loc (Ns.map_tag env.ns) t in
142
143
144
  Atoms.V.mk ns l
 
let parse_ns env loc ns =
145
  protect_error_ns loc (Ns.map_prefix env.ns) ns
146

147
let parse_label env loc t =
148
  let (ns,l) = protect_error_ns loc (Ns.map_attr env.ns) t in
149
  LabelPool.mk (ns,l)
150

151
152
153
154
155
156
157
158
159
160
161
162
163
let parse_record env loc f r =
  let r = List.map (fun (l,x) -> (parse_label env loc l, f x)) r in
  LabelMap.from_list (fun _ _ -> raise_loc_generic loc "Duplicated record field") r

let rec const env loc = function
  | LocatedExpr (loc,e) -> const env loc e
  | Pair (x,y) -> Types.Pair (const env loc x, const env loc y)
  | Xml (x,y) -> Types.Xml (const env loc x, const env loc y)
  | RecordLitt x -> Types.Record (parse_record env loc (const env loc) x)
  | String (i,j,s,c) -> Types.String (i,j,s,const env loc c)
  | Atom t -> Types.Atom (parse_atom env loc t)
  | Integer i -> Types.Integer i
  | Char c -> Types.Char c
164
  | Const c -> c
165
166
167
168
  | _ -> raise_loc_generic loc "This should be a scalar or structured constant"

(* I. Transform the abstract syntax of types and patterns into
      the internal form *)
169

170
exception NonExhaustive of Types.descr
171
exception Constraint of Types.descr * Types.descr
172
exception ShouldHave of Types.descr * string
173
exception ShouldHave2 of Types.descr * string * Types.descr
174
exception WrongLabel of Types.descr * label
175
exception UnboundId of id * bool
176
exception Error of string
177

178
179
let raise_loc loc exn = raise (Location (loc,`Full,exn))
let raise_loc_str loc ofs exn = raise (Location (loc,`Char ofs,exn))
180
let error loc msg = raise_loc loc (Error msg)
181

182
  (* just to remember imported schemas *)
183
let schemas = State.ref "Typer.schemas" (Hashtbl.create 3)
184
let is_registered_schema = Hashtbl.mem !schemas
185
186
187

let schema_types = State.ref "Typer.schema_types" (Hashtbl.create 51)
let schema_elements = State.ref "Typer.schema_elements" (Hashtbl.create 51)
188
let schema_attributes = State.ref "Typer.schema_attributes" (Hashtbl.create 51)
189
190
191
192
let schema_attribute_groups =
  State.ref "Typer.schema_attribute_groups" (Hashtbl.create 51)
let schema_model_groups =
  State.ref "Typer.schema_model_groups" (Hashtbl.create 51)
193

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
  (* raise Not_found *)
let find_schema_descr kind schema name =
  let elt () = Hashtbl.find !schema_elements (schema, name) in
  let typ () = Hashtbl.find !schema_types (schema, name) in
  let att () = Hashtbl.find !schema_attributes (schema, name) in
  let att_group () = Hashtbl.find !schema_attribute_groups (schema, name) in
  let mod_group () = Hashtbl.find !schema_model_groups (schema, name) in
  let rec do_try n = function
    | [] -> raise Not_found
    | f :: rem -> (try f () with Not_found -> do_try n rem)
  in
  match kind with
    | Some `Element -> do_try "element" [ elt ]
    | Some `Type -> do_try "type" [ typ ]
    | Some `Attribute -> do_try "atttribute" [ att ]
    | Some `Attribute_group -> do_try "attribute group" [ att_group ]
    | Some `Model_group -> do_try "model group" [ mod_group ]
    | None ->
        (* policy for unqualified schema component resolution. This order should
         * be consistent with Schema_component.get_component *)
        do_try "component" [ elt; typ; att; att_group; mod_group ]

  (* as above, but raise Error *)
let find_schema_descr' k s n =
  try
    find_schema_descr k s n
  with Not_found ->
221
222
223
224
225
    if is_registered_schema s then
      raise (Error (Printf.sprintf "No %s named '%s' found in schema '%s'"
        (Schema_common.string_of_component_kind k) (U.get_str n) (U.get_str s)))
    else
      raise (Error (Printf.sprintf "%s: no such schema" (U.get_str s)))
226

227
228
229
230
231
232
233
234
(* Eliminate Recursion, propagate Sequence Capture Variables *)

let rec seq_vars accu = function
  | Epsilon | Elem _ -> accu
  | Seq (r1,r2) | Alt (r1,r2) -> seq_vars (seq_vars accu r1) r2
  | Star r | WeakStar r -> seq_vars accu r
  | SeqCapture (v,r) -> seq_vars (IdSet.add v accu) r

235
236
237
238
239
240
241
242
243
244
245
246
247
248
(* We use two intermediate representation from AST types/patterns
   to internal ones:

      AST -(1)-> derecurs -(2)-> slot -(3)-> internal

   (1) eliminate recursion, schema, 
       propagate sequence capture variables, keep regexps

   (2) stratify, detect ill-formed recursion, compile regexps

   (3) check additional constraints on types / patterns;
       deep (recursive) hash-consing
*)     

249
250
251
252
type derecurs_slot = {
  ploc : Location.loc;
  pid  : int;
  mutable ploop : bool;
253
  mutable pdescr : derecurs;
254
} and derecurs =
255
  | PDummy
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
  | PAlias of derecurs_slot
  | PType of Types.descr
  | POr of derecurs * derecurs
  | PAnd of derecurs * derecurs
  | PDiff of derecurs * derecurs
  | PTimes of derecurs * derecurs
  | PXml of derecurs * derecurs
  | PArrow of derecurs * derecurs
  | POptional of derecurs
  | PRecord of bool * derecurs label_map
  | PCapture of id
  | PConstant of id * Types.const
  | PRegexp of derecurs_regexp * derecurs
and derecurs_regexp =
  | PEpsilon
  | PElem of derecurs
  | PSeq of derecurs_regexp * derecurs_regexp
  | PAlt of derecurs_regexp * derecurs_regexp
  | PStar of derecurs_regexp
  | PWeakStar of derecurs_regexp

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

type descr = 
  | IDummy
  | IType of Types.descr
  | IOr of descr * descr
  | IAnd of descr * descr
  | IDiff of descr * descr
  | ITimes of slot * slot
  | IXml of slot * slot
  | IArrow of slot * slot
  | IOptional of descr
  | IRecord of bool * slot label_map
  | ICapture of id
  | IConstant of id * Types.const
and slot = {
  mutable fv : fv option;
  mutable hash : int option;
  mutable rank1: int; mutable rank2: int;
  mutable gen1 : int; mutable gen2: int;
  mutable d    : descr;
297
}
298
299
300
301
302
303
304
305
306
307
308
309
310
    

let counter = ref 0
let mk_derecurs_slot loc = 
  incr counter; 
  { ploop = false; ploc = loc; pid = !counter; pdescr = PDummy }
	  
let mk_slot () = 
  { d=IDummy; fv=None; hash=None; rank1=0; rank2=0; gen1=0; gen2=0 } 


(* This environment is used in phase (1) to eliminate recursion *)
type penv = {
311
  penv_tenv : t;
312
313
314
315
  penv_derec : derecurs_slot Env.t;
}

let penv tenv = { penv_tenv = tenv; penv_derec = Env.empty }
316

317
let rec hash_derecurs = function
318
  | PDummy -> assert false
319
320
321
  | PAlias s -> 
      s.pid
  | PType t -> 
322
      1 + 17 * (Types.hash t)
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
  | POr (p1,p2) -> 
      2 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PAnd (p1,p2) -> 
      3 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PDiff (p1,p2) -> 
      4 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PTimes (p1,p2) -> 
      5 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PXml (p1,p2) -> 
      6 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PArrow (p1,p2) -> 
      7 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | POptional p -> 
      8 + 17 * (hash_derecurs p)
  | PRecord (o,r) -> 
      (if o then 9 else 10) + 17 * (LabelMap.hash hash_derecurs r)
  | PCapture x -> 
      11 + 17 * (Id.hash x)
  | PConstant (x,c) -> 
342
      12 + 17 * (Id.hash x) + 257 * (Types.Const.hash c)
343
344
  | PRegexp (p,q) -> 
      13 + 17 * (hash_derecurs_regexp p) + 257 * (hash_derecurs q)
345
and hash_derecurs_regexp = function
346
347
348
349
350
351
352
353
354
355
356
357
  | PEpsilon -> 
      1
  | PElem p -> 
      2 + 17 * (hash_derecurs p)
  | PSeq (p1,p2) -> 
      3 + 17 * (hash_derecurs_regexp p1) + 257 * (hash_derecurs_regexp p2)
  | PAlt (p1,p2) -> 
      4 + 17 * (hash_derecurs_regexp p1) + 257 * (hash_derecurs_regexp p2)
  | PStar p -> 
      5 + 17 * (hash_derecurs_regexp p)
  | PWeakStar p -> 
      6 + 17 * (hash_derecurs_regexp p)
358
359

let rec equal_derecurs p1 p2 = (p1 == p2) || match p1,p2 with
360
361
362
  | PAlias s1, PAlias s2 -> 
      s1 == s2
  | PType t1, PType t2 -> 
363
      Types.equal t1 t2
364
365
366
367
368
  | POr (p1,q1), POr (p2,q2)
  | PAnd (p1,q1), PAnd (p2,q2)
  | PDiff (p1,q1), PDiff (p2,q2)
  | PTimes (p1,q1), PTimes (p2,q2)
  | PXml (p1,q1), PXml (p2,q2)
369
370
371
372
373
374
375
376
377
  | PArrow (p1,q1), PArrow (p2,q2) -> 
      (equal_derecurs p1 p2) && (equal_derecurs q1 q2)
  | POptional p1, POptional p2 -> 
      equal_derecurs p1 p2
  | PRecord (o1,r1), PRecord (o2,r2) -> 
      (o1 == o2) && (LabelMap.equal equal_derecurs r1 r2)
  | PCapture x1, PCapture x2 -> 
      Id.equal x1 x2
  | PConstant (x1,c1), PConstant (x2,c2) -> 
378
      (Id.equal x1 x2) && (Types.Const.equal c1 c2)
379
380
  | PRegexp (p1,q1), PRegexp (p2,q2) -> 
      (equal_derecurs_regexp p1 p2) && (equal_derecurs q1 q2)
381
382
  | _ -> false
and equal_derecurs_regexp r1 r2 = match r1,r2 with
383
384
385
386
  | PEpsilon, PEpsilon -> 
      true
  | PElem p1, PElem p2 -> 
      equal_derecurs p1 p2
387
  | PSeq (p1,q1), PSeq (p2,q2) 
388
389
  | PAlt (p1,q1), PAlt (p2,q2) -> 
      (equal_derecurs_regexp p1 p2) && (equal_derecurs_regexp q1 q2)
390
  | PStar p1, PStar p2
391
392
  | PWeakStar p1, PWeakStar p2 -> 
      equal_derecurs_regexp p1 p2
393
  | _ -> false
394

395
396
397
398
399
400
401
402
403
404
405
module DerecursTable = Hashtbl.Make(
  struct 
    type t = derecurs 
    let hash = hash_derecurs
    let equal = equal_derecurs
  end
)

module RE = Hashtbl.Make(
  struct 
    type t = derecurs_regexp * derecurs 
406
407
408
409
    let hash (p,q) = 
      (hash_derecurs_regexp p) + 17 * (hash_derecurs q)
    let equal (p1,q1) (p2,q2) = 
      (equal_derecurs_regexp p1 p2) && (equal_derecurs q1 q2)
410
411
  end
)
412

413
414
415
416
let gen = ref 0
let rank = ref 0
	     
let rec hash_descr = function
417
  | IDummy -> assert false
418
  | IType x -> Types.hash x
419
420
421
422
423
424
425
426
427
  | IOr (d1,d2) -> 1 + 17 * (hash_descr d1) + 257 * (hash_descr d2)
  | IAnd (d1,d2) -> 2 + 17 * (hash_descr d1) + 257 * (hash_descr d2)
  | IDiff (d1,d2) -> 3 + 17 * (hash_descr d1) + 257 * (hash_descr d2)
  | IOptional d -> 4 + 17 * (hash_descr d)
  | ITimes (s1,s2) -> 5 + 17 * (hash_slot s1) + 257 * (hash_slot s2)
  | IXml (s1,s2) -> 6 + 17 * (hash_slot s1) + 257 * (hash_slot s2)
  | IArrow (s1,s2) -> 7 + 17 * (hash_slot s1) + 257 * (hash_slot s2)
  | IRecord (o,r) -> (if o then 8 else 9) + 17 * (LabelMap.hash hash_slot r)
  | ICapture x -> 10 + 17 * (Id.hash x)
428
  | IConstant (x,y) -> 11 + 17 * (Id.hash x) + 257 * (Types.Const.hash y)
429
430
431
432
433
and hash_slot s =
  if s.gen1 = !gen then 13 * s.rank1
  else (
    incr rank;
    s.rank1 <- !rank; s.gen1 <- !gen;
434
    hash_descr s.d
435
436
437
438
  )
    
let rec equal_descr d1 d2 = 
  match (d1,d2) with
439
  | IType x1, IType x2 -> Types.equal x1 x2
440
441
442
443
444
445
446
  | IOr (x1,y1), IOr (x2,y2) 
  | IAnd (x1,y1), IAnd (x2,y2) 
  | IDiff (x1,y1), IDiff (x2,y2) -> (equal_descr x1 x2) && (equal_descr y1 y2)
  | IOptional x1, IOptional x2 -> equal_descr x1 x2
  | ITimes (x1,y1), ITimes (x2,y2) 
  | IXml (x1,y1), IXml (x2,y2) 
  | IArrow (x1,y1), IArrow (x2,y2) -> (equal_slot x1 x2) && (equal_slot y1 y2)
447
448
  | IRecord (o1,r1), IRecord (o2,r2) -> 
      (o1 = o2) && (LabelMap.equal equal_slot r1 r2)
449
  | ICapture x1, ICapture x2 -> Id.equal x1 x2
450
  | IConstant (x1,y1), IConstant (x2,y2) -> 
451
      (Id.equal x1 x2) && (Types.Const.equal y1 y2)
452
453
454
455
456
457
458
459
  | _ -> false
and equal_slot s1 s2 =
  ((s1.gen1 = !gen) && (s2.gen2 = !gen) && (s1.rank1 = s2.rank2))
  ||
  ((s1.gen1 <> !gen) && (s2.gen2 <> !gen) && (
     incr rank;
     s1.rank1 <- !rank; s1.gen1 <- !gen;
     s2.rank2 <- !rank; s2.gen2 <- !gen;
460
     equal_descr s1.d s2.d
461
462
   ))
  
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
module SlotTable = Hashtbl.Make(
  struct
    type t = slot
	
    let hash s =
      match s.hash with
	| Some h -> h
	| None ->
	    incr gen; rank := 0; 
	    let h = hash_slot s in
	    s.hash <- Some h;
	    h
	      
    let equal s1 s2 = 
      (s1 == s2) || 
      (incr gen; rank := 0; 
       let e = equal_slot s1 s2 in
       (*     if e then Printf.eprintf "Recursive hash-consing: Equal\n";  *)
       e)
  end)


let rec derecurs env p = match p.descr with
  | PatVar v ->
487
488
489
490
491
492
493
494
495
496
      (match Ns.split_qname v with
	 | "", v ->
	     let v = ident v in
	     (try PAlias (Env.find v env.penv_derec)
	      with Not_found -> 
		try PType (find_type v env.penv_tenv)
		with Not_found -> PCapture v)
	 | cu, v -> 
	     try 
	       let cu = ident (U.mk cu) in
497
	       PType (find_type_global p.loc cu (ident v) env.penv_tenv)
498
	     with Not_found ->
499
500
	       raise_loc_generic p.loc 
	       ("Unbound external type " ^ cu ^ ":" ^ (U.to_string v)))
501
502
  | SchemaVar (kind, schema_name, component_name) ->
      PType (derecurs_schema env kind schema_name component_name)
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
  | Recurs (p,b) -> derecurs (derecurs_def env b) p
  | Internal t -> PType t
  | NsT ns -> PType (Types.atom (Atoms.any_in_ns (parse_ns env.penv_tenv p.loc ns)))
  | Or (p1,p2) -> POr (derecurs env p1, derecurs env p2)
  | And (p1,p2) -> PAnd (derecurs env p1, derecurs env p2)
  | Diff (p1,p2) -> PDiff (derecurs env p1, derecurs env p2)
  | Prod (p1,p2) -> PTimes (derecurs env p1, derecurs env p2)
  | XmlT (p1,p2) -> PXml (derecurs env p1, derecurs env p2)
  | Arrow (p1,p2) -> PArrow (derecurs env p1, derecurs env p2)
  | Optional p -> POptional (derecurs env p)
  | Record (o,r) -> PRecord (o, parse_record env.penv_tenv p.loc (derecurs env) r)
  | Constant (x,c) -> PConstant (x,const env.penv_tenv p.loc c)
  | Cst c -> PType (Types.constant (const env.penv_tenv p.loc c))
  | Regexp (r,q) -> 
      let constant_nil t v = 
	PAnd (t, PConstant (v, Types.Atom Sequence.nil_atom)) in
      let vars = seq_vars IdSet.empty r in
      let q = IdSet.fold constant_nil (derecurs env q) vars in
      let r = derecurs_regexp (fun p -> p) env r in
      PRegexp (r, q)
and derecurs_regexp vars env = function
  | Epsilon -> 
      PEpsilon
  | Elem p -> 
      PElem (vars (derecurs env p))
  | Seq (p1,p2) -> 
      PSeq (derecurs_regexp vars env p1, derecurs_regexp vars env p2)
  | Alt (p1,p2) -> 
      PAlt (derecurs_regexp vars env p1, derecurs_regexp vars env p2)
  | Star p -> 
      PStar (derecurs_regexp vars env p)
  | WeakStar p -> 
      PWeakStar (derecurs_regexp vars env p)
  | SeqCapture (x,p) -> 
      derecurs_regexp (fun p -> PAnd (vars p, PCapture x)) env p


and derecurs_def env b =
  let b = List.map (fun (v,p) -> (v,p,mk_derecurs_slot p.loc)) b in
  let n = 
    List.fold_left (fun env (v,p,s) -> Env.add v s env) env.penv_derec b in
  let env = { env with penv_derec = n } in
  List.iter (fun (v,p,s) -> s.pdescr <- derecurs env p) b;
  env

548
and derecurs_schema env = find_schema_descr
549
    
550
551
552
553
554
let rec fv_slot s =
  match s.fv with
    | Some x -> x
    | None ->
	if s.gen1 = !gen then IdSet.empty 
555
	else (s.gen1 <- !gen; fv_descr s.d)
556
and fv_descr = function
557
  | IDummy -> assert false
558
  | IType _ -> IdSet.empty
559
560
561
562
563
564
565
  | IOr (d1,d2)
  | IAnd (d1,d2)  
  | IDiff (d1,d2) -> IdSet.cup (fv_descr d1) (fv_descr d2)
  | IOptional d -> fv_descr d
  | ITimes (s1,s2)  
  | IXml (s1,s2)  
  | IArrow (s1,s2) -> IdSet.cup (fv_slot s1) (fv_slot s2)
566
567
  | IRecord (o,r) -> 
      List.fold_left IdSet.cup IdSet.empty (LabelMap.map_to_list fv_slot r)
568
  | ICapture x | IConstant (x,_) -> IdSet.singleton x
569

570
571
572
573
574
575
576
577
let compute_fv s =
  match s.fv with
    | Some x -> ()
    | None ->
	incr gen;
	let x = fv_slot s in
	s.fv <- Some x
	  
578
579
580
let check_no_capture loc s =
  match IdSet.pick s with
    | Some x ->  
581
	raise_loc_generic loc ("Capture variable not allowed: " ^ (Ident.to_string x))
582
    | None -> ()
583
    
584
585
586
let compile_slot_hash = DerecursTable.create 67
let compile_hash = DerecursTable.create 67

587
588
let todo_defs = ref []
let todo_fv = ref []
589
590
591
592
593
594
595
596

let rec compile p =
  try DerecursTable.find compile_hash p
  with Not_found ->
    let c = real_compile p in
    DerecursTable.replace compile_hash p c;
    c
and real_compile = function
597
  | PDummy -> assert false
598
599
600
601
  | PAlias v ->
      if v.ploop then
	raise_loc_generic v.ploc ("Unguarded recursion on type/pattern");
      v.ploop <- true;
602
      let r = compile v.pdescr in
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
      v.ploop <- false;
      r
  | PType t -> IType t
  | POr (t1,t2) -> IOr (compile t1, compile t2)
  | PAnd (t1,t2) -> IAnd (compile t1, compile t2)
  | PDiff (t1,t2) -> IDiff (compile t1, compile t2)
  | PTimes (t1,t2) -> ITimes (compile_slot t1, compile_slot t2)
  | PXml (t1,t2) -> IXml (compile_slot t1, compile_slot t2)
  | PArrow (t1,t2) -> IArrow (compile_slot t1, compile_slot t2)
  | POptional t -> IOptional (compile t)
  | PRecord (o,r) ->  IRecord (o, LabelMap.map compile_slot r)
  | PConstant (x,v) -> IConstant (x,v)
  | PCapture x -> ICapture x
  | PRegexp (r,q) -> compile_regexp r q
and compile_regexp r q =
  let memo = RE.create 17 in
619
620
621
  let add accu i = 
    match accu with None -> Some i | Some j -> Some (IOr (j,i)) in
  let get = function Some x -> x | None -> assert false in
622
  let rec queue accu = function
623
624
625
    | PRegexp (r,q) -> aux accu r q 
    | _ -> add accu (compile q)
  and aux accu r q =
626
627
628
629
    if RE.mem memo (r,q) then accu
    else (
      RE.add memo (r,q) ();
      match r with
630
	| PEpsilon -> queue accu q
631
632
633
634
635
636
637
638
639
640
641
	| PElem p ->
(* Be careful not to create pairs with same second component *)
	    let rec extract = function
	      | PConstant (x,v) -> `Const (x,v)
	      | POr (x,y) ->
		  (match extract x, extract y with
		    | `Pat x, `Pat y -> `Pat (POr (x,y))
		    | x, y -> `Or (x,y))
	      | p -> `Pat p
	    in
	    let rec mk accu = function
642
643
644
645
	      | `Const (x,v) -> 
		  (match queue None q with 
		    | Some q -> add accu (IAnd (IConstant (x,v), q))
		    | None -> accu)
646
	      | `Or (x,y) -> mk (mk accu x) y
647
648
	      | `Pat p -> 
		  add accu (ITimes (compile_slot p, compile_slot q))
649
650
	    in
	    mk accu (extract p)
651
652
653
654
655
656
	| PSeq (r1,r2) -> aux accu r1 (PRegexp (r2,q))
	| PAlt (r1,r2) -> aux (aux accu r1 q) r2 q
	| PStar r1 -> aux (aux accu r1 (PRegexp (r,q))) PEpsilon q
	| PWeakStar r1 -> aux (aux accu PEpsilon q) r1 (PRegexp (r,q))
    )
  in
657
  get (aux None r q)
658
659
and compile_slot p =
  try DerecursTable.find compile_slot_hash p
660
  with Not_found ->
661
662
663
    let s = mk_slot () in
    todo_defs := (s,p) :: !todo_defs;
    todo_fv := s :: !todo_fv;
664
    DerecursTable.add compile_slot_hash p s;
665
    s
666

667
      
668
let timer_fv = Stats.Timer.create "Typer.fv"
669
let rec flush_defs () = 
670
671
672
673
  match !todo_defs with
    | [] -> 
	Stats.Timer.start timer_fv;
	List.iter compute_fv !todo_fv;
674
675
	todo_fv := [];
	Stats.Timer.stop timer_fv ()
676
677
678
679
    | (s,p)::t -> 
	todo_defs := t; 
	s.d <- compile p; 
	flush_defs ()
680
681
682
683
684
685
686
687
688
689
690
691
692
693
	
let typ_nodes = SlotTable.create 67
let pat_nodes = SlotTable.create 67
		  
let rec typ = function
  | IType t -> t
  | IOr (s1,s2) -> Types.cup (typ s1) (typ s2)
  | IAnd (s1,s2) ->  Types.cap (typ s1) (typ s2)
  | IDiff (s1,s2) -> Types.diff (typ s1) (typ s2)
  | ITimes (s1,s2) -> Types.times (typ_node s1) (typ_node s2)
  | IXml (s1,s2) -> Types.xml (typ_node s1) (typ_node s2)
  | IArrow (s1,s2) -> Types.arrow (typ_node s1) (typ_node s2)
  | IOptional s -> Types.Record.or_absent (typ s)
  | IRecord (o,r) -> Types.record' (o, LabelMap.map typ_node r)
694
  | IDummy | ICapture _ | IConstant (_,_) -> assert false
695
      
696
and typ_node s : Types.Node.t =
697
698
699
700
  try SlotTable.find typ_nodes s
  with Not_found ->
    let x = Types.make () in
    SlotTable.add typ_nodes s x;
701
    Types.define x (typ s.d);
702
703
704
705
706
707
708
709
    x
      
let rec pat d : Patterns.descr =
  if IdSet.is_empty (fv_descr d)
  then Patterns.constr (typ d)
  else pat_aux d
    
and pat_aux = function
710
  | IDummy -> assert false
711
712
713
714
715
716
  | IOr (s1,s2) -> Patterns.cup (pat s1) (pat s2)
  | IAnd (s1,s2) -> Patterns.cap (pat s1) (pat s2)
  | IDiff (s1,s2) when IdSet.is_empty (fv_descr s2) ->
      let s2 = Types.neg (typ s2) in
      Patterns.cap (pat s1) (Patterns.constr s2)
  | IDiff _ ->
717
      raise (Patterns.Error "Differences are not allowed in patterns")
718
719
720
  | ITimes (s1,s2) -> Patterns.times (pat_node s1) (pat_node s2)
  | IXml (s1,s2) -> Patterns.xml (pat_node s1) (pat_node s2)
  | IOptional _ -> 
721
      raise (Patterns.Error "Optional fields are not allowed in record patterns")
722
723
724
725
726
727
728
729
730
731
732
733
734
735
  | IRecord (o,r) ->
      let pats = ref [] in
      let aux l s = 
	if IdSet.is_empty (fv_slot s) then typ_node s
	else
	  ( pats := Patterns.record l (pat_node s) :: !pats;
	    Types.any_node )
      in
      let constr = Types.record' (o,LabelMap.mapi aux r) in
      List.fold_left Patterns.cap (Patterns.constr constr) !pats
	(* TODO: can avoid constr when o=true, and all fields have fv *)
  | ICapture x -> Patterns.capture x
  | IConstant (x,c) -> Patterns.constant x c
  | IArrow _ ->
736
      raise (Patterns.Error "Arrows are not allowed in patterns")
737
738
739
740
741
742
  | IType _ -> assert false
      
and pat_node s : Patterns.node =
  try SlotTable.find pat_nodes s
  with Not_found ->
    let x = Patterns.make (fv_slot s) in
743
744
    try
      SlotTable.add pat_nodes s x;
745
      Patterns.define x (pat s.d);
746
747
748
      x
    with exn -> SlotTable.remove pat_nodes s; raise exn
      (* For the toplevel ... *)
749

750

751
let type_defs env b =
752
753
  List.iter 
    (fun (v,p) ->
754
755
       if Env.mem v env.ids
       then raise_loc_generic p.loc ("Identifier " ^ (Ident.to_string v) ^ " is already bound")
756
    ) b;
757
758
  let penv = derecurs_def (penv env) b in
  let b = List.map (fun (v,p) -> (v,p,compile (derecurs penv p))) b in
759
760
761
762
  flush_defs ();
  let b = 
    List.map 
      (fun (v,p,s) -> 
763
	 check_no_capture p.loc (fv_descr s);
764
765
766
	 let t = typ s in
	 if (p.loc <> noloc) && (Types.is_empty t) then
	   warning p.loc 
767
	     ("This definition yields an empty type for " ^ (Ident.to_string v));
768
	 (v,t)) b in
769
  List.iter (fun (v,t) -> Types.Print.register_global (Id.value v) t) b;
770
  b
771
772


773
774
775
776
777
let dump_types ppf env =
  Env.iter (fun v -> 
	      function 
		  (Type _) -> Format.fprintf ppf " %a" Ident.print v
		| _ -> ()) env.ids
778
779
let dump_type ppf env name =
  try
780
    (match Env.find (Ident.ident name) env.ids with
781
782
    | Type t -> Types.Print.print ppf t
    | _ -> raise Not_found)
783
784
  with Not_found ->
    raise (Error (Printf.sprintf "Type %s not found" (U.get_str name)))
785
786
787
788

let dump_schema_type ppf (k, s, n) =
  let descr = find_schema_descr' k s n in
  Types.Print.print ppf descr
789

790
let dump_ns ppf env =
791
  Ns.dump_table ppf env.ns
792

793

794
795
let do_typ loc r = 
  let s = compile_slot r in
796
  flush_defs ();
797
798
  check_no_capture loc (fv_slot s);
  typ_node s
799
   
800
801
let typ env p =
  do_typ p.loc (derecurs (penv env) p)
802
    
803
804
let pat env p = 
  let s = compile_slot (derecurs (penv env) p) in
805
806
807
  flush_defs ();
  try pat_node s
  with Patterns.Error e -> raise_loc_generic p.loc e
808
    | Location (loc,_,exn) when loc = noloc -> raise (Location (p.loc, `Full, exn))
809
810


811
812
(* II. Build skeleton *)

813

814
815
816
817
818
type type_fun = Types.t -> bool -> Types.t
let mk_unary_op = ref (fun _ _ -> assert false)
let typ_unary_op = ref (fun _ _ _ -> assert false)
let mk_binary_op = ref (fun _ _ -> assert false)
let typ_binary_op = ref (fun _ _ _ _ -> assert false)
819
820


821
module Fv = IdSet
822

823
824
825
type branch = Branch of Typed.branch * branch list

let cur_branch : branch list ref = ref []
826

827
let exp loc fv e =
828
829
  fv,
  { Typed.exp_loc = loc;
830
    Typed.exp_typ = Types.empty;
831
    Typed.exp_descr = e;
832
  }
833
834


835
836
let rec expr env loc = function
  | LocatedExpr (loc,e) -> expr env loc e
837
  | Forget (e,t) ->
838
      let (fv,e) = expr env loc e and t = typ env t in
839
840
      exp loc fv (Typed.Forget (e,t))
  | Var s -> 
841
842
843
844
      (match Ns.split_qname s with
	| "", id -> let id = ident id in
	  exp loc (Fv.singleton id) (Typed.Var id)
	| cu, id -> 
845
	    let cu = find_cu loc (ident (U.mk cu)) env in
846
	    exp loc Fv.empty (Typed.ExtVar (cu, ident id)))
847
  | Apply (e1,e2) -> 
848
      let (fv1,e1) = expr env loc e1 and (fv2,e2) = expr env loc e2 in
849
850
      exp loc (Fv.cup fv1 fv2) (Typed.Apply (e1,e2))
  | Abstraction a ->
851
      let iface = List.map (fun (t1,t2) -> (typ env t1, typ env t2)) 
852
853
854
855
856
857
858
		    a.fun_iface in
      let t = List.fold_left 
		(fun accu (t1,t2) -> Types.cap accu (Types.arrow t1 t2)) 
		Types.any iface in
      let iface = List.map 
		    (fun (t1,t2) -> (Types.descr t1, Types.descr t2)) 
		    iface in
859
      let (fv0,body) = branches env a.fun_body in
860
861
862
863
864
865
866
867
868
869
870
      let fv = match a.fun_name with
	| None -> fv0
	| Some f -> Fv.remove f fv0 in
      let e = Typed.Abstraction 
		{ Typed.fun_name = a.fun_name;
		  Typed.fun_iface = iface;
		  Typed.fun_body = body;
		  Typed.fun_typ = t;
		  Typed.fun_fv = fv
		} in
      exp loc fv e
871
  | (Integer _ | Char _ | Atom _ | Const _) as c -> 
872
      exp loc Fv.empty (Typed.Cst (const env loc c))
873
  | Pair (e1,e2) ->
874
      let (fv1,e1) = expr env loc e1 and (fv2,e2) = expr env loc e2 in
875
876
      exp loc (Fv.cup fv1 fv2) (Typed.Pair (e1,e2))
  | Xml (e1,e2) ->
877
      let (fv1,e1) = expr env loc e1 and (fv2,e2) = expr env loc e2 in
878
879
      exp loc (Fv.cup fv1 fv2) (Typed.Xml (e1,e2))
  | Dot (e,l) ->
880
881
      let (fv,e) = expr env loc e in
      exp loc fv (Typed.Dot (e,parse_label env loc l))
882
  | RemoveField (e,l) ->
883
884
      let (fv,e) = expr env loc e in
      exp loc fv (Typed.RemoveField (e,parse_label env loc l))
885
886
  | RecordLitt r -> 
      let fv = ref Fv.empty in
887
      let r = parse_record env loc
888
		(fun e -> 
889
		   let (fv2,e) = expr env loc e 
890
891
892
		   in fv := Fv.cup !fv fv2; e)
		r in
      exp loc !fv (Typed.RecordLitt r)
893
  | String (i,j,s,e) ->
894
      let (fv,e) = expr env loc e in
895
      exp loc fv (Typed.String (i,j,s,e))
896
  | Op (op,le) ->
897
      let (fvs,ltes) = List.split (List.map (expr env loc) le) in
898
      let fv = List.fold_left Fv.cup Fv.empty fvs in
899
      (try
900
901
902
	 (match ltes with
	    | [e] -> exp loc fv (Typed.UnaryOp (!mk_unary_op op env, e))
	    | [e1;e2] -> exp loc fv (Typed.BinaryOp (!mk_binary_op op env, e1,e2))
903
904
905
	    | _ -> assert false)
       with Not_found -> assert false)

906
  | Match (e,b) -> 
907
908
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
909
      exp loc (Fv.cup fv1 fv2) (Typed.Match (e, b))
910
  | Map (e,b) ->
911
912
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
913
914
      exp loc (Fv.cup fv1 fv2) (Typed.Map (e, b))
  | Transform (e,b) ->
915
916
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
917
      exp loc (Fv.cup fv1 fv2) (Typed.Transform (e, b))
918
  | Xtrans (e,b) ->
919
920
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
921
      exp loc (Fv.cup fv1 fv2) (Typed.Xtrans (e, b))
922
  | Validate (e,kind,schema,elt) ->
923
      let (fv,e) = expr env loc e in
924
      exp loc fv (Typed.Validate (e, kind, schema, elt))
925
  | Try (e,b) ->
926
927
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
928
      exp loc (Fv.cup fv1 fv2) (Typed.Try (e, b))
929
  | NamespaceIn (pr,ns,e) ->
930
931
      let env = enter_ns pr ns env in
      expr env loc e
932
  | Ref (e,t) ->
933
      let (fv,e) = expr env loc e and t = typ env t in
934
      exp loc fv (Typed.Ref (e,t))
935
	      
936
  and branches env b = 
937
    let fv = ref Fv.empty in
938
    let accept = ref Types.empty in
939
    let branch (p,e) = 
940
941
      let cur_br = !cur_branch in
      cur_branch := [];
942
      let (fv2,e) = expr env noloc e in
943
      let br_loc = merge_loc p.loc e.Typed.exp_loc in
944
      let p = pat env p in
945
946
947
948
949
950
      (match Fv.pick (Fv.diff (Patterns.fv p) fv2) with
	| None -> ()
	| Some x ->
	    let x = U.to_string (Id.value x) in
	    warning br_loc 
	      ("The capture variable " ^ x ^ 
951
	       " is declared in the pattern but not used in the body of this branch. It might be a misspelled or undeclared type or name (if it isn't, use _ instead)."));
952
953
954
955
956
957
958
959
960
      let fv2 = Fv.diff fv2 (Patterns.fv p) in
      fv := Fv.cup !fv fv2;
      accept := Types.cup !accept (Types.descr (Patterns.accept p));
      let br = 
	{ 
	  Typed.br_loc = br_loc;
	  Typed.br_used = br_loc = noloc;
	  Typed.br_pat = p;
	  Typed.br_body = e } in
961
      cur_branch := Branch (br, !cur_branch) :: cur_br;
962
963
      br in
    let b = List.map branch b in
964
965
966
967
    (!fv, 
     { 
       Typed.br_typ = Types.empty; 
       Typed.br_branches = b; 
968
969
       Typed.br_accept = !accept;
       Typed.br_compiled = None;
970
971
     } 
    )
972

973
let expr env e = snd (expr env noloc e)
974

975
976
let let_decl env p e =
  { Typed.let_pat = pat env p;
977
    Typed.let_body = expr env e;
978
979
    Typed.let_compiled = None }

980
981
982

(* Hide global "typing/parsing" environment *)

983

984
985
(* III. Type-checks *)

986
987
open Typed