typer.ml 26.8 KB
Newer Older
1
2
(* I. Transform the abstract syntax of types and patterns into
      the internal form *)
3
4
5

open Location
open Ast
6
open Ident
7

8
module S = struct type t = string let compare = compare end
9
10
11
module TypeEnv = Map.Make(S)
module Env = Map.Make(Ident.Id)
(*
12
module StringSet = Set.Make(S)
13
*)
14

15
16
exception NonExhaustive of Types.descr
exception Constraint of Types.descr * Types.descr * string
17
exception ShouldHave of Types.descr * string
18
exception WrongLabel of Types.descr * label
19
exception UnboundId of string
20
21

let raise_loc loc exn = raise (Location (loc,exn))
22
23
24
25

(* Internal representation as a graph (desugar recursive types and regexp),
   to compute freevars, etc... *)

26
type ti = {
27
  id : int; 
28
  mutable seen : bool;
29
  mutable loc' : loc;
30
  mutable fv : fv option; 
31
32
33
34
35
  mutable descr': descr;
  mutable type_node: Types.node option;
  mutable pat_node: Patterns.node option
} 
and descr =
36
37
38
39
40
41
42
43
  | IAlias of string * ti
  | IType of Types.descr
  | IOr of ti * ti
  | IAnd of ti * ti
  | IDiff of ti * ti
  | ITimes of ti * ti
  | IXml of ti * ti
  | IArrow of ti * ti
44
  | IOptional of ti
45
  | IRecord of bool * ti label_map
46
47
  | ICapture of id
  | IConstant of id * Types.const
48
49
    

50
type glb = ti TypeEnv.t
51

52
53
let mk' =
  let counter = ref 0 in
54
  fun loc ->
55
    incr counter;
56
57
    let rec x = { 
      id = !counter; 
58
      seen = false;
59
      loc' = loc; 
60
      fv = None; 
61
      descr' = IAlias ("__dummy__", x);
62
63
64
      type_node = None; 
      pat_node = None 
    } in
65
66
67
    x

let cons loc d =
68
  let x = mk' loc in
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
  x.descr' <- d;
  x
    
(* Note:
   Compilation of Regexp is implemented as a ``rewriting'' of
   the parsed syntax, in order to be able to print its result
   (for debugging for instance)
   
   It would be possible (and a little more efficient) to produce
   directly ti nodes.
*)
    
module Regexp = struct
  let defs = ref []
  let name =
    let c = ref 0 in
    fun () ->
      incr c;
      "#" ^ (string_of_int !c)

  let rec seq_vars accu = function
    | Epsilon | Elem _ -> accu
    | Seq (r1,r2) | Alt (r1,r2) -> seq_vars (seq_vars accu r1) r2
    | Star r | WeakStar r -> seq_vars accu r
93
    | SeqCapture (v,r) -> seq_vars (IdSet.add v accu) r
94

95
96
  let uniq_id = let r = ref 0 in fun () -> incr r; !r

97
98
99
  type flat =  
    | REpsilon 
    | RElem of int * Ast.ppat  (* the int arg is used
100
					    to stop generic comparison *)
101
102
103
104
    | RSeq of flat * flat
    | RAlt of flat * flat
    | RStar of flat
    | RWeakStar of flat
105

106
107
  let re_loc = ref noloc

108
  let rec propagate vars : regexp -> flat = function
109
110
111
112
113
114
    | Epsilon -> REpsilon
    | Elem x -> let p = vars x in RElem (uniq_id (),p)
    | Seq (r1,r2) -> RSeq (propagate vars r1,propagate vars r2)
    | Alt (r1,r2) -> RAlt (propagate vars r1, propagate vars r2)
    | Star r -> RStar (propagate vars r)
    | WeakStar r -> RWeakStar (propagate vars r)
115
    | SeqCapture (v,x) -> 
116
	let v= mk !re_loc (Capture v) in
117
	propagate (fun p -> mk !re_loc (And (vars p,v))) x
118

119
120
121
122
123
  let dummy_pat = mk noloc (PatVar "DUMMY")
  let cup r1 r2 =
    if r1 == dummy_pat then r2 else
      if r2 == dummy_pat then r1 else
	mk !re_loc (Or (r1,r2))
124

125
126
127
128
129
130
131
(*TODO: review this compilation schema to avoid explosion when
  coding (Optional x) by  (Or(Epsilon,x)); memoization ... *)

  module Memo = Map.Make(struct type t = flat list let compare = compare end)
  module Coind = Set.Make(struct type t = flat list let compare = compare end)
  let memo = ref Memo.empty

132

133
134
  let rec compile fin e seq : Ast.ppat = 
    if Coind.mem seq !e then dummy_pat
135
    else (
136
      e := Coind.add seq !e;
137
138
      match seq with
	| [] ->
139
140
	    fin
	| REpsilon :: rest -> 
141
	    compile fin e rest
142
143
144
	| RElem (_,p) :: rest -> 
	    mk !re_loc (Prod (p, guard_compile fin rest))
	| RSeq (r1,r2) :: rest -> 
145
	    compile fin e (r1 :: r2 :: rest)
146
	| RAlt (r1,r2) :: rest -> 
147
	    cup (compile fin e (r1::rest)) (compile fin e (r2::rest))
148
	| RStar r :: rest -> 
149
	    cup (compile fin e (r::seq)) (compile fin e rest) 
150
	| RWeakStar r :: rest -> 
151
152
	    cup (compile fin e rest) (compile fin e (r::seq))
    )
153
  and guard_compile fin seq =
154
    try Memo.find seq !memo
155
156
157
    with
	Not_found ->
          let n = name () in
158
	  let v = mk !re_loc (PatVar n) in
159
160
          memo := Memo.add seq v !memo;
	  let d = compile fin (ref Coind.empty) seq in
161
162
	  assert (d != dummy_pat);
	  defs := (n,d) :: !defs;
163
164
	  v

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
(*
  type trans = [ `Alt of gnode * gnode | `Elem of Ast.ppat * gnode | `Final ]
  and gnode = 
      {
	mutable seen  : bool;
	mutable compile : bool;
	name  : string;
	mutable trans : trans;
      }

  let new_node() = { seen = false; compile = false; 
		     name = name(); trans = `Final }
  let to_compile = ref []

  let rec compile after = function
    | `Epsilon -> after
    | `Elem (_,p) -> 
	if not after.compile then (after.compile <- true; 
				   to_compile := after :: !to_compile);
	{ new_node () with trans = `Elem (p, after)  }
    | `Seq(r1,r2) -> compile (compile after r2) r1
    | `Alt(r1,r2) ->
	let r1 = compile after r1 and r2 = compile after r2 in
	{ new_node () with trans = `Alt (r1,r2) }
    | `Star r ->
	let n  = new_node() in
	n.trans <- `Alt (compile n r, after);
	n
    | `WeakStar r ->
	let n  = new_node() in
	n.trans <- `Alt (after, compile n r);
	n

  let seens = ref []	
  let rec collect_aux accu n =
    if n.seen then accu 
    else ( seens := n :: !seens;
	   match n.trans with
	     | `Alt (n1,n2) -> collect_aux (collect_aux accu n2) n1
	     | _ -> n :: accu
	 )

  let collect fin n =
    let l = collect_aux [] n in
    List.iter (fun n -> n.seen <- false) !seens;
    let l = List.map (fun n ->
			match n.trans with
			  | `Final -> fin
			  | `Elem (p,a) -> 
			      mk !re_loc (Prod(p, mk !re_loc (PatVar a.name)))
			  | _ -> assert false
		     ) l in
    match l with
      | h::t ->
	  List.fold_left (fun accu p -> mk !re_loc (Or (accu,p))) h t
      | _ -> assert false
*)    
	
223

224
  let constant_nil t v = 
225
    mk !re_loc 
226
      (And (t, (mk !re_loc (Constant (v, Types.Atom Sequence.nil_atom)))))
227

228
229
  let compile loc regexp queue : ppat =
    re_loc := loc;
230
231
    let vars = seq_vars IdSet.empty regexp in
    let fin = IdSet.fold constant_nil queue vars in
232
233
    let re = propagate (fun p -> p) regexp in
    let n = guard_compile fin [re] in
234
    memo := Memo.empty; 
235
236
    let d = !defs in
    defs := [];
237
238
239
240
241
242
243
244

(*
    let after = new_node() in
    let n = collect queue (compile after re) in
    let d = List.map (fun n -> (n.name, collect queue n)) !to_compile in
    to_compile := [];
*)

245
    mk !re_loc (Recurs (n,d))
246
247
end

248
let compile_regexp = Regexp.compile noloc
249
250
251
252
253


let rec compile env { loc = loc; descr = d } : ti = 
  match (d : Ast.ppat') with
  | PatVar s -> 
254
      (try TypeEnv.find s env
255
       with Not_found -> 
256
	 raise_loc_generic loc ("Undefined type variable " ^ s)
257
      )
258
  | Recurs (t, b) -> compile (compile_many env b) t
259
  | Regexp (r,q) -> compile env (Regexp.compile loc r q)
260
261
262
263
264
265
266
  | Internal t -> cons loc (IType t)
  | Or (t1,t2) -> cons loc (IOr (compile env t1, compile env t2))
  | And (t1,t2) -> cons loc (IAnd (compile env t1, compile env t2))
  | Diff (t1,t2) -> cons loc (IDiff (compile env t1, compile env t2))
  | Prod (t1,t2) -> cons loc (ITimes (compile env t1, compile env t2))
  | XmlT (t1,t2) -> cons loc (IXml (compile env t1, compile env t2))
  | Arrow (t1,t2) -> cons loc (IArrow (compile env t1, compile env t2))
267
  | Optional t -> cons loc (IOptional (compile env t))
268
  | Record (o,r) ->  cons loc (IRecord (o, LabelMap.map (compile env) r))
269
270
  | Constant (x,v) -> cons loc (IConstant (x,v))
  | Capture x -> cons loc (ICapture x)
271

272
273
274
and compile_many env b = 
  let b = List.map (fun (v,t) -> (v,t,mk' t.loc)) b in
  let env = 
275
    List.fold_left (fun env (v,t,x) -> TypeEnv.add v x env) env b in
276
  List.iter (fun (v,t,x) -> x.descr' <- IAlias (v, compile env t)) b;
277
278
  env

279
280
281
module IntSet = 
  Set.Make(struct type t = int let compare (x:int) y = compare x y end)

282
let comp_fv_seen = ref []
283
let comp_fv_res = ref IdSet.empty
284
let rec comp_fv s =
285
  match s.fv with
286
    | Some fv -> comp_fv_res := IdSet.cup fv !comp_fv_res
287
288
    | None ->
	(match s.descr' with
289
	   | IAlias (_,x) -> 
290
	       if x.seen then ()
291
	       else ( 
292
293
		 x.seen <- true;
		 comp_fv_seen := x :: !comp_fv_seen; 
294
295
		 comp_fv x
	       ) 
296
297
298
299
300
	   | IOr (s1,s2) 
	   | IAnd (s1,s2)
	   | IDiff (s1,s2)
	   | ITimes (s1,s2) | IXml (s1,s2)
	   | IArrow (s1,s2) -> comp_fv s1; comp_fv s2
301
	   | IOptional r -> comp_fv r
302
	   | IRecord (_,r) -> LabelMap.iter comp_fv r
303
304
	   | IType _ -> ()
	   | ICapture x
305
	   | IConstant (x,_) -> comp_fv_res := IdSet.add x !comp_fv_res
306
	)
307
308
309


let fv s =   
310
311
  match s.fv with
    | Some l -> l
312
313
    | None -> 
	comp_fv s;
314
	let l = !comp_fv_res in
315
	comp_fv_res := IdSet.empty;
316
317
	List.iter (fun n -> n.seen <- false) !comp_fv_seen;
	comp_fv_seen := [];
318
	s.fv <- Some l; 
319
320
321
322
	l

let rec typ seen s : Types.descr =
  match s.descr' with
323
    | IAlias (v,x) ->
324
	if IntSet.mem s.id seen then 
325
326
	  raise_loc_generic s.loc' 
	    ("Unguarded recursion on variable " ^ v ^ " in this type")
327
	else typ (IntSet.add s.id seen) x
328
329
330
331
332
333
334
    | IType t -> t
    | IOr (s1,s2) -> Types.cup (typ seen s1) (typ seen s2)
    | IAnd (s1,s2) ->  Types.cap (typ seen s1) (typ seen s2)
    | IDiff (s1,s2) -> Types.diff (typ seen s1) (typ seen s2)
    | ITimes (s1,s2) ->	Types.times (typ_node s1) (typ_node s2)
    | IXml (s1,s2) ->	Types.xml (typ_node s1) (typ_node s2)
    | IArrow (s1,s2) ->	Types.arrow (typ_node s1) (typ_node s2)
335
    | IOptional s -> Types.Record.or_absent (typ seen s)
336
    | IRecord (o,r) -> 
337
	Types.record' 
338
	  (o, LabelMap.map typ_node r)
339
    | ICapture x | IConstant (x,_) -> assert false
340
341
342
343
344
345
346

and typ_node s : Types.node =
  match s.type_node with
    | Some x -> x
    | None ->
	let x = Types.make () in
	s.type_node <- Some x;
347
	let t = typ IntSet.empty s in
348
349
350
	Types.define x t;
	x

351
352
353
let type_node s = 
  let s = typ_node s in
  let s = Types.internalize s in
354
(*  Types.define s (Types.normalize (Types.descr s)); *)
355
  s
356
357

let rec pat seen s : Patterns.descr =
358
  if IdSet.is_empty (fv s) 
359
360
  then Patterns.constr (Types.descr (type_node s)) 
  else
361
362
363
364
365
366
    try pat_aux seen s
    with Patterns.Error e -> raise_loc_generic s.loc' e
      | Location (loc,exn) when loc = noloc -> raise (Location (s.loc', exn))


and pat_aux seen s = match s.descr' with
367
  | IAlias (v,x) ->
368
      if IntSet.mem s.id seen 
369
370
371
      then raise 
	(Patterns.Error
	   ("Unguarded recursion on variable " ^ v ^ " in this pattern"));
372
      pat (IntSet.add s.id seen) x
373
374
  | IOr (s1,s2) -> Patterns.cup (pat seen s1) (pat seen s2)
  | IAnd (s1,s2) -> Patterns.cap (pat seen s1) (pat seen s2)
375
  | IDiff (s1,s2) when IdSet.is_empty (fv s2) ->
376
377
      let s2 = Types.neg (Types.descr (type_node s2)) in
      Patterns.cap (pat seen s1) (Patterns.constr s2)
378
  | IDiff _ ->
379
      raise (Patterns.Error "Difference not allowed in patterns")
380
381
  | ITimes (s1,s2) -> Patterns.times (pat_node s1) (pat_node s2)
  | IXml (s1,s2) -> Patterns.xml (pat_node s1) (pat_node s2)
382
383
384
385
  | IOptional _ -> 
      raise 
      (Patterns.Error 
	 "Optional field not allowed in record patterns")
386
  | IRecord (o,r) ->
387
      let pats = ref [] in
388
389
      let aux l s = 
	if IdSet.is_empty (fv s) then type_node s
390
	else
391
392
393
394
	  ( pats := Patterns.record l (pat_node s) :: !pats;
	    Types.any_node )
      in
      let constr = Types.record' (o,LabelMap.mapi aux r) in
395
396
      List.fold_left Patterns.cap (Patterns.constr constr) !pats
(* TODO: can avoid constr when o=true, and all fields have fv *)
397
398
399
  | ICapture x ->  Patterns.capture x
  | IConstant (x,c) -> Patterns.constant x c
  | IArrow _ ->
400
      raise (Patterns.Error "Arrow not allowed in patterns")
401
  | IType _ -> assert false
402
403
404
405
406

and pat_node s : Patterns.node =
  match s.pat_node with
    | Some x -> x
    | None ->
407
	let x = Patterns.make (fv s) in
408
	s.pat_node <- Some x;
409
	let t = pat IntSet.empty s in
410
411
412
	Patterns.define x t;
	x

413
let mk_typ e =
414
  if IdSet.is_empty (fv e) then type_node e
415
  else raise_loc_generic e.loc' "Capture variables are not allowed in types"
416
417
    

418
419
420
421
422
let typ glb e =
  mk_typ (compile glb e)

let pat glb e =
  pat_node (compile glb e)
423

424
425
426
427
let register_global_types glb b =
  let env' = compile_many glb b in
  List.fold_left 
    (fun glb (v,{ loc = loc }) -> 
428
       let t = TypeEnv.find v env' in
429
430
431
       let d = Types.descr (mk_typ t) in
       (*	       let d = Types.normalize d in*)
       Types.Print.register_global v d;
432
       if TypeEnv.mem v glb
433
       then raise_loc_generic loc ("Multiple definition for type " ^ v);
434
       TypeEnv.add v t glb
435
    ) glb b
436
437
438



439
440
(* II. Build skeleton *)

441
module Fv = IdSet
442

443
444
445
446
447
(* IDEA: introduce a node Loc in the AST to override nolocs
   in sub-expressions *)
   
let rec expr loc' glb { loc = loc; descr = d } = 
  let loc =  if loc = noloc then loc' else loc in
448
  let (fv,td) = 
449
    match d with
450
      | Forget (e,t) ->
451
	  let (fv,e) = expr loc glb e and t = typ glb t in
452
	  (fv, Typed.Forget (e,t))
453
454
      | Var s -> (Fv.singleton s, Typed.Var s)
      | Apply (e1,e2) -> 
455
	  let (fv1,e1) = expr loc glb e1 and (fv2,e2) = expr loc glb e2 in
456
	  (Fv.cup fv1 fv2, Typed.Apply (e1,e2))
457
      | Abstraction a ->
458
459
	  let iface = List.map (fun (t1,t2) -> (typ glb t1, typ glb t2)) 
			a.fun_iface in
460
461
462
	  let t = List.fold_left 
		    (fun accu (t1,t2) -> Types.cap accu (Types.arrow t1 t2)) 
		    Types.any iface in
463
464
465
	  let iface = List.map 
			(fun (t1,t2) -> (Types.descr t1, Types.descr t2)) 
			iface in
466
	  let (fv0,body) = branches loc glb a.fun_body in
467
468
469
470
471
472
473
474
475
	  let fv = match a.fun_name with
	    | None -> fv0
	    | Some f -> Fv.remove f fv0 in
	  (fv,
	   Typed.Abstraction 
	     { Typed.fun_name = a.fun_name;
	       Typed.fun_iface = iface;
	       Typed.fun_body = body;
	       Typed.fun_typ = t;
476
	       Typed.fun_fv = fv
477
478
479
480
	     }
	  )
      | Cst c -> (Fv.empty, Typed.Cst c)
      | Pair (e1,e2) ->
481
	  let (fv1,e1) = expr loc glb e1 and (fv2,e2) = expr loc glb e2 in
482
	  (Fv.cup fv1 fv2, Typed.Pair (e1,e2))
483
      | Xml (e1,e2) ->
484
	  let (fv1,e1) = expr loc glb e1 and (fv2,e2) = expr loc glb e2 in
485
	  (Fv.cup fv1 fv2, Typed.Xml (e1,e2))
486
      | Dot (e,l) ->
487
	  let (fv,e) = expr loc glb e in
488
	  (fv,  Typed.Dot (e,l))
489
490
      | RecordLitt r -> 
	  let fv = ref Fv.empty in
491
492
	  let r = LabelMap.map 
		    (fun e -> 
493
		       let (fv2,e) = expr loc glb e 
494
		       in fv := Fv.cup !fv fv2; e)
495
		    r in
496
	  (!fv, Typed.RecordLitt r)
497
      | Op (op,le) ->
498
	  let (fvs,ltes) = List.split (List.map (expr loc glb) le) in
499
	  let fv = List.fold_left Fv.cup Fv.empty fvs in
500
	  (fv, Typed.Op (op,ltes))
501
      | Match (e,b) -> 
502
503
	  let (fv1,e) = expr loc glb e
	  and (fv2,b) = branches loc glb b in
504
	  (Fv.cup fv1 fv2, Typed.Match (e, b))
505
      | Map (e,b) ->
506
507
	  let (fv1,e) = expr loc glb e
	  and (fv2,b) = branches loc glb b in
508
	  (Fv.cup fv1 fv2, Typed.Map (e, b))
509
      | Try (e,b) ->
510
511
	  let (fv1,e) = expr loc glb e
	  and (fv2,b) = branches loc glb b in
512
	  (Fv.cup fv1 fv2, Typed.Try (e, b))
513
  in
514
515
  fv,
  { Typed.exp_loc = loc;
516
517
518
519
    Typed.exp_typ = Types.empty;
    Typed.exp_descr = td;
  }
	      
520
  and branches loc glb b = 
521
    let fv = ref Fv.empty in
522
    let accept = ref Types.empty in
523
524
    let b = List.map 
	      (fun (p,e) ->
525
		 let (fv2,e) = expr loc glb e in
526
		 let p = pat glb p in
527
528
		 let fv2 = Fv.diff fv2 (Patterns.fv p) in
		 fv := Fv.cup !fv fv2;
529
		 accept := Types.cup !accept (Types.descr (Patterns.accept p));
530
		 { Typed.br_used = false;
531
		   Typed.br_pat = p;
532
533
		   Typed.br_body = e }
	      ) b in
534
535
536
537
    (!fv, 
     { 
       Typed.br_typ = Types.empty; 
       Typed.br_branches = b; 
538
539
       Typed.br_accept = !accept;
       Typed.br_compiled = None;
540
541
     } 
    )
542

543
544
let expr = expr noloc

545
546
547
let let_decl glb p e =
  let (_,e) = expr glb e in
  { Typed.let_pat = pat glb p;
548
549
550
551
552
553
    Typed.let_body = e;
    Typed.let_compiled = None }

(* III. Type-checks *)

type env = Types.descr Env.t
554
555
556

open Typed

557
let warning loc msg =
558
559
560
561
  Format.fprintf !Location.warning_ppf "Warning %a:@\n%a%s@\n" 
    Location.print_loc loc
    Location.html_hilight loc
    msg
562
563
564
565

let check loc t s msg =
  if not (Types.subtype t s) then raise_loc loc (Constraint (t, s, msg))

566
let rec type_check env e constr precise = 
567
(*  Format.fprintf Format.std_formatter "constr=%a precise=%b@\n"
568
569
    Types.Print.print_descr constr precise; 
*)
570
  let d = type_check' e.exp_loc env e.exp_descr constr precise in
571
572
573
  e.exp_typ <- Types.cup e.exp_typ d;
  d

574
and type_check' loc env e constr precise = match e with
575
576
577
578
  | Forget (e,t) ->
      let t = Types.descr t in
      ignore (type_check env e t false);
      t
579
  | Abstraction a ->
580
581
582
583
584
585
586
      let t =
	try Types.Arrow.check_strenghten a.fun_typ constr 
	with Not_found -> 
	  raise_loc loc 
	  (ShouldHave
	     (constr, "but the interface of the abstraction is not compatible"))
      in
587
588
589
      let env = match a.fun_name with
	| None -> env
	| Some f -> Env.add f a.fun_typ env in
590
591
      List.iter 
	(fun (t1,t2) ->
592
	   ignore (type_check_branches loc env t1 a.fun_body t2 false)
593
594
	) a.fun_iface;
      t
595

596
597
  | Match (e,b) ->
      let t = type_check env e b.br_accept true in
598
      type_check_branches loc env t b constr precise
599
600
601

  | Try (e,b) ->
      let te = type_check env e constr precise in
602
      let tb = type_check_branches loc env Types.any b constr precise in
603
      Types.cup te tb
604

605
606
607
608
  | Pair (e1,e2) ->
      type_check_pair loc env e1 e2 constr precise
  | Xml (e1,e2) ->
      type_check_pair ~kind:`XML loc env e1 e2 constr precise
609
610

(*
611
612
613
614
615
  | RecordLitt r ->
      let rconstr = Types.Record.get constr in
      if Types.Record.is_empty rconstr then
	raise_loc loc (ShouldHave (constr,"but it is a record."));

616
617
618
619
(* Completely buggy !  Need to check at the end that all required labels 
   are present ...A better to do it without precise = true ? *)
      let precise = true in

620
621
622
623
624
625
626
627
628
      let (rconstr,res) = 
	List.fold_left 
	  (fun (rconstr,res) (l,e) ->
	     let rconstr = Types.Record.restrict_label_present rconstr l in
	     let pi = Types.Record.project_field rconstr l in
	     if Types.Record.is_empty rconstr then
	       raise_loc loc 
		 (ShouldHave (constr,(Printf.sprintf 
					"Field %s is not allowed here."
629
					(LabelPool.value l)
630
631
632
633
634
635
636
637
638
639
640
641
				     )
			     ));
	     let t = type_check env e pi true in
	     let rconstr = Types.Record.restrict_field rconstr l t in
	     
	     let res = 
	       if precise 
	       then Types.cap res (Types.record l false (Types.cons t))
	       else res in
	     (rconstr,res)
	  ) (rconstr, if precise then Types.Record.any else constr) r
      in
642
(*      check loc res constr ""; *)
643
      res
644
*)
645

646
647
648
649
650
  | Map (e,b) ->
      let t = type_check env e (Sequence.star b.br_accept) true in

      let constr' = Sequence.approx (Types.cap Sequence.any constr) in
      let exact = Types.subtype (Sequence.star constr') constr in
651
652
653
654
655
656
657
      (* Note: 
	 - could be more precise by integrating the decomposition
	 of constr inside Sequence.map.
      *)
      let res = 
	Sequence.map 
	  (fun t -> 
658
	     type_check_branches loc env t b constr' (precise || (not exact)))
659
660
661
	  t in
      if not exact then check loc res constr "";
      if precise then res else constr
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
  | Op ("@", [e1;e2]) ->
      let constr' = Sequence.star 
		      (Sequence.approx (Types.cap Sequence.any constr)) in
      let exact = Types.subtype constr' constr in
      if exact then
	let t1 = type_check env e1 constr' precise
	and t2 = type_check env e2 constr' precise in
	if precise then Sequence.concat t1 t2 else constr
      else
	(* Note:
	   the knownledge of t1 may makes it useless to
	   check t2 with 'precise' ... *)
	let t1 = type_check env e1 constr' true
	and t2 = type_check env e2 constr' true in
	let res = Sequence.concat t1 t2 in
	check loc res constr "";
	if precise then res else constr
679
  | Apply (e1,e2) ->
680
(*
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
      let constr' = Sequence.star 
		      (Sequence.approx (Types.cap Sequence.any constr)) in
      let t1 = type_check env e1 (Types.cup Types.Arrow.any constr') true in
      let t1_fun = Types.Arrow.get t1 in

      let has_fun = not (Types.Arrow.is_empty t1_fun)
      and has_seq = not (Types.subtype t1 Types.Arrow.any) in

      let constr' =
	Types.cap 
	  (if has_fun then Types.Arrow.domain t1_fun else Types.any)
	  (if has_seq then constr' else Types.any)
      in
      let need_arg = has_fun && Types.Arrow.need_arg t1_fun in
      let precise  = need_arg || has_seq in
      let t2 = type_check env e2 constr' precise in
      let res = Types.cup 
		  (if has_fun then 
		     if need_arg then Types.Arrow.apply t1_fun t2
		     else Types.Arrow.apply_noarg t1_fun
		   else Types.empty)
		  (if has_seq then Sequence.concat t1 t2
		   else Types.empty)
      in
      check loc res constr "";
      res
707
*)
708
709
710
      let t1 = type_check env e1 Types.Arrow.any true in
      let t1 = Types.Arrow.get t1 in
      let dom = Types.Arrow.domain t1 in
711
712
713
714
715
716
717
718
719
      let res =
	if Types.Arrow.need_arg t1 then
	  let t2 = type_check env e2 dom true in
	  Types.Arrow.apply t1 t2
	else
	  (ignore (type_check env e2 dom false); Types.Arrow.apply_noarg t1)
      in
      check loc res constr "";
      res
720
721
722
723
724
725
726
727
728
729
730
731
732
  | Op ("flatten", [e]) ->
      let constr' = Sequence.star 
		      (Sequence.approx (Types.cap Sequence.any constr)) in
      let sconstr' = Sequence.star constr' in
      let exact = Types.subtype constr' constr in
      if exact then
	let t = type_check env e sconstr' precise in
	if precise then Sequence.flatten t else constr
      else
	let t = type_check env e sconstr' true in
	let res = Sequence.flatten t in
	check loc res constr "";
	if precise then res else constr
733
734
735
736
737
  | _ -> 
      let t : Types.descr = compute_type' loc env e in
      check loc t constr "";
      t

738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
and type_check_pair ?(kind=`Normal) loc env e1 e2 constr precise =
  let rects = Types.Product.get ~kind constr in
  if Types.Product.is_empty rects then 
    (match kind with
      | `Normal -> raise_loc loc (ShouldHave (constr,"but it is a pair."))
      | `XML -> raise_loc loc (ShouldHave (constr,"but it is an XML element.")));
  let pi1 = Types.Product.pi1 rects in
  
  let t1 = type_check env e1 (Types.Product.pi1 rects) 
	     (precise || (Types.Product.need_second rects))in
  let rects = Types.Product.restrict_1 rects t1 in
  let t2 = type_check env e2 (Types.Product.pi2 rects) precise in
  if precise then 
    match kind with
      | `Normal -> Types.times (Types.cons t1) (Types.cons t2)
      | `XML -> Types.xml (Types.cons t1) (Types.cons t2)
  else
    constr


758
759
760
761
and compute_type env e =
  type_check env e Types.any true

and compute_type' loc env = function
762
763
  | Var s -> 
      (try Env.find s env 
764
       with Not_found -> raise_loc loc (UnboundId (Id.value s))
765
      )
766
  | Cst c -> Types.constant c
767
768
769
770
  | Dot (e,l) ->
      let t = type_check env e Types.Record.any true in
         (try (Types.Record.project t l) 
          with Not_found -> raise_loc loc (WrongLabel(t,l)))
771
772
773
  | Op (op, el) ->
      let args = List.map (fun e -> (e.exp_loc, compute_type env e)) el in
      type_op loc op args
774
775
  | Map (e,b) ->
      let t = compute_type env e in
776
      Sequence.map (fun t -> type_check_branches loc env t b Types.any true) t
777
778
779
780
781
782
783
784
785
786

(* We keep these cases here to allow comparison and benchmarking ...
   Just comment the corresponding cases in type_check' to
   activate these ones.
*)
  | Pair (e1,e2) -> 
      let t1 = compute_type env e1 
      and t2 = compute_type env e2 in
      Types.times (Types.cons t1) (Types.cons t2)
  | RecordLitt r ->
787
      let r = LabelMap.map (fun e -> Types.cons (compute_type env e)) r in
788
      Types.record' (false,r)
789
  | _ -> assert false
790

791
and type_check_branches loc env targ brs constr precise =
792
  if Types.is_empty targ then Types.empty 
793
794
  else (
    brs.br_typ <- Types.cup brs.br_typ targ;
795
    branches_aux loc env targ 
796
797
      (if precise then Types.empty else constr) 
      constr precise brs.br_branches
798
  )
799
    
800
801
and branches_aux loc env targ tres constr precise = function
  | [] -> raise_loc loc (NonExhaustive targ)
802
803
804
805
806
807
  | b :: rem ->
      let p = b.br_pat in
      let acc = Types.descr (Patterns.accept p) in

      let targ' = Types.cap targ acc in
      if Types.is_empty targ' 
808
      then branches_aux loc env targ tres constr precise rem
809
810
811
812
813
814
      else 
	( b.br_used <- true;
	  let res = Patterns.filter targ' p in
	  let env' = List.fold_left 
		       (fun env (x,t) -> Env.add x (Types.descr t) env) 
		       env res in
815
816
	  let t = type_check env' b.br_body constr precise in
	  let tres = if precise then Types.cup t tres else tres in
817
818
	  let targ'' = Types.diff targ acc in
	  if (Types.non_empty targ'') then 
819
	    branches_aux loc env targ'' tres constr precise rem 
820
821
	  else
	    tres
822
	)
823

824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
and type_let_decl env l =
  let acc = Types.descr (Patterns.accept l.let_pat) in
  let t = type_check env l.let_body acc true in
  let res = Patterns.filter t l.let_pat in
  List.map (fun (x,t) -> (x, Types.descr t)) res

and type_rec_funs env l =
  let types = 
    List.fold_left
      (fun accu -> function  {let_body={exp_descr=Abstraction a}} as l ->
	 let t = a.fun_typ in
	 let acc = Types.descr (Patterns.accept l.let_pat) in
	 if not (Types.subtype t acc) then
	   raise_loc l.let_body.exp_loc (NonExhaustive (Types.diff t acc));
	 let res = Patterns.filter t l.let_pat in
	 List.fold_left (fun accu (x,t) -> (x, Types.descr t)::accu) accu res
	 | _ -> assert false) [] l
  in
  let env' = List.fold_left (fun env (x,t) -> Env.add x t env) env types in
  List.iter 
    (function  { let_body = { exp_descr = Abstraction a } } as l ->
       ignore (type_check env' l.let_body Types.any false)
       | _ -> assert false) l;
  types


850
851
and type_op loc op args =
  match (op,args) with
852
    | "+", [loc1,t1; loc2,t2] ->
853
	type_int_binop Intervals.add loc1 t1 loc2 t2
854
855
    | "-", [loc1,t1; loc2,t2] ->
	type_int_binop Intervals.sub loc1 t1 loc2 t2
856
    | ("*" | "/" | "mod"), [loc1,t1; loc2,t2] ->
857
	type_int_binop (fun i1 i2 -> Intervals.any) loc1 t1 loc2 t2
858
    | "@", [loc1,t1; loc2,t2] ->
859
860
861
	check loc1 t1 Sequence.any
	  "The first argument of @ must be a sequence";
	Sequence.concat t1 t2
862
    | "flatten", [loc1,t1] ->
863
864
865
	check loc1 t1 Sequence.seqseq 
	  "The argument of flatten must be a sequence of sequences";
	Sequence.flatten t1
866
867
868
869
    | "load_xml", [loc1,t1] ->
	check loc1 t1 Sequence.string
	  "The argument of load_xml must be a string (filename)";
	Types.any
870
871
872
873
    | "load_html", [loc1,t1] ->
	check loc1 t1 Sequence.string
	  "The argument of load_html must be a string (filename)";
	Types.any
874
875
    | "raise", [loc1,t1] ->
	Types.empty
876
877
    | "print_xml", [loc1,t1] ->
	Sequence.string
878
879
    | "print", [loc1,t1] ->
	check loc1 t1 Sequence.string
880
881
882
883
884
885
886
887
	  "The argument of print must be a string";
	Sequence.nil_type
    | "dump_to_file", [loc1,t1; loc2,t2] ->
	check loc1 t1 Sequence.string
	  "The argument of dump_to_file must be a string (filename)";
	check loc2 t2 Sequence.string
	  "The argument of dump_to_file must be a string (value to dump)";
	Sequence.nil_type
888
889
    | "int_of", [loc1,t1] ->
	check loc1 t1 Sequence.string
890
	  "The argument of int_of must be a string";
891
892
893
	if not (Types.subtype t1 Builtin.intstr) then
	  warning loc "This application of int_of may fail";
	Types.interval Intervals.any
894
895
    | "string_of", [loc1,t1] ->
	Sequence.string
896
897
898
899
900
901
902
903
904
905
906
    | _ -> assert false

and type_int_binop f loc1 t1 loc2 t2 =
  if not (Types.Int.is_int t1) then
    raise_loc loc1 
      (Constraint 
	 (t1,Types.Int.any,
	  "The first argument must be an integer"));
  if not (Types.Int.is_int t2) then
    raise_loc loc2
      (Constraint 
907
	       (t2,Types.Int.any,
908
909
910
911
912
		"The second argument must be an integer"));
  Types.Int.put
    (f (Types.Int.get t1) (Types.Int.get t2));