typer.ml 26.7 KB
Newer Older
1
2
(* I. Transform the abstract syntax of types and patterns into
      the internal form *)
3
4
5
6

open Location
open Ast

7
8
9
10
module S = struct type t = string let compare = compare end
module StringMap = Map.Make(S)
module StringSet = Set.Make(S)

11
exception NonExhaustive of Types.descr
12
exception MultipleLabel of Types.label
13
exception Constraint of Types.descr * Types.descr * string
14
exception ShouldHave of Types.descr * string
15
exception WrongLabel of Types.descr * Types.label
16
exception UnboundId of string
17
18

let raise_loc loc exn = raise (Location (loc,exn))
19
20
21
22

(* Internal representation as a graph (desugar recursive types and regexp),
   to compute freevars, etc... *)

23
type ti = {
24
  id : int; 
25
  mutable seen : bool;
26
  mutable loc' : loc;
27
  mutable fv : StringSet.t option; 
28
29
30
31
32
  mutable descr': descr;
  mutable type_node: Types.node option;
  mutable pat_node: Patterns.node option
} 
and descr =
33
   [ `Alias of string * ti
34
35
   | `Type of Types.descr
   | `Or of ti * ti
36
   | `And of ti * ti
37
38
   | `Diff of ti * ti
   | `Times of ti * ti
39
   | `Xml of ti * ti
40
41
42
43
44
45
46
   | `Arrow of ti * ti
   | `Record of Types.label * bool * ti
   | `Capture of Patterns.capture
   | `Constant of Patterns.capture * Types.const
   ]
    

47
48
type glb = ti StringMap.t

49
50
let mk' =
  let counter = ref 0 in
51
  fun loc ->
52
    incr counter;
53
54
    let rec x = { 
      id = !counter; 
55
      seen = false;
56
      loc' = loc; 
57
      fv = None; 
58
      descr' = `Alias ("__dummy__", x);
59
60
61
      type_node = None; 
      pat_node = None 
    } in
62
63
64
    x

let cons loc d =
65
  let x = mk' loc in
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
  x.descr' <- d;
  x
    
(* Note:
   Compilation of Regexp is implemented as a ``rewriting'' of
   the parsed syntax, in order to be able to print its result
   (for debugging for instance)
   
   It would be possible (and a little more efficient) to produce
   directly ti nodes.
*)
    
module Regexp = struct
  let defs = ref []
  let name =
    let c = ref 0 in
    fun () ->
      incr c;
      "#" ^ (string_of_int !c)

  let rec seq_vars accu = function
    | Epsilon | Elem _ -> accu
    | Seq (r1,r2) | Alt (r1,r2) -> seq_vars (seq_vars accu r1) r2
    | Star r | WeakStar r -> seq_vars accu r
    | SeqCapture (v,r) -> seq_vars (StringSet.add v accu) r

92
93
94
  let uniq_id = let r = ref 0 in fun () -> incr r; !r

  type flat = [ `Epsilon 
95
	      | `Elem of int * Ast.ppat  (* the int arg is used
96
97
98
99
100
101
					    to stop generic comparison *)
	      | `Seq of flat * flat
	      | `Alt of flat * flat
	      | `Star of flat
	      | `WeakStar of flat ]

102
103
  let re_loc = ref noloc

104
  let rec propagate vars : regexp -> flat = function
105
    | Epsilon -> `Epsilon
106
    | Elem x -> let p = vars x in `Elem (uniq_id (),p)
107
108
109
110
    | Seq (r1,r2) -> `Seq (propagate vars r1,propagate vars r2)
    | Alt (r1,r2) -> `Alt (propagate vars r1, propagate vars r2)
    | Star r -> `Star (propagate vars r)
    | WeakStar r -> `WeakStar (propagate vars r)
111
    | SeqCapture (v,x) -> 
112
	let v= mk !re_loc (Capture v) in
113
	propagate (fun p -> mk !re_loc (And (vars p,v))) x
114
115
116
117
118

  let cup r1 r2 = 
    match (r1,r2) with
      | (_, `Empty) -> r1
      | (`Empty, _) -> r2
119
      | (`Res t1, `Res t2) -> `Res (mk !re_loc (Or (t1,t2)))
120

121
122
123
124
125
126
127
(*TODO: review this compilation schema to avoid explosion when
  coding (Optional x) by  (Or(Epsilon,x)); memoization ... *)

  module Memo = Map.Make(struct type t = flat list let compare = compare end)
  module Coind = Set.Make(struct type t = flat list let compare = compare end)
  let memo = ref Memo.empty

128

129
  let rec compile fin e seq : [`Res of Ast.ppat | `Empty] = 
130
131
    if Coind.mem seq !e then `Empty
    else (
132
      e := Coind.add seq !e;
133
134
135
136
137
      match seq with
	| [] ->
	    `Res fin
	| `Epsilon :: rest -> 
	    compile fin e rest
138
	| `Elem (_,p) :: rest -> 
139
	    `Res (mk !re_loc (Prod (p, guard_compile fin rest)))
140
141
142
143
	| `Seq (r1,r2) :: rest -> 
	    compile fin e (r1 :: r2 :: rest)
	| `Alt (r1,r2) :: rest -> 
	    cup (compile fin e (r1::rest)) (compile fin e (r2::rest))
144
145
146
147
148
	| `Star r :: rest -> 
	    cup (compile fin e (r::seq)) (compile fin e rest) 
	| `WeakStar r :: rest -> 
	    cup (compile fin e rest) (compile fin e (r::seq))
    )
149
  and guard_compile fin seq =
150
    try Memo.find seq !memo
151
152
153
    with
	Not_found ->
          let n = name () in
154
	  let v = mk !re_loc (PatVar n) in
155
156
          memo := Memo.add seq v !memo;
	  let d = compile fin (ref Coind.empty) seq in
157
158
159
160
161
	  (match d with
	     | `Empty -> assert false
	     | `Res d -> defs := (n,d) :: !defs);
	  v

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
(*
  type trans = [ `Alt of gnode * gnode | `Elem of Ast.ppat * gnode | `Final ]
  and gnode = 
      {
	mutable seen  : bool;
	mutable compile : bool;
	name  : string;
	mutable trans : trans;
      }

  let new_node() = { seen = false; compile = false; 
		     name = name(); trans = `Final }
  let to_compile = ref []

  let rec compile after = function
    | `Epsilon -> after
    | `Elem (_,p) -> 
	if not after.compile then (after.compile <- true; 
				   to_compile := after :: !to_compile);
	{ new_node () with trans = `Elem (p, after)  }
    | `Seq(r1,r2) -> compile (compile after r2) r1
    | `Alt(r1,r2) ->
	let r1 = compile after r1 and r2 = compile after r2 in
	{ new_node () with trans = `Alt (r1,r2) }
    | `Star r ->
	let n  = new_node() in
	n.trans <- `Alt (compile n r, after);
	n
    | `WeakStar r ->
	let n  = new_node() in
	n.trans <- `Alt (after, compile n r);
	n

  let seens = ref []	
  let rec collect_aux accu n =
    if n.seen then accu 
    else ( seens := n :: !seens;
	   match n.trans with
	     | `Alt (n1,n2) -> collect_aux (collect_aux accu n2) n1
	     | _ -> n :: accu
	 )

  let collect fin n =
    let l = collect_aux [] n in
    List.iter (fun n -> n.seen <- false) !seens;
    let l = List.map (fun n ->
			match n.trans with
			  | `Final -> fin
			  | `Elem (p,a) -> 
			      mk !re_loc (Prod(p, mk !re_loc (PatVar a.name)))
			  | _ -> assert false
		     ) l in
    match l with
      | h::t ->
	  List.fold_left (fun accu p -> mk !re_loc (Or (accu,p))) h t
      | _ -> assert false
*)    
	
220
221

  let constant_nil v t = 
222
    mk !re_loc 
223
      (And (t, (mk !re_loc (Constant (v, Types.Atom Sequence.nil_atom)))))
224

225
226
  let compile loc regexp queue : ppat =
    re_loc := loc;
227
    let vars = seq_vars StringSet.empty regexp in
228
    let fin = StringSet.fold constant_nil vars queue in
229
230
    let re = propagate (fun p -> p) regexp in
    let n = guard_compile fin [re] in
231
    memo := Memo.empty; 
232
233
    let d = !defs in
    defs := [];
234
235
236
237
238
239
240
241

(*
    let after = new_node() in
    let n = collect queue (compile after re) in
    let d = List.map (fun n -> (n.name, collect queue n)) !to_compile in
    to_compile := [];
*)

242
    mk !re_loc (Recurs (n,d))
243
244
end

245
let compile_regexp = Regexp.compile noloc
246
247
248
249
250
251


let rec compile env { loc = loc; descr = d } : ti = 
  match (d : Ast.ppat') with
  | PatVar s -> 
      (try StringMap.find s env
252
       with Not_found -> 
253
	 raise_loc_generic loc ("Undefined type variable " ^ s)
254
      )
255
  | Recurs (t, b) -> compile (compile_many env b) t
256
  | Regexp (r,q) -> compile env (Regexp.compile loc r q)
257
258
  | Internal t -> cons loc (`Type t)
  | Or (t1,t2) -> cons loc (`Or (compile env t1, compile env t2))
259
  | And (t1,t2) -> cons loc (`And (compile env t1, compile env t2))
260
261
  | Diff (t1,t2) -> cons loc (`Diff (compile env t1, compile env t2))
  | Prod (t1,t2) -> cons loc (`Times (compile env t1, compile env t2))
262
  | XmlT (t1,t2) -> cons loc (`Xml (compile env t1, compile env t2))
263
264
265
266
267
  | Arrow (t1,t2) -> cons loc (`Arrow (compile env t1, compile env t2))
  | Record (l,o,t) -> cons loc (`Record (l,o,compile env t))
  | Constant (x,v) -> cons loc (`Constant (x,v))
  | Capture x -> cons loc (`Capture x)

268
269
270
271
272
273
274
and compile_many env b = 
  let b = List.map (fun (v,t) -> (v,t,mk' t.loc)) b in
  let env = 
    List.fold_left (fun env (v,t,x) -> StringMap.add v x env) env b in
  List.iter (fun (v,t,x) -> x.descr' <- `Alias (v, compile env t)) b;
  env

275
276
277
module IntSet = 
  Set.Make(struct type t = int let compare (x:int) y = compare x y end)

278
let comp_fv_seen = ref []
279
let comp_fv_res = ref StringSet.empty
280
let rec comp_fv s =
281
282
283
284
285
  match s.fv with
    | Some fv -> comp_fv_res := StringSet.union fv !comp_fv_res
    | None ->
	(match s.descr' with
	   | `Alias (_,x) -> 
286
	       if x.seen then ()
287
	       else ( 
288
289
		 x.seen <- true;
		 comp_fv_seen := x :: !comp_fv_seen; 
290
291
		 comp_fv x
	       ) 
292
	     | `Or (s1,s2) 
293
	     | `And (s1,s2)
294
295
296
297
298
299
	     | `Diff (s1,s2)
	     | `Times (s1,s2) | `Xml (s1,s2)
	     | `Arrow (s1,s2) -> comp_fv s1; comp_fv s2
	     | `Record (l,opt,s) -> comp_fv s
	     | `Type _ -> ()
	     | `Capture x
300
	     | `Constant (x,_) -> comp_fv_res := StringSet.add x !comp_fv_res
301
	  )
302
303
304


let fv s =   
305
306
  match s.fv with
    | Some l -> l
307
308
    | None -> 
	comp_fv s;
309
310
	let l = !comp_fv_res in
	comp_fv_res := StringSet.empty;
311
312
	List.iter (fun n -> n.seen <- false) !comp_fv_seen;
	comp_fv_seen := [];
313
	s.fv <- Some l; 
314
315
316
317
	l

let rec typ seen s : Types.descr =
  match s.descr' with
318
    | `Alias (v,x) ->
319
	if IntSet.mem s.id seen then 
320
321
	  raise_loc_generic s.loc' 
	    ("Unguarded recursion on variable " ^ v ^ " in this type")
322
	else typ (IntSet.add s.id seen) x
323
324
    | `Type t -> t
    | `Or (s1,s2) -> Types.cup (typ seen s1) (typ seen s2)
325
    | `And (s1,s2) ->  Types.cap (typ seen s1) (typ seen s2)
326
327
    | `Diff (s1,s2) -> Types.diff (typ seen s1) (typ seen s2)
    | `Times (s1,s2) ->	Types.times (typ_node s1) (typ_node s2)
328
    | `Xml (s1,s2) ->	Types.xml (typ_node s1) (typ_node s2)
329
330
    | `Arrow (s1,s2) ->	Types.arrow (typ_node s1) (typ_node s2)
    | `Record (l,o,s) -> Types.record l o (typ_node s)
331
    | `Capture x | `Constant (x,_) -> assert false
332
333
334
335
336
337
338

and typ_node s : Types.node =
  match s.type_node with
    | Some x -> x
    | None ->
	let x = Types.make () in
	s.type_node <- Some x;
339
	let t = typ IntSet.empty s in
340
341
342
	Types.define x t;
	x

343
344
345
let type_node s = 
  let s = typ_node s in
  let s = Types.internalize s in
346
(*  Types.define s (Types.normalize (Types.descr s)); *)
347
  s
348
349

let rec pat seen s : Patterns.descr =
350
351
352
  if StringSet.is_empty (fv s) 
  then Patterns.constr (Types.descr (type_node s)) 
  else
353
354
355
356
357
358
359
    try pat_aux seen s
    with Patterns.Error e -> raise_loc_generic s.loc' e
      | Location (loc,exn) when loc = noloc -> raise (Location (s.loc', exn))


and pat_aux seen s = match s.descr' with
  | `Alias (v,x) ->
360
      if IntSet.mem s.id seen 
361
362
363
      then raise 
	(Patterns.Error
	   ("Unguarded recursion on variable " ^ v ^ " in this pattern"));
364
      pat (IntSet.add s.id seen) x
365
  | `Or (s1,s2) -> Patterns.cup (pat seen s1) (pat seen s2)
366
  | `And (s1,s2) -> Patterns.cap (pat seen s1) (pat seen s2)
367
  | `Diff (s1,s2) when StringSet.is_empty (fv s2) ->
368
369
      let s2 = Types.neg (Types.descr (type_node s2)) in
      Patterns.cap (pat seen s1) (Patterns.constr s2)
370
371
372
  | `Diff _ ->
      raise (Patterns.Error "Difference not allowed in patterns")
  | `Times (s1,s2) -> Patterns.times (pat_node s1) (pat_node s2)
373
  | `Xml (s1,s2) -> Patterns.xml (pat_node s1) (pat_node s2)
374
375
376
377
378
379
380
381
  | `Record (l,false,s) -> Patterns.record l (pat_node s)
  | `Record _ ->
      raise (Patterns.Error "Optional field not allowed in record patterns")
  | `Capture x ->  Patterns.capture x
  | `Constant (x,c) -> Patterns.constant x c
  | `Arrow _ ->
      raise (Patterns.Error "Arrow not allowed in patterns")
  | `Type _ -> assert false
382
383
384
385
386

and pat_node s : Patterns.node =
  match s.pat_node with
    | Some x -> x
    | None ->
387
388
	let fv = SortedList.from_list (StringSet.elements (fv s)) in
	let x = Patterns.make fv in
389
	s.pat_node <- Some x;
390
	let t = pat IntSet.empty s in
391
392
393
	Patterns.define x t;
	x

394
let mk_typ e =
395
  if StringSet.is_empty (fv e) then type_node e
396
  else raise_loc_generic e.loc' "Capture variables are not allowed in types"
397
398
    

399
400
401
402
403
let typ glb e =
  mk_typ (compile glb e)

let pat glb e =
  pat_node (compile glb e)
404

405
406
407
408
409
410
411
412
413
414
415
416
let register_global_types glb b =
  let env' = compile_many glb b in
  List.fold_left 
    (fun glb (v,{ loc = loc }) -> 
       let t = StringMap.find v env' in
       let d = Types.descr (mk_typ t) in
       (*	       let d = Types.normalize d in*)
       Types.Print.register_global v d;
       if StringMap.mem v glb
       then raise_loc_generic loc ("Multiple definition for type " ^ v);
       StringMap.add v t glb
    ) glb b
417
418
419



420
421
(* II. Build skeleton *)

422
423
module Fv = StringSet

424
425
426
427
428
(* IDEA: introduce a node Loc in the AST to override nolocs
   in sub-expressions *)
   
let rec expr loc' glb { loc = loc; descr = d } = 
  let loc =  if loc = noloc then loc' else loc in
429
  let (fv,td) = 
430
    match d with
431
      | Forget (e,t) ->
432
	  let (fv,e) = expr loc glb e and t = typ glb t in
433
	  (fv, Typed.Forget (e,t))
434
435
      | Var s -> (Fv.singleton s, Typed.Var s)
      | Apply (e1,e2) -> 
436
	  let (fv1,e1) = expr loc glb e1 and (fv2,e2) = expr loc glb e2 in
437
	  (Fv.union fv1 fv2, Typed.Apply (e1,e2))
438
      | Abstraction a ->
439
440
	  let iface = List.map (fun (t1,t2) -> (typ glb t1, typ glb t2)) 
			a.fun_iface in
441
442
443
	  let t = List.fold_left 
		    (fun accu (t1,t2) -> Types.cap accu (Types.arrow t1 t2)) 
		    Types.any iface in
444
445
446
	  let iface = List.map 
			(fun (t1,t2) -> (Types.descr t1, Types.descr t2)) 
			iface in
447
	  let (fv0,body) = branches loc glb a.fun_body in
448
449
450
451
452
453
454
455
456
	  let fv = match a.fun_name with
	    | None -> fv0
	    | Some f -> Fv.remove f fv0 in
	  (fv,
	   Typed.Abstraction 
	     { Typed.fun_name = a.fun_name;
	       Typed.fun_iface = iface;
	       Typed.fun_body = body;
	       Typed.fun_typ = t;
457
	       Typed.fun_fv = Fv.elements fv
458
459
460
461
	     }
	  )
      | Cst c -> (Fv.empty, Typed.Cst c)
      | Pair (e1,e2) ->
462
	  let (fv1,e1) = expr loc glb e1 and (fv2,e2) = expr loc glb e2 in
463
	  (Fv.union fv1 fv2, Typed.Pair (e1,e2))
464
      | Xml (e1,e2) ->
465
	  let (fv1,e1) = expr loc glb e1 and (fv2,e2) = expr loc glb e2 in
466
	  (Fv.union fv1 fv2, Typed.Xml (e1,e2))
467
      | Dot (e,l) ->
468
	  let (fv,e) = expr loc glb e in
469
	  (fv,  Typed.Dot (e,l))
470
471
      | RecordLitt r -> 
	  let fv = ref Fv.empty in
472
	  let r  = List.sort (fun (l1,_) (l2,_) -> compare l1 l2) r in
473
474
	  let r = List.map 
		    (fun (l,e) -> 
475
476
		       let (fv2,e) = expr loc glb e 
		       in fv := Fv.union !fv fv2; (l,e))
477
478
479
480
481
482
483
		    r in
	  let rec check = function
	    | (l1,_) :: (l2,_) :: _ when l1 = l2 -> 
		raise_loc loc (MultipleLabel l1)
	    | _ :: rem -> check rem
	    | _ -> () in
	  check r;
484
	  (!fv, Typed.RecordLitt r)
485
      | Op (op,le) ->
486
	  let (fvs,ltes) = List.split (List.map (expr loc glb) le) in
487
488
	  let fv = List.fold_left Fv.union Fv.empty fvs in
	  (fv, Typed.Op (op,ltes))
489
      | Match (e,b) -> 
490
491
	  let (fv1,e) = expr loc glb e
	  and (fv2,b) = branches loc glb b in
492
493
	  (Fv.union fv1 fv2, Typed.Match (e, b))
      | Map (e,b) ->
494
495
	  let (fv1,e) = expr loc glb e
	  and (fv2,b) = branches loc glb b in
496
	  (Fv.union fv1 fv2, Typed.Map (e, b))
497
      | Try (e,b) ->
498
499
	  let (fv1,e) = expr loc glb e
	  and (fv2,b) = branches loc glb b in
500
	  (Fv.union fv1 fv2, Typed.Try (e, b))
501
  in
502
503
  fv,
  { Typed.exp_loc = loc;
504
505
506
507
    Typed.exp_typ = Types.empty;
    Typed.exp_descr = td;
  }
	      
508
  and branches loc glb b = 
509
    let fv = ref Fv.empty in
510
    let accept = ref Types.empty in
511
512
    let b = List.map 
	      (fun (p,e) ->
513
		 let (fv2,e) = expr loc glb e in
514
		 let p = pat glb p in
515
516
		 let fv2 = List.fold_right Fv.remove (Patterns.fv p) fv2 in
		 fv := Fv.union !fv fv2;
517
		 accept := Types.cup !accept (Types.descr (Patterns.accept p));
518
		 { Typed.br_used = false;
519
		   Typed.br_pat = p;
520
521
		   Typed.br_body = e }
	      ) b in
522
523
524
525
    (!fv, 
     { 
       Typed.br_typ = Types.empty; 
       Typed.br_branches = b; 
526
527
       Typed.br_accept = !accept;
       Typed.br_compiled = None;
528
529
     } 
    )
530

531
532
let expr = expr noloc

533
534
535
let let_decl glb p e =
  let (_,e) = expr glb e in
  { Typed.let_pat = pat glb p;
536
537
538
539
540
    Typed.let_body = e;
    Typed.let_compiled = None }

(* III. Type-checks *)

541
module Env = StringMap
542
type env = Types.descr Env.t
543
544
545

open Typed

546
let warning loc msg =
547
548
549
550
  Format.fprintf !Location.warning_ppf "Warning %a:@\n%a%s@\n" 
    Location.print_loc loc
    Location.html_hilight loc
    msg
551
552
553
554

let check loc t s msg =
  if not (Types.subtype t s) then raise_loc loc (Constraint (t, s, msg))

555
let rec type_check env e constr precise = 
556
(*  Format.fprintf Format.std_formatter "constr=%a precise=%b@\n"
557
558
    Types.Print.print_descr constr precise; 
*)
559
  let d = type_check' e.exp_loc env e.exp_descr constr precise in
560
561
562
  e.exp_typ <- Types.cup e.exp_typ d;
  d

563
and type_check' loc env e constr precise = match e with
564
565
566
567
  | Forget (e,t) ->
      let t = Types.descr t in
      ignore (type_check env e t false);
      t
568
  | Abstraction a ->
569
570
571
572
573
574
575
      let t =
	try Types.Arrow.check_strenghten a.fun_typ constr 
	with Not_found -> 
	  raise_loc loc 
	  (ShouldHave
	     (constr, "but the interface of the abstraction is not compatible"))
      in
576
577
578
      let env = match a.fun_name with
	| None -> env
	| Some f -> Env.add f a.fun_typ env in
579
580
      List.iter 
	(fun (t1,t2) ->
581
	   ignore (type_check_branches loc env t1 a.fun_body t2 false)
582
583
	) a.fun_iface;
      t
584

585
586
  | Match (e,b) ->
      let t = type_check env e b.br_accept true in
587
      type_check_branches loc env t b constr precise
588
589
590

  | Try (e,b) ->
      let te = type_check env e constr precise in
591
      let tb = type_check_branches loc env Types.any b constr precise in
592
      Types.cup te tb
593

594
595
596
597
  | Pair (e1,e2) ->
      type_check_pair loc env e1 e2 constr precise
  | Xml (e1,e2) ->
      type_check_pair ~kind:`XML loc env e1 e2 constr precise
598
599
600
601
602
  | RecordLitt r ->
      let rconstr = Types.Record.get constr in
      if Types.Record.is_empty rconstr then
	raise_loc loc (ShouldHave (constr,"but it is a record."));

603
604
605
606
(* Completely buggy !  Need to check at the end that all required labels 
   are present ...A better to do it without precise = true ? *)
      let precise = true in

607
608
609
610
611
612
613
614
615
      let (rconstr,res) = 
	List.fold_left 
	  (fun (rconstr,res) (l,e) ->
	     let rconstr = Types.Record.restrict_label_present rconstr l in
	     let pi = Types.Record.project_field rconstr l in
	     if Types.Record.is_empty rconstr then
	       raise_loc loc 
		 (ShouldHave (constr,(Printf.sprintf 
					"Field %s is not allowed here."
616
					(Types.LabelPool.value l)
617
618
619
620
621
622
623
624
625
626
627
628
				     )
			     ));
	     let t = type_check env e pi true in
	     let rconstr = Types.Record.restrict_field rconstr l t in
	     
	     let res = 
	       if precise 
	       then Types.cap res (Types.record l false (Types.cons t))
	       else res in
	     (rconstr,res)
	  ) (rconstr, if precise then Types.Record.any else constr) r
      in
629
(*      check loc res constr ""; *)
630
631
      res

632
633
634
635
636
  | Map (e,b) ->
      let t = type_check env e (Sequence.star b.br_accept) true in

      let constr' = Sequence.approx (Types.cap Sequence.any constr) in
      let exact = Types.subtype (Sequence.star constr') constr in
637
638
639
640
641
642
643
      (* Note: 
	 - could be more precise by integrating the decomposition
	 of constr inside Sequence.map.
      *)
      let res = 
	Sequence.map 
	  (fun t -> 
644
	     type_check_branches loc env t b constr' (precise || (not exact)))
645
646
647
	  t in
      if not exact then check loc res constr "";
      if precise then res else constr
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
  | Op ("@", [e1;e2]) ->
      let constr' = Sequence.star 
		      (Sequence.approx (Types.cap Sequence.any constr)) in
      let exact = Types.subtype constr' constr in
      if exact then
	let t1 = type_check env e1 constr' precise
	and t2 = type_check env e2 constr' precise in
	if precise then Sequence.concat t1 t2 else constr
      else
	(* Note:
	   the knownledge of t1 may makes it useless to
	   check t2 with 'precise' ... *)
	let t1 = type_check env e1 constr' true
	and t2 = type_check env e2 constr' true in
	let res = Sequence.concat t1 t2 in
	check loc res constr "";
	if precise then res else constr
665
  | Apply (e1,e2) ->
666
(*
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
      let constr' = Sequence.star 
		      (Sequence.approx (Types.cap Sequence.any constr)) in
      let t1 = type_check env e1 (Types.cup Types.Arrow.any constr') true in
      let t1_fun = Types.Arrow.get t1 in

      let has_fun = not (Types.Arrow.is_empty t1_fun)
      and has_seq = not (Types.subtype t1 Types.Arrow.any) in

      let constr' =
	Types.cap 
	  (if has_fun then Types.Arrow.domain t1_fun else Types.any)
	  (if has_seq then constr' else Types.any)
      in
      let need_arg = has_fun && Types.Arrow.need_arg t1_fun in
      let precise  = need_arg || has_seq in
      let t2 = type_check env e2 constr' precise in
      let res = Types.cup 
		  (if has_fun then 
		     if need_arg then Types.Arrow.apply t1_fun t2
		     else Types.Arrow.apply_noarg t1_fun
		   else Types.empty)
		  (if has_seq then Sequence.concat t1 t2
		   else Types.empty)
      in
      check loc res constr "";
      res
693
*)
694
695
696
      let t1 = type_check env e1 Types.Arrow.any true in
      let t1 = Types.Arrow.get t1 in
      let dom = Types.Arrow.domain t1 in
697
698
699
700
701
702
703
704
705
      let res =
	if Types.Arrow.need_arg t1 then
	  let t2 = type_check env e2 dom true in
	  Types.Arrow.apply t1 t2
	else
	  (ignore (type_check env e2 dom false); Types.Arrow.apply_noarg t1)
      in
      check loc res constr "";
      res
706
707
708
709
710
711
712
713
714
715
716
717
718
  | Op ("flatten", [e]) ->
      let constr' = Sequence.star 
		      (Sequence.approx (Types.cap Sequence.any constr)) in
      let sconstr' = Sequence.star constr' in
      let exact = Types.subtype constr' constr in
      if exact then
	let t = type_check env e sconstr' precise in
	if precise then Sequence.flatten t else constr
      else
	let t = type_check env e sconstr' true in
	let res = Sequence.flatten t in
	check loc res constr "";
	if precise then res else constr
719
720
721
722
723
  | _ -> 
      let t : Types.descr = compute_type' loc env e in
      check loc t constr "";
      t

724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
and type_check_pair ?(kind=`Normal) loc env e1 e2 constr precise =
  let rects = Types.Product.get ~kind constr in
  if Types.Product.is_empty rects then 
    (match kind with
      | `Normal -> raise_loc loc (ShouldHave (constr,"but it is a pair."))
      | `XML -> raise_loc loc (ShouldHave (constr,"but it is an XML element.")));
  let pi1 = Types.Product.pi1 rects in
  
  let t1 = type_check env e1 (Types.Product.pi1 rects) 
	     (precise || (Types.Product.need_second rects))in
  let rects = Types.Product.restrict_1 rects t1 in
  let t2 = type_check env e2 (Types.Product.pi2 rects) precise in
  if precise then 
    match kind with
      | `Normal -> Types.times (Types.cons t1) (Types.cons t2)
      | `XML -> Types.xml (Types.cons t1) (Types.cons t2)
  else
    constr


744
745
746
747
and compute_type env e =
  type_check env e Types.any true

and compute_type' loc env = function
748
749
750
751
  | Var s -> 
      (try Env.find s env 
       with Not_found -> raise_loc loc (UnboundId s)
      )
752
  | Cst c -> Types.constant c
753
754
755
756
  | Dot (e,l) ->
      let t = type_check env e Types.Record.any true in
         (try (Types.Record.project t l) 
          with Not_found -> raise_loc loc (WrongLabel(t,l)))
757
758
759
  | Op (op, el) ->
      let args = List.map (fun e -> (e.exp_loc, compute_type env e)) el in
      type_op loc op args
760
761
  | Map (e,b) ->
      let t = compute_type env e in
762
      Sequence.map (fun t -> type_check_branches loc env t b Types.any true) t
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780

(* We keep these cases here to allow comparison and benchmarking ...
   Just comment the corresponding cases in type_check' to
   activate these ones.
*)
  | Pair (e1,e2) -> 
      let t1 = compute_type env e1 
      and t2 = compute_type env e2 in
      Types.times (Types.cons t1) (Types.cons t2)
  | RecordLitt r ->
      List.fold_left 
        (fun accu (l,e) ->
           let t = compute_type env e in
           let t = Types.record l false (Types.cons t) in
           Types.cap accu t
        ) Types.Record.any r


781
  | _ -> assert false
782

783
and type_check_branches loc env targ brs constr precise =
784
  if Types.is_empty targ then Types.empty 
785
786
  else (
    brs.br_typ <- Types.cup brs.br_typ targ;
787
    branches_aux loc env targ 
788
789
      (if precise then Types.empty else constr) 
      constr precise brs.br_branches
790
  )
791
    
792
793
and branches_aux loc env targ tres constr precise = function
  | [] -> raise_loc loc (NonExhaustive targ)
794
795
796
797
798
799
  | b :: rem ->
      let p = b.br_pat in
      let acc = Types.descr (Patterns.accept p) in

      let targ' = Types.cap targ acc in
      if Types.is_empty targ' 
800
      then branches_aux loc env targ tres constr precise rem
801
802
803
804
805
806
      else 
	( b.br_used <- true;
	  let res = Patterns.filter targ' p in
	  let env' = List.fold_left 
		       (fun env (x,t) -> Env.add x (Types.descr t) env) 
		       env res in
807
808
	  let t = type_check env' b.br_body constr precise in
	  let tres = if precise then Types.cup t tres else tres in
809
810
	  let targ'' = Types.diff targ acc in
	  if (Types.non_empty targ'') then 
811
	    branches_aux loc env targ'' tres constr precise rem 
812
813
	  else
	    tres
814
	)
815

816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
and type_let_decl env l =
  let acc = Types.descr (Patterns.accept l.let_pat) in
  let t = type_check env l.let_body acc true in
  let res = Patterns.filter t l.let_pat in
  List.map (fun (x,t) -> (x, Types.descr t)) res

and type_rec_funs env l =
  let types = 
    List.fold_left
      (fun accu -> function  {let_body={exp_descr=Abstraction a}} as l ->
	 let t = a.fun_typ in
	 let acc = Types.descr (Patterns.accept l.let_pat) in
	 if not (Types.subtype t acc) then
	   raise_loc l.let_body.exp_loc (NonExhaustive (Types.diff t acc));
	 let res = Patterns.filter t l.let_pat in
	 List.fold_left (fun accu (x,t) -> (x, Types.descr t)::accu) accu res
	 | _ -> assert false) [] l
  in
  let env' = List.fold_left (fun env (x,t) -> Env.add x t env) env types in
  List.iter 
    (function  { let_body = { exp_descr = Abstraction a } } as l ->
       ignore (type_check env' l.let_body Types.any false)
       | _ -> assert false) l;
  types


842
843
and type_op loc op args =
  match (op,args) with
844
    | "+", [loc1,t1; loc2,t2] ->
845
	type_int_binop Intervals.add loc1 t1 loc2 t2
846
847
848
    | "-", [loc1,t1; loc2,t2] ->
	type_int_binop Intervals.sub loc1 t1 loc2 t2
    | ("*" | "/"), [loc1,t1; loc2,t2] ->
849
	type_int_binop (fun i1 i2 -> Intervals.any) loc1 t1 loc2 t2
850
    | "@", [loc1,t1; loc2,t2] ->
851
852
853
	check loc1 t1 Sequence.any
	  "The first argument of @ must be a sequence";
	Sequence.concat t1 t2
854
    | "flatten", [loc1,t1] ->
855
856
857
	check loc1 t1 Sequence.seqseq 
	  "The argument of flatten must be a sequence of sequences";
	Sequence.flatten t1
858
859
860
861
    | "load_xml", [loc1,t1] ->
	check loc1 t1 Sequence.string
	  "The argument of load_xml must be a string (filename)";
	Types.any
862
863
    | "raise", [loc1,t1] ->
	Types.empty
864
865
    | "print_xml", [loc1,t1] ->
	Sequence.string
866
867
    | "print", [loc1,t1] ->
	check loc1 t1 Sequence.string
868
869
870
871
872
873
874
875
	  "The argument of print must be a string";
	Sequence.nil_type
    | "dump_to_file", [loc1,t1; loc2,t2] ->
	check loc1 t1 Sequence.string
	  "The argument of dump_to_file must be a string (filename)";
	check loc2 t2 Sequence.string
	  "The argument of dump_to_file must be a string (value to dump)";
	Sequence.nil_type
876
877
    | "int_of", [loc1,t1] ->
	check loc1 t1 Sequence.string
878
	  "The argument of int_of must be a string";
879
880
881
	if not (Types.subtype t1 Builtin.intstr) then
	  warning loc "This application of int_of may fail";
	Types.interval Intervals.any
882
883
    | "string_of", [loc1,t1] ->
	Sequence.string
884
885
886
887
888
889
890
891
892
893
894
    | _ -> assert false

and type_int_binop f loc1 t1 loc2 t2 =
  if not (Types.Int.is_int t1) then
    raise_loc loc1 
      (Constraint 
	 (t1,Types.Int.any,
	  "The first argument must be an integer"));
  if not (Types.Int.is_int t2) then
    raise_loc loc2
      (Constraint 
895
	       (t2,Types.Int.any,
896
897
898
899
900
		"The second argument must be an integer"));
  Types.Int.put
    (f (Types.Int.get t1) (Types.Int.get t2));