bool.ml 9.07 KB
Newer Older
1 2
module type S =
sig
3 4
  type elem
  include Custom.T
5

6
  val get: t -> (elem list * elem list) list
7

8 9 10 11 12 13
  val empty : t
  val full  : t
  val cup   : t -> t -> t
  val cap   : t -> t -> t
  val diff  : t -> t -> t
  val atom  : elem -> t
14

15
  val iter: (elem-> unit) -> t -> unit
16 17 18

  val compute: empty:'b -> full:'b -> cup:('b -> 'b -> 'b) 
    -> cap:('b -> 'b -> 'b) -> diff:('b -> 'b -> 'b) ->
19
    atom:(elem -> 'b) -> t -> 'b
20

21
  val print: string -> (Format.formatter -> elem -> unit) -> t ->
22
    (Format.formatter -> unit) list
23

24
  val trivially_disjoint: t -> t -> bool
25 26
end

27
module Make(X : Custom.T) =
28
struct
29 30
  type elem = X.t
  type t =
31 32
    | True
    | False
33 34
    | Split of int * elem * t * t * t
  include Custom.Dummy
35 36 37 38 39 40

  let rec equal a b =
    (a == b) ||
    match (a,b) with
      | Split (h1,x1, p1,i1,n1), Split (h2,x2, p2,i2,n2) ->
	  (h1 == h2) &&
41 42
	  (equal p1 p2) && (equal i1 i2) &&
	  (equal n1 n2) && (X.equal x1 x2)
43 44
      | _ -> false

45 46 47 48
(* Idea: add a mutable "unique" identifier and set it to
   the minimum of the two when egality ... *)


49 50 51 52 53 54 55 56 57 58 59 60 61
  let rec compare a b =
    if (a == b) then 0 
    else match (a,b) with
      | Split (h1,x1, p1,i1,n1), Split (h2,x2, p2,i2,n2) ->
	  if h1 < h2 then -1 else if h1 > h2 then 1 
	  else let c = X.compare x1 x2 in if c <> 0 then c
	  else let c = compare p1 p2 in if c <> 0 then c
	  else let c = compare i1 i2 in if c <> 0 then c 
	  else compare n1 n2
      | True,_  -> -1
      | _, True -> 1
      | False,_ -> -1
      | _,False -> 1
62 63


64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
  let rec hash = function
    | True -> 1
    | False -> 0
    | Split(h, _,_,_,_) -> h

  let compute_hash x p i n = 
	(X.hash x) + 17 * (hash p) + 257 * (hash i) + 16637 * (hash n)

  let atom x =
    let h = X.hash x + 17 in (* partial evaluation of compute_hash... *)
    Split (h, x,True,False,False)


  let rec iter f = function
    | Split (_, x, p,i,n) -> f x; iter f p; iter f i; iter f n
    | _ -> ()

(* TODO: precompute hash value for Split node to have fast equality... *)

  let rec dump ppf = function
    | True -> Format.fprintf ppf "+"
    | False -> Format.fprintf ppf "-"
    | Split (_,x, p,i,n) -> 
	Format.fprintf ppf "%a(@[%a,%a,%a@])" 
	X.dump x dump p dump i dump n
89 90


91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
  let rec print f ppf = function
    | True -> Format.fprintf ppf "Any"
    | False -> Format.fprintf ppf "Empty"
    | Split (_, x, p,i, n) ->
	let flag = ref false in
	let b () = if !flag then Format.fprintf ppf " | " else flag := true in
	(match p with 
	   | True -> b(); Format.fprintf ppf "%a" f x
	   | False -> ()
	   | _ -> b (); Format.fprintf ppf "%a & @[(%a)@]" f x (print f) p );
	(match i with 
	   | True -> assert false;
	   | False -> ()
	   | _ -> b(); print f ppf i);
	(match n with 
	   | True -> b (); Format.fprintf ppf "@[~%a@]" f x
	   | False -> ()
	   | _ -> b (); Format.fprintf ppf "@[~%a@] & @[(%a)@]" f x (print f) n)
	
  let print a f = function
    | True -> [ fun ppf -> Format.fprintf ppf "%s" a ]
    | False -> []
    | c -> [ fun ppf -> print f ppf c ]
	
	
  let rec get accu pos neg = function
    | True -> (pos,neg) :: accu
    | False -> accu
    | Split (_,x, p,i,n) ->
120
	(*OPT: can avoid creating this list cell when pos or neg =False *)
121 122 123 124 125 126 127 128 129 130 131 132 133 134
	let accu = get accu (x::pos) neg p in
	let accu = get accu pos (x::neg) n in
	let accu = get accu pos neg i in
	accu
	  
  let get x = get [] [] [] x
		
  let compute ~empty ~full ~cup ~cap ~diff ~atom b =
    let rec aux = function
      | True -> full
      | False -> empty
      | Split(_,x, p,i,n) ->
	  let p = cap (atom x) (aux p)
	  and i = aux i
135
	  and n = diff (aux n) (atom x) in
136 137 138 139 140 141 142 143 144 145 146
	  cup (cup p i) n
    in
    aux b
      
(* Invariant: correct hash value *)

  let split x pos ign neg =
    Split (compute_hash x pos ign neg, x, pos, ign, neg)

  let empty = False
  let full = True
147 148 149 150 151 152

(* Invariants:
     Split (x, pos,ign,neg) ==>  (ign <> True);   
     (pos <> False or neg <> False)
*)

153 154 155 156
  let split x pos ign neg =
    if ign = True then True 
    else if (pos = False) && (neg = False) then ign
    else split x pos ign neg
157 158


159 160
(* Invariant:
   - no ``subsumption'
161
*)
162

163
(*
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
  let rec simplify a b =
    if equal a b then False 
    else match (a,b) with
      | False,_ | _, True -> False
      | a, False -> a
      | True, _ -> True
      | Split (_,x1,p1,i1,n1), Split (_,x2,p2,i2,n2) ->
	  let c = X.compare x1 x2 in
	  if c = 0 then
	    let p1' = simplify (simplify p1 i2) p2 
	    and i1' = simplify i1 i2
	    and n1' = simplify (simplify n1 i2) n2 in
	    if (p1 != p1') || (n1 != n1') || (i1 != i1') 
	    then split x1 p1' i1' n1'
	    else a
	  else if c > 0 then
	    simplify a i2
	  else
	    let p1' = simplify p1 b 
	    and i1' = simplify i1 b
	    and n1' = simplify n1 b in
	    if (p1 != p1') || (n1 != n1') || (i1 != i1') 
	    then split x1 p1' i1' n1'
	    else a
188 189 190
*)


191 192 193
  let rec simplify a l =
    if (a = False) then False else simpl_aux1 a [] l
  and simpl_aux1 a accu = function
194 195
    | [] -> 
	if accu = [] then a else
196 197 198 199
	  (match a with
	     | True -> True
	     | False -> assert false
	     | Split (_,x,p,i,n) -> simpl_aux2 x p i n [] [] [] accu)
200 201 202
    | False :: l -> simpl_aux1 a accu l
    | True :: l -> False
    | b :: l -> if a == b then False else simpl_aux1 a (b::accu) l
203 204 205 206 207 208 209 210
  and simpl_aux2 x p i n ap ai an = function
    | [] -> split x (simplify p ap) (simplify i ai) (simplify n an)
    | (Split (_,x2,p2,i2,n2) as b) :: l ->
	let c = X.compare x2 x in
	if c < 0 then 
	  simpl_aux3 x p i n ap ai an l i2
	else if c > 0 then 
	  simpl_aux2 x p i n (b :: ap) (b :: ai) (b :: an) l
211
	else
212 213 214 215 216 217 218 219 220 221 222
	  simpl_aux2 x p i n (p2 :: i2 :: ap) (i2 :: ai) (n2 :: i2 :: an) l
    | _ -> assert false
  and simpl_aux3 x p i n ap ai an l = function
    | False -> simpl_aux2 x p i n ap ai an l
    | True -> assert false
    | Split (_,x2,p2,i2,n2) as b ->
	let c = X.compare x2 x in
	if c < 0 then 
	  simpl_aux3 x p i n ap ai an l i2
	else if c > 0 then 
	  simpl_aux2 x p i n (b :: ap) (b :: ai) (b :: an) l
223
	else
224
	  simpl_aux2 x p i n (p2 :: i2 :: ap) (i2 :: ai) (n2 :: i2 :: an) l
225 226 227

	  
    
228
  let split x p i n = 
229 230
    split x (simplify p [i]) i (simplify n [i])

231 232

  let rec ( ++ ) a b =
233 234
(*    if equal a b then a *)
    if a == b then a  
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
    else match (a,b) with
      | True, _ | _, True -> True
      | False, a | a, False -> a
      | Split (_,x1, p1,i1,n1), Split (_,x2, p2,i2,n2) ->
	  let c = X.compare x1 x2 in
	  if c = 0 then
	    split x1 (p1 ++ p2) (i1 ++ i2) (n1 ++ n2)
	  else if c < 0 then
	    split x1 p1 (i1 ++ b) n1
	  else
	    split x2 p2 (i2 ++ a) n2

(* Pseudo-Invariant:
   - pos <> neg
*)

  let split x pos ign neg =
    if equal pos neg then (neg ++ ign) else split x pos ign neg

(* seems better not to make ++ and this split mutually recursive;
   is the invariant still inforced ? *)

  let rec ( ** ) a b =
258 259
    (*    if equal a b then a *)
    if a == b then a
260 261 262 263 264 265 266 267 268
    else match (a,b) with
      | True, a | a, True -> a
      | False, _ | _, False -> False
      | Split (_,x1, p1,i1,n1), Split (_,x2, p2,i2,n2) ->
	  let c = X.compare x1 x2 in
	  if c = 0 then
(*	    split x1 
	      (p1 ** (p2 ++ i2) ++ (p2 ** i1))
	      (i1 ** i2)
269
	      (n1 ** (n2 ++ i2) ++ (n2 ** i1))  *)
270 271 272
	    split x1 
	      ((p1 ++ i1) ** (p2 ++ i2))
	      False
273
	      ((n1 ++ i1) ** (n2 ++ i2)) 
274 275 276 277 278
	  else if c < 0 then
	    split x1 (p1 ** b) (i1 ** b) (n1 ** b)
	  else
	    split x2 (p2 ** a) (i2 ** a) (n2 ** a)

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
  let rec trivially_disjoint a b =
    if a == b then a = False
    else match (a,b) with
      | True, a | a, True -> a = False
      | False, _ | _, False -> true
      | Split (_,x1, p1,i1,n1), Split (_,x2, p2,i2,n2) ->
	  let c = X.compare x1 x2 in
	  if c = 0 then
(* try expanding -> p1 p2; p1 i2; i1 p2; i1 i2 ... *)
	    trivially_disjoint (p1 ++ i1) (p2 ++ i2) &&
	    trivially_disjoint (n1 ++ i1) (n2 ++ i2)
	  else if c < 0 then
	    trivially_disjoint p1 b &&
	    trivially_disjoint i1 b &&
	    trivially_disjoint n1 b
	  else
	    trivially_disjoint p2 a &&
	    trivially_disjoint i2 a &&
	    trivially_disjoint n2 a

299 300 301 302 303 304 305 306 307
  let rec neg = function
    | True -> False
    | False -> True
(*    | Split (_,x, p,i,False) -> split x False (neg (i ++ p)) (neg i)
    | Split (_,x, False,i,n) -> split x (neg i) (neg (i ++ n)) False 
    | Split (_,x, p,False,n) -> split x (neg p) (neg (p ++ n)) (neg n)  *)
    | Split (_,x, p,i,n) -> split x (neg (i ++ p)) False (neg (i ++ n))
	      
  let rec ( // ) a b =  
308 309
(*    if equal a b then False  *)
    if a == b then False 
310 311 312 313 314 315 316 317 318 319 320 321
    else match (a,b) with
      | False,_ | _, True -> False
      | a, False -> a
      | True, b -> neg b
      | Split (_,x1, p1,i1,n1), Split (_,x2, p2,i2,n2) ->
	  let c = X.compare x1 x2 in
	  if c = 0 then
	    split x1
	      ((p1 ++ i1) // (p2 ++ i2))
	      False
	      ((n1 ++ i1) // (n2 ++ i2))
	  else if c < 0 then
322
	    split x1 (p1 // b) (i1 // b) (n1 // b) 
323 324 325 326 327 328 329 330 331
(*	    split x1 ((p1 ++ i1)// b) False ((n1 ++i1) // b)  *)
	  else
	    split x2 (a // (i2 ++ p2)) False (a // (i2 ++ n2))
	      

  let cup = ( ++ )
  let cap = ( ** )
  let diff = ( // )

332
(*
333
  let diff x y =
334
    let d = diff x y in
335
    Format.fprintf Format.std_formatter "X = %a@\nY = %a@\nX\\Z = %a@\n"
336 337 338 339 340 341 342 343 344
      dump x dump y dump d;  
    d

  let cap x y =
    let d = cap x y in
    Format.fprintf Format.std_formatter "X = %a@\nY = %a@\nX**Z = %a@\n"
      dump x dump y dump d;  
    d
*)
345
end