examples.ml 12 KB
Newer Older
1

2
3
4
let examples = [ "xml","(* Syntax for XML elements *)

type A = <a x=String y=?String>[ B* ]
5
6
7
8
9
10
11
12
13
type B = <b>[ PCDATA A? PCDATA ]

let x : A = 
 <a x=\"Bla\" y=\"Blo\">[ 
   <b>[ 'blabla' ]
   <b>[ 
     <a x=\"Foo\">[] 'bla' 'bla' 
   ] 
 ]
14
";"functions","(* Simple functions can be defined this way: *)
15
16
17
let f1 (x : Int) : Int = x + 3
;;
f1 5
18
19

(* With several arguments: *)
20
21
22
let f2 (x : Int, y : Int) : Int = x + y
;;
f2 (10,20)
23
24

(* You may directly deconstruct the arguments: *)
25
26
27
type A = <a href=String>String
let f3 (<a href=url>txt : A) : String = url @ \"=>\" @ txt
;;
28
29
30
31
32
33
f3 <a href=\"http://www.cduce.org\">\"CDuce homepage\";;

(* In general, if you want to specify several arrow types, or
   use several pattern matching branches, you have the general
   form: *)

34
let f4 (A -> String; ['0'--'9'+] -> Int)
35
| x & A -> f3 x
36
37
38
| x -> int_of x
;;
f4 \"123\"
39
";"mutrec","(* Adjacent type declarations are mutually recursive *)
40
41
42
type T = <t>S
type S = [ (Char | T)* ]
let x : S = [ 'abc' <t>['def'] 'ghi' ]
43

44
(* Similarly for toplevel function definitions *)
45

46
47
48
49
let f (x : Int) : Int = g x
let g (x : Int) : Int = 3
let a = 2
let h (x : Int) : Int = f x
50
   (* f and g are mutually recursive, but they cannot use h *)
51
";"sequence","(* Sequence are just defined with pairs and the atom `nil;
52
   the following notation are equivalent: *)
53
54
55
let l1 = (1,2,3,`nil)
let l2 = (1,(2,(3,`nil)))
let l3 = [ 1 2 3 ]
56
57

(* The [...] notation allow to specify a tail after a semi-colon : *)
58
59
let l4 = (10,20,l1)
let l5 = [ 10 20 ; l1 ]
60
61

(* Concatenation @ *)
62
let l6 = [ 1 2 3 ] @ [ 4 5 6 ]
63
64

(* Inside [...], it is possible to escape a subsequence with a ! *)
65
let l7 = [ 1 2 !l6 !l1 5 ]
66
";"seqtypes","(* Sequence types are defined with regular expression over types *)
67
68
69
type IntList = [ Int* ]
type IntStringList = [ (Int String)* ]
type IntNonEmptyList = [ Int+ ]
70

71
let l : IntList = [ 1 2 3 ]
72
";"integers","(* Yes, CDuce can handle large integers! *)
73
let facto (Int -> Int)
74
75
76
 | 0 | 1 -> 1
 | n -> n * (facto (n - 1))
in
77
facto 300
78
79

(* The tail-recursive way *)
80
let facto ((Int,Int) -> Int)
81
82
83
 | (x, 0 | 1) -> x
 | (x, n) -> facto (x * n, n - 1)
in
84
facto (1,10000)
85
";"sumtype","type Expr = 
86
87
88
89
    (`add, Expr, Expr)
  | (`mul, Expr, Expr)
  | (`sub, Expr, Expr)
  | (`div, Expr, Expr)
90
  | Int
91
 
92
let eval ( Expr -> Int )  
93
94
95
  | (`add,x,y) -> eval x + eval y
  | (`mul,x,y) -> eval x * eval y
  | (`sub,x,y) -> eval x - eval y
96
  | (`div,x,y) -> (eval x) div (eval y)
97
98
  | n -> n 
in
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
eval (`add, 10, (`mul, 20, 5))
";"ovfun","type Person = FPerson | MPerson 
type FPerson = <person gender = \"F\" >[ Name Children (Tel | Email)?] 
type MPerson = <person gender=\"M\">[ Name Children (Tel | Email)?] 
type Children = <children>[Person*] 
type Name = <name>[ PCDATA ]
type Tel = <tel kind=?\"home\"|\"work\">['0'--'9'+ '-' '0'--'9'+]
type Email = <email>[PCDATA '@' PCDATA]

type Man = <man name=String>[ Sons Daughters ]
type Woman = <woman name=String>[ Sons Daughters ]
type Sons = <sons>[ Man* ]
type Daughters = <daughters>[ Woman* ]

let split (MPerson -> Man ; FPerson -> Woman)
  <person gender=g>[ <name>n <children>[(mc::MPerson | fc::FPerson)*]; _] ->
     let tag = match g with \"F\" -> `woman | \"M\" -> `man in
     let s = map mc with x -> split x in
     let d = map fc with x -> split x in
     <(tag) name=n>[ <sons>s  <daughters>d ] 
 
120
121

let base : Person = 
122
123
<person gender=\"F\">[ 
  <name>\"Themis\"
124
  <children>[ 
125
126
    <person gender=\"M\">[
      <name>\"Prometheus\"
127
      <children>[
128
129
130
131
132
133
134
135
136
137
138
        <person gender=\"M\">[
          <name>\"Deucalion\"
          <children>[]
        ]
      ]
      <email>\"focifero@olympus.com\"
    ] 
    <person gender=\"M\">[
      <name>\"Epimetheus\"
      <children>[]
      <tel> \"314-1592654\"
139
140
141
142
    ]
  ] 
  <tel kind=\"home\"> \"271-828182\"
]
143
144
145
146
147
148
in
split base
";"note","type Doc = <doc>Text
type Text = [ (Char | (Letter+ ' '* Note))* ]
type Letter = 'a'--'z' | 'A'--'Z'
type Note = <note>[ PCDATA ]
149

150
151
152
type Flow = [ (Char | <ref no=Int>[ PCDATA ])* ]
type Notes = [ <note no=Int>[ PCDATA ]* ]
type Result = <doc>[ <body>Flow <notes>Notes ]
153

154
let format (<doc>s : Doc) : Result = 
155
  let (body,notes) = text (s,1) in
156
  <doc>[ <body>body <notes>notes ]
157

158
let text ( (Text,Int) -> (Flow,Notes) )
159
160
161
162
 | ([ pre::Char*? (word::Letter+ ' '* <note>n); rem ], count) ->
      let (body,notes) = text (rem, count + 1) in
      (pre @ [<ref no=count>word] @ body, 
       [<note no=count>n] @ notes)
163
 | (body,_) -> (body, [])
164
165
166

let src : Doc = <doc>[ 'CDuce ' <note>\"Frisch, Castagna, Benzaken\"
		 ' is an XML ' <note>\"a W3C standard\"
167
168
169
170
171
172
173
174
175
176
		 '-friendly programming language.' ]
in
format src
";"biblio","type Biblio  = <bibliography>[Heading Paper*]
type Heading = <heading>[ PCDATA ]
type Paper   = <paper>[ Author+ Title Conference File ]
type Author  = <author>[ PCDATA ]
type Title   = <title>[ PCDATA ]
type Conference = <conference>[ PCDATA ]
type File    = <file>[ PCDATA ]
177
178

(* Simplified HTML *)
179
type Html  = <html>[ <head>[ <title>[ PCDATA ] ]  <body>Mix ]
180
type Mix   = [ ( <h1>Mix | <a href=String>Mix | <p>Mix | <em>Mix 
181
	       | <ul>[ <li>Mix +] | Char )* ]
182

183
let do_authors ([Author+] -> Mix)
184
185
 | [ <author>a ] -> a
 | [ <author>a <author>b ] -> a @ \" and, \" @ b
186
 | [ <author>a; x] -> a @ \", \" @ (do_authors x)
187

188
let do_paper (Paper -> <li>Mix)
189
  <paper>[ x::_* <title>t <conference>c <file>f ] ->
190
    <li>[ <a href=f>t !(do_authors x) '; in ' <em>c '.' ]
191

192
let do_biblio (Biblio -> Html)
193
194
195
196
197
  <bibliography>[ <heading>h; p ] ->
      let body = match p with
      | [] -> \"Empty bibliography\"
      | l -> [ <h1>h <ul>(map l with x -> do_paper x) ]
      in    
198
      <html>[ <head>[ <title>h ] <body>body ]
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

let bib : Biblio = 
  <bibliography>[
    <heading>\"Alain Frisch's bibliography\"
    <paper>[
      <author>\"Alain Frisch\"
      <author>\"Giuseppe Castagna\"
      <author>\"Vronique Benzaken\"
      <title>\"Semantic subtyping\"
      <conference>\"LICS 02\"
      <file>\"semsub.ps.gz\"
    ]
    <paper>[
      <author>\"Mariangiola Dezani-Ciancaglini\"
      <author>\"Alain Frisch\"
      <author>\"Elio Giovannetti\"
      <author>\"Yoko Motohama\"
      <title>\"The Relevance of Semantic Subtyping\"
      <conference>\"ITRS'02\"
      <file>\"itrs02.ps.gz\"
    ]
    <paper>[
      <author>\"Vronique Benzaken\"
      <author>\"Giuseppe Castagna\"
      <author>\"Alain Frisch\"
      <title>\"CDuce: a white-paper\"
      <conference>\"PLANX-02\"
      <file>\"planx.ps.gz\"
    ]
228
229
230
 ]
in
do_biblio bib
231
";"projection","(* The projection  e/t   is translated to:
232
233
   transform e with [ (x::t|_)* ]  -> x *)

234
235
236
237
238
239
240
type Biblio  = <bibliography>[Heading Paper*]
type Heading = <heading>[ PCDATA ]
type Paper   = <paper>[ Author+ Title Conference File ]
type Author  = <author>[ PCDATA ]
type Title   = <title>[ PCDATA ]
type Conference = <conference>[ PCDATA ]
type File    = <file>[ PCDATA ]
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

let bib : Biblio = 
  <bibliography>[
    <heading>\"Alain Frisch's bibliography\"
    <paper>[
      <author>\"Alain Frisch\"
      <author>\"Giuseppe Castagna\"
      <author>\"Vronique Benzaken\"
      <title>\"Semantic subtyping\"
      <conference>\"LICS 02\"
      <file>\"semsub.ps.gz\"
    ]
    <paper>[
      <author>\"Mariangiola Dezani-Ciancaglini\"
      <author>\"Alain Frisch\"
      <author>\"Elio Giovannetti\"
      <author>\"Yoko Motohama\"
      <title>\"The Relevance of Semantic Subtyping\"
      <conference>\"ITRS'02\"
      <file>\"itrs02.ps.gz\"
    ]
    <paper>[
      <author>\"Vronique Benzaken\"
      <author>\"Giuseppe Castagna\"
      <author>\"Alain Frisch\"
      <title>\"CDuce: a white-paper\"
      <conference>\"PLANX-02\"
      <file>\"planx.ps.gz\"
    ]
270
 ]
271

272
273
274
let titles = [bib]/<paper>_/<title>_
let authors = [bib]/<paper>_/<author>_
let titles_concat = [bib]/<paper>_/<title>_/Char
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
";"xtransform","
(* For the purpose of the example we can consider this hugely
   simplified definition of Xhtml
*)

type Flow = Char | Block | Inline  ;;
type Block = P | Heading | Lists | Blocktext | Char
type Lists = Ul
type Blocktext = Pre |  Address | Center;;
type Inline = Char | A | Fontstyle
type Fontstyle = Tt | I | B | Big | Small;;

type Xhtml = <html>[ Head Body ];;
type Head = <head>[ Title <link>[ ]];;
type Title = <title>[ PCDATA ];;
type Body = <body bgcolor=?String>[ Block* ];;

type P = <p>[ Inline* ];;
type Heading = <(`h1 | `h2 | `h3 | `h4)>[ Inline* ];;

type Ul = <ul>[Li+];;
type Li = <li>[ Flow* ];;

type Address = <address>[ Inline* ];;
type Pre = <pre>[ (PCDATA | A | Fontstyle)* ];;
type Center = <center>[ Block* ];;

type A = <a ({ name = String } | { href = String })>[ (Inline \ A)* ];;
type Tt = <tt>[ Inline* ];;
type I = <i>[ Inline* ];;
type B = <b>[ Inline* ];;
type Big = <big>[ Inline* ];;
type Small = <small>[ Inline* ];;


(* xtransform matches the patterns against the root element of each
   XML tree and, if it fails, it recursively applies itself to the
   sequence of sons of the root.

   It can be used to put in boldface all the links of an XHTML
   document as follows
*)

let bold(x:[Xhtml]):[Xhtml]=xtransform x with <a (y)>t -> [ <a(y)>[<b>t] ]


(* let us apply the function to a document where links appear
   at different depths
*)


let doc : Xhtml =
  <html>[
    <head>[<title>\"Example\" <link>[]]
    <body>[
      <h2>['You can have links ' <a href=\"here\">\"here\"]
      <pre>['Or they can be down']
      <ul>[
        <li>['In ' <a name=\"list\">\"lists\" ' for instance']
	<li>['or you oddly decided to ' 
             <center>[<p>[<a href=\"what?\">\"center\"]] 
             ' them '
            ]
      ]
      <address>[
        'and even if they are in fancy ' <a name=\"address\">\"address boxes\"
      ]
      <p>[
          'nevertheless ' <a href=\"http://www.cduce.org\">\"Cduce\" ' and '
          <a href=\"xtransform\">[<tt>\"xtransform\"] 
          ' will put all links in bold so that when'
          ' you program your transformation you '
          <big>[<a name=\"\">\" don\'t \" ] ' have to worry about it'
     ]
   ]
  ];;

bold [doc];;

let [x] = bold [doc] in print_xml x;;
355
356
357
358
359
360
361
362
363
364
";"reference","(* In CDuce the expression  \"ref T exp\" returns a reference  *)
(* to the result of \"exp\" and has type \"ref T\" provided that *)
(* \"exp\" is of type \"T\". References come equipped with three *)
(* operators: \":=\" (assignment), \"!\" (dereferencing), and \";\"*) 
(* (sequencing).                                             *)


let stack = ref [Int*] []

let fun push(x : Int) : []  = 
365
  stack := [x; !stack]
366
367

let fun pop ([] : []) : Int = 
368
  match !stack with [x; y] -> stack := y; x | _ -> raise \"Empty stack\"
369

370
371
372
373
374

(* In a pattern [ ... ; y] the variable y captures the tail  *)
(* of the sequence. It is equivalent to [ ... y::_*].        *)
(* In an expression [ ... ; e ] the expression e denotes the *)
(* tail of the sequence. It is equivalent to [ ... ] @ e     *)
375

376

377
378
379
380
381
382
383
384
385
;;

push 1;;
push 2;;
push 3;;
pop [];;
pop [];;
pop [];;
pop [];;
386
"; ]
387
388
389
let present = "<ul><li><a href=\"/cgi-bin/cduce?example=xml\">XML elements.</a> 
XML elements.
</li><li><a href=\"/cgi-bin/cduce?example=functions\">Functions.</a> 
390
Several syntaxes to define functions.
391
</li><li><a href=\"/cgi-bin/cduce?example=mutrec\">Mutual recursion.</a> 
392
Mutual toplevel definition for types and functions.
393
</li><li><a href=\"/cgi-bin/cduce?example=sequence\">Sequence literals.</a> 
394
How to write sequences.
395
</li><li><a href=\"/cgi-bin/cduce?example=seqtypes\">Sequence types.</a> 
396
Types for sequences.
397
</li><li><a href=\"/cgi-bin/cduce?example=integers\">The factorial function.</a> 
398
What about computing 10000! ?
399
</li><li><a href=\"/cgi-bin/cduce?example=sumtype\">Sum types.</a> 
400
How to simulate ML sum types.
401
</li><li><a href=\"/cgi-bin/cduce?example=ovfun\">Overloaded functions.</a> 
402
This examples demonstrates the use of overloaded functions.
403
</li><li><a href=\"/cgi-bin/cduce?example=note\">Footnotes.</a> 
404
 This example shows how to bind an XML element with surrounding text.
405
</li><li><a href=\"/cgi-bin/cduce?example=biblio\">Bibliography.</a> 
406
The good old XML bibliography example.
407
</li><li><a href=\"/cgi-bin/cduce?example=projection\">Projection.</a> 
408
Syntactic sugar for projection.
409
410
</li><li><a href=\"/cgi-bin/cduce?example=xtransform\">Tree transformations.</a> 
How to perform XSLT-like transformations.
411
412
</li><li><a href=\"/cgi-bin/cduce?example=reference\">References.</a> 
Mutable values.
413
</li></ul>"