types.ml 40.6 KB
Newer Older
1
open Ident
2
open Encodings
3

4
5
6
7
8
9
10
11
12
13
(*
To be sure not to use generic comparison ...
*)
let (=) : int -> int -> bool = (==)
let (<) : int -> int -> bool = (<)
let (<=) : int -> int -> bool = (<=)
let (<>) : int -> int -> bool = (<>)
let compare = 1


14
15
16
17
type const = 
  | Integer of Intervals.v
  | Atom of Atoms.v
  | Char of Chars.v
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
let compare_const c1 c2 =
  match (c1,c2) with
    | Integer x, Integer y -> Intervals.vcompare x y
    | Integer _, _ -> -1
    | _, Integer _ -> 1
    | Atom x, Atom y -> Atoms.vcompare x y
    | Atom _, _ -> -1
    | _, Atom _ -> 1
    | Char x, Char y -> Chars.vcompare x y

let hash_const = function
  | Integer x -> Intervals.vhash x
  | Atom x -> Atoms.vhash x
  | Char x -> Chars.vhash x

34
35
let equal_const c1 c2 = compare_const c1 c2 = 0

36
37
type pair_kind = [ `Normal | `XML ]

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
module rec Descr : 
sig
(*
  Want to write:
    type s = { ... }
    include Custom.T with type t = s
  but a  bug in OCaml 3.07+beta 2 makes it impossible
*)
  type t = {
    atoms : Atoms.t;
    ints  : Intervals.t;
    chars : Chars.t;
    times : BoolPair.t;
    xml   : BoolPair.t;
    arrow : BoolPair.t;
    record: BoolRec.t;
    absent: bool
  }
  val dump: Format.formatter -> t -> unit
  val check: t -> unit
  val equal: t -> t -> bool
  val hash: t -> int
  val compare:t -> t -> int
  val serialize: t Serialize.Put.f
  val deserialize: t Serialize.Get.f
end =
struct
  include Custom.Dummy
  type t = {
    atoms : Atoms.t;
    ints  : Intervals.t;
    chars : Chars.t;
    times : BoolPair.t;
    xml   : BoolPair.t;
    arrow : BoolPair.t;
    record: BoolRec.t;
    absent: bool
  }
  let equal a b =
    (Atoms.equal a.atoms b.atoms) &&
    (Chars.equal a.chars b.chars) &&
    (Intervals.equal a.ints  b.ints) &&
    (BoolPair.equal a.times b.times) &&
    (BoolPair.equal a.xml b.xml) &&
    (BoolPair.equal a.arrow b.arrow) &&
    (BoolRec.equal a.record b.record) &&
    (a.absent == b.absent)

  let compare a b =
    if a == b then 0 
    else let c = Atoms.compare a.atoms b.atoms in if c <> 0 then c
    else let c = Chars.compare a.chars b.chars in if c <> 0 then c
    else let c = Intervals.compare a.ints b.ints in if c <> 0 then c
    else let c = BoolPair.compare a.times b.times in if c <> 0 then c
    else let c = BoolPair.compare a.xml b.xml in if c <> 0 then c
    else let c = BoolPair.compare a.arrow b.arrow in if c <> 0 then c
    else let c = BoolRec.compare a.record b.record in if c <> 0 then c
    else if a.absent && not b.absent then -1
    else if b.absent && not a.absent then 1
    else 0
98
      
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
  let hash a =
    let accu = Chars.hash 1 a.chars in
    let accu = Intervals.hash accu a.ints in
    let accu = Atoms.hash accu a.atoms in
    let accu = 17 * accu + BoolPair.hash a.times in
    let accu = 17 * accu + BoolPair.hash a.xml in
    let accu = 17 * accu + BoolPair.hash a.arrow in
    let accu = 17 * accu + BoolRec.hash a.record in
    let accu = if a.absent then accu+5 else accu in
    accu
end
and Node :
sig
  type t = { id : int; mutable descr : Descr.t }
  val dump: Format.formatter -> t -> unit
  val check: t -> unit
  val equal: t -> t -> bool
  val hash: t -> int
  val compare:t -> t -> int
  val serialize: t Serialize.Put.f
  val deserialize: t Serialize.Get.f
end =
struct
  type t = { id : int; mutable descr : Descr.t }
  include Custom.Dummy
  let hash x = x.id
  let compare x y = Pervasives.compare x.id y.id
  let equal x y = x == y
127
128
end

129
130
(* It is also possible to use Boolean insteand of Bool here;
   need to analyze when each one is more efficient *)
131
132
133
134
135
136
and BoolPair : Bool.S with type elem = Node.t * Node.t = 
Bool.Make(Custom.Pair(Node)(Node))

and BoolRec : Bool.S with type elem = bool * Node.t label_map =
Bool.Make(Custom.Pair(Custom.Bool)(LabelSet.MakeMap(Node)))

137

138
139
140
type descr = Descr.t
type node = Node.t
include Descr
141
	       
142
let empty = { 
143
144
145
  times = BoolPair.empty; 
  xml   = BoolPair.empty; 
  arrow = BoolPair.empty; 
146
  record= BoolRec.empty;
147
148
149
  ints  = Intervals.empty;
  atoms = Atoms.empty;
  chars = Chars.empty;
150
  absent= false;
151
152
153
}
	      
let any =  {
154
155
156
  times = BoolPair.full; 
  xml   = BoolPair.full; 
  arrow = BoolPair.full; 
157
  record= BoolRec.full; 
158
159
160
  ints  = Intervals.any;
  atoms = Atoms.any;
  chars = Chars.any;
161
  absent= false;
162
}
163
164
165
166

let non_constructed =
  { any with times = empty.times; xml = empty.xml; record = empty.record }
     
167
168
	     
let interval i = { empty with ints = i }
169
170
171
let times x y = { empty with times = BoolPair.atom (x,y) }
let xml x y = { empty with xml = BoolPair.atom (x,y) }
let arrow x y = { empty with arrow = BoolPair.atom (x,y) }
172
let record label t = 
173
174
175
  { empty with record = BoolRec.atom (true,LabelMap.singleton label t) }
let record' (x : bool * node Ident.label_map) =
  { empty with record = BoolRec.atom x }
176
177
178
179
180
181
let atom a = { empty with atoms = a }
let char c = { empty with chars = c }
let constant = function
  | Integer i -> interval (Intervals.atom i)
  | Atom a -> atom (Atoms.atom a)
  | Char c -> char (Chars.atom c)
182
      
183
184
let cup x y = 
  if x == y then x else {
185
186
187
    times = BoolPair.cup x.times y.times;
    xml   = BoolPair.cup x.xml y.xml;
    arrow = BoolPair.cup x.arrow y.arrow;
188
    record= BoolRec.cup x.record y.record;
189
190
191
    ints  = Intervals.cup x.ints  y.ints;
    atoms = Atoms.cup x.atoms y.atoms;
    chars = Chars.cup x.chars y.chars;
192
    absent= x.absent || y.absent;
193
194
195
196
  }
    
let cap x y = 
  if x == y then x else {
197
198
    times = BoolPair.cap x.times y.times;
    xml   = BoolPair.cap x.xml y.xml;
199
    record= BoolRec.cap x.record y.record;
200
    arrow = BoolPair.cap x.arrow y.arrow;
201
202
203
    ints  = Intervals.cap x.ints  y.ints;
    atoms = Atoms.cap x.atoms y.atoms;
    chars = Chars.cap x.chars y.chars;
204
    absent= x.absent && y.absent;
205
206
207
208
  }
    
let diff x y = 
  if x == y then empty else {
209
210
211
    times = BoolPair.diff x.times y.times;
    xml   = BoolPair.diff x.xml y.xml;
    arrow = BoolPair.diff x.arrow y.arrow;
212
    record= BoolRec.diff x.record y.record;
213
214
215
    ints  = Intervals.diff x.ints  y.ints;
    atoms = Atoms.diff x.atoms y.atoms;
    chars = Chars.diff x.chars y.chars;
216
    absent= x.absent && not y.absent;
217
218
  }
    
219

220

221

222
223
224
225
226
227
228
229
(* TODO: optimize disjoint check for boolean combinations *)
let trivially_disjoint a b =
  (Chars.disjoint a.chars b.chars) &&
  (Intervals.disjoint a.ints b.ints) &&
  (Atoms.disjoint a.atoms b.atoms) &&
  (BoolPair.trivially_disjoint a.times b.times) &&
  (BoolPair.trivially_disjoint a.xml b.xml) &&
  (BoolPair.trivially_disjoint a.arrow b.arrow) &&
230
231
  (BoolRec.trivially_disjoint a.record b.record) &&
  (not (a.absent && b.absent))
232

233

234
235
module DescrHash = Hashtbl.Make(Descr)
module DescrMap = Map.Make(Descr)
236
module DescrSet = Set.Make(Descr)
237
module DescrSList = SortedList.Make(Descr)
238

239
(* let hash_cons = DescrHash.create 17000 *)
240

241
let count = State.ref "Types.count" 0
242
let make () = incr count; { Node.id = !count; Node.descr = empty }
243
244
let define n d = 
(*  DescrHash.add hash_cons d n; *)
245
  n.Node.descr <- d
246
let cons d = 
247
(*   try DescrHash.find hash_cons d with Not_found ->
248
  incr count; let n = { id = !count; descr = d } in
249
  DescrHash.add hash_cons d n; n  *)
250
251
  incr count; { Node.id = !count; Node.descr = d }
let descr n = n.Node.descr
252
let internalize n = n
253
let id n = n.Node.id
254
255
256
257




258
259
let neg x = diff any x

260
261
let any_node = cons any

262
module LabelS = Set.Make(LabelPool)
263
264
265

let get_record r =
  let labs accu (_,r) = 
266
267
    List.fold_left 
      (fun accu (l,_) -> LabelS.add l accu) accu (LabelMap.get r) in
268
  let extend descrs labs (o,r) =
269
270
271
272
273
    let rec aux i labs r =
      match labs with
	| [] -> ()
	| l1::labs ->
	    match r with
274
	      | (l2,x)::r when l1 == l2 -> 
275
276
277
		  descrs.(i) <- cap descrs.(i) (descr x);
		  aux (i+1) labs r
	      | r ->
278
		  if not o then descrs.(i) <- 
279
		    cap descrs.(i) { empty with absent = true }; (* TODO:OPT *)
280
281
		  aux (i+1) labs r
    in
282
    aux 0 labs (LabelMap.get r);
283
284
285
286
    o
  in
  let line (p,n) =
    let labels = 
287
288
      List.fold_left labs (List.fold_left labs LabelS.empty p) n in
    let labels = LabelS.elements labels in
289
    let nlab = List.length labels in
290
    let mk () = Array.create nlab { any with absent = true } in
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

    let pos = mk () in
    let opos = List.fold_left 
		 (fun accu x -> 
		    (extend pos labels x) && accu)
		 true p in
    let p = (opos, pos) in

    let n = List.map (fun x ->
			let neg = mk () in
			let o = extend neg labels x in
			(o,neg)
		     ) n in
    (labels,p,n)
  in
306
  List.map line (BoolRec.get r)
307
   
308

309

310
311
312
313
314
315
316


(* Subtyping algorithm *)

let diff_t d t = diff d (descr t)
let cap_t d t = cap d (descr t)
let cup_t d t = cup d (descr t)
317
let cap_product any_left any_right l =
318
319
  List.fold_left 
    (fun (d1,d2) (t1,t2) -> (cap_t d1 t1, cap_t d2 t2))
320
    (any_left,any_right)
321
    l
322
323
let any_pair = { empty with times = any.times }

324

325
326
327
let rec exists max f =
  (max > 0) && (f (max - 1) || exists (max - 1) f)

328
exception NotEmpty
329

330
331
332
333
334
335
336
337
338
339
340
341
type slot = { mutable status : status; 
	       mutable notify : notify;
	       mutable active : bool }
and status = Empty | NEmpty | Maybe
and notify = Nothing | Do of slot * (slot -> unit) * notify

let slot_empty = { status = Empty; active = false; notify = Nothing }
let slot_not_empty = { status = NEmpty; active = false; notify = Nothing }

let rec notify = function
  | Nothing -> ()
  | Do (n,f,rem) -> 
342
      if n.status == Maybe then (try f n with NotEmpty -> ());
343
344
345
346
347
348
349
350
351
352
      notify rem

let rec iter_s s f = function
  | [] -> ()
  | arg::rem -> f arg s; iter_s s f rem


let set s =
  s.status <- NEmpty;
  notify s.notify;
353
  s.notify <- Nothing; 
354
355
356
357
358
359
360
  raise NotEmpty

let rec big_conj f l n =
  match l with
    | [] -> set n
    | [arg] -> f arg n
    | arg::rem ->
361
362
363
	let s = 
	  { status = Maybe; active = false; 
	    notify = Do (n,(big_conj f rem), Nothing) } in
364
365
366
	try 
	  f arg s;
	  if s.active then n.active <- true
367
	with NotEmpty -> if n.status == NEmpty then raise NotEmpty
368

369
370
let guard a f n =
  match a with
371
    | { status = Empty } -> ()
372
373
374
    | { status = Maybe } as s -> 
	n.active <- true; 
	s.notify <- Do (n,f,s.notify)
375
    | { status = NEmpty } -> f n
376

377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478

(* Fast approximation *)

module ClearlyEmpty = 
struct

let memo = DescrHash.create 33000
let marks = ref [] 

let rec slot d =
  if not ((Intervals.is_empty d.ints) && 
	  (Atoms.is_empty d.atoms) &&
	  (Chars.is_empty d.chars) &&
	  (not d.absent)) then slot_not_empty 
  else try DescrHash.find memo d
  with Not_found ->
    let s = { status = Maybe; active = false; notify = Nothing } in
    DescrHash.add memo d s;
    (try
       iter_s s check_times (BoolPair.get d.times);  
       iter_s s check_xml (BoolPair.get d.xml); 
       iter_s s check_arrow (BoolPair.get d.arrow);
       iter_s s check_record (get_record d.record);
       if s.active then marks := s :: !marks else s.status <- Empty;
     with
	 NotEmpty -> ());
    s

and check_times (left,right) s =
  let (accu1,accu2) = cap_product any any left in
  let single_right (t1,t2) s =
    let t1 = descr t1 and t2 = descr t2 in
    if trivially_disjoint accu1 t1 || trivially_disjoint accu2 t2 then set s 
    else
      let accu1 = diff accu1 t1 in guard (slot accu1) set s;
      let accu2 = diff accu2 t2 in guard (slot accu2) set s in
  guard (slot accu1) (guard (slot accu2) (big_conj single_right right)) s

and check_xml (left,right) s =
  let (accu1,accu2) = cap_product any any_pair left in
  let single_right (t1,t2) s =
    let t1 = descr t1 and t2 = descr t2 in
    if trivially_disjoint accu1 t1 || trivially_disjoint accu2 t2 then set s 
    else
      let accu1 = diff accu1 t1 in guard (slot accu1) set s;
      let accu2 = diff accu2 t2 in guard (slot accu2) set s in
  guard (slot accu1) (guard (slot accu2) (big_conj single_right right)) s

and check_arrow (left,right) s =
  let single_right (s1,s2) s =
    let accu1 = descr s1 and accu2 = neg (descr s2) in
    let single_left (t1,t2) s =
      let accu1 = diff_t accu1 t1 in guard (slot accu1) set s;
      let accu2 = cap_t  accu2 t2 in guard (slot accu2) set s
    in
    guard (slot accu1) (big_conj single_left left) s
  in
  big_conj single_right right s

and check_record (labels,(oleft,left),rights) s =
  let rec single_right (oright,right) s = 
    let next =
      (oleft && (not oright)) ||
      exists (Array.length left)
	(fun i -> trivially_disjoint left.(i) right.(i))
    in
    if next then set s
    else
      for i = 0 to Array.length left - 1 do
	let di = diff left.(i) right.(i) in guard (slot di) set s
      done
  in
  let rec start i s =
    if (i < 0) then big_conj single_right rights s
    else guard (slot left.(i)) (start (i - 1)) s
  in
  start (Array.length left - 1) s


let is_empty d =
  let s = slot d in
  List.iter 
    (fun s' -> 
       if s'.status == Maybe then s'.status <- Empty; s'.notify <- Nothing) 
    !marks;
  marks := [];
  s.status == Empty
end

let clearly_disjoint t1 t2 =
(*
  if trivially_disjoint t1 t2 then true
  else
    if ClearlyEmpty.is_empty (cap t1 t2) then
      (Printf.eprintf "!\n"; true) else false
*)
  trivially_disjoint t1 t2 || ClearlyEmpty.is_empty (cap t1 t2) 

let memo = DescrHash.create 33000
let marks = ref [] 

let rec slot d =
479
480
  if not ((Intervals.is_empty d.ints) && 
	  (Atoms.is_empty d.atoms) &&
481
482
	  (Chars.is_empty d.chars) &&
	  (not d.absent)) then slot_not_empty 
483
484
485
486
487
  else try DescrHash.find memo d
  with Not_found ->
    let s = { status = Maybe; active = false; notify = Nothing } in
    DescrHash.add memo d s;
    (try
488
       iter_s s check_times (BoolPair.get d.times);  
489
       iter_s s check_xml (BoolPair.get d.xml); 
490
       iter_s s check_arrow (BoolPair.get d.arrow);
491
492
493
494
495
496
497
498
499
       iter_s s check_record (get_record d.record);
       if s.active then marks := s :: !marks else s.status <- Empty;
     with
	 NotEmpty -> ());
    s

and check_times (left,right) s =
  let rec aux accu1 accu2 right s = match right with
    | (t1,t2)::right ->
500
501
502
	let t1 = descr t1 and t2 = descr t2 in
	if trivially_disjoint accu1 t1 || 
	   trivially_disjoint accu2 t2 then (
503
504
	     aux accu1 accu2 right s )
	else (
505
          let accu1' = diff accu1 t1 in 
506
	  guard (slot accu1') (aux accu1' accu2 right) s;
507
508

          let accu2' = diff accu2 t2 in 
509
	  guard (slot accu2') (aux accu1 accu2' right) s  
510
	)
511
512
    | [] -> set s
  in
513
  let (accu1,accu2) = cap_product any any left in
514
  guard (slot accu1) (guard (slot accu2) (aux accu1 accu2 right)) s
515
516
517
518
519

and check_xml (left,right) s =
  let rec aux accu1 accu2 right s = match right with
    | (t1,t2)::right ->
	let t1 = descr t1 and t2 = descr t2 in
520
	if clearly_disjoint accu1 t1 || 
521
522
523
524
	   trivially_disjoint accu2 t2 then (
	     aux accu1 accu2 right s )
	else (
          let accu1' = diff accu1 t1 in 
525
	  guard (slot accu1') (aux accu1' accu2 right) s;
526
527

          let accu2' = diff accu2 t2 in 
528
	  guard (slot accu2') (aux accu1 accu2' right) s  
529
530
531
532
	)
    | [] -> set s
  in
  let (accu1,accu2) = cap_product any any_pair left in
533
  guard (slot accu1) (guard (slot accu2) (aux accu1 accu2 right)) s
534

535
536
537
538
and check_arrow (left,right) s =
  let single_right (s1,s2) s =
    let rec aux accu1 accu2 left s = match left with
      | (t1,t2)::left ->
539
          let accu1' = diff_t accu1 t1 in 
540
	  guard (slot accu1') (aux accu1' accu2 left) s;
541
542

          let accu2' = cap_t  accu2 t2 in 
543
	  guard (slot accu2') (aux accu1 accu2' left) s
544
545
546
      | [] -> set s
    in
    let accu1 = descr s1 in
547
    guard (slot accu1) (aux accu1 (neg (descr s2)) left) s
548
549
  in
  big_conj single_right right s
550

551
and check_record (labels,(oleft,left),rights) s =
552
553
  let rec aux rights s = match rights with
    | [] -> set s
554
    | (oright,right)::rights ->
555
	let next =
556
	  (oleft && (not oright)) ||
557
	  exists (Array.length left)
558
	    (fun i -> trivially_disjoint left.(i) right.(i))
559
560
561
562
563
564
	in
	if next then aux rights s
	else
	  for i = 0 to Array.length left - 1 do
	    let back = left.(i) in
	    let di = diff back right.(i) in
565
566
	    guard (slot di) (fun s ->
			left.(i) <- di;
567
568
569
			aux rights s;
			left.(i) <- back;
		     ) s
570
(* TODO: are side effects correct ? *)
571
572
573
574
575
	  done
  in
  let rec start i s =
    if (i < 0) then aux rights s
    else
576
      guard (slot left.(i)) (start (i - 1)) s
577
578
579
580
581
582
583
  in
  start (Array.length left - 1) s


let is_empty d =
  let s = slot d in
  List.iter 
584
585
    (fun s' -> 
       if s'.status == Maybe then s'.status <- Empty; s'.notify <- Nothing) 
586
587
    !marks;
  marks := [];
588
  s.status == Empty
589

590
(*
591
let is_empty d =
592
593
594
595
596
597
598
(*  let b1 = ClearlyEmpty.is_empty d in
  let b2 = is_empty d in
  assert (b2 || not b1);
  Printf.eprintf "b1 = %b; b2 = %b\n" b1 b2;
  b2  *)
  if ClearlyEmpty.is_empty d then (Printf.eprintf "!\n"; true) else is_empty d
*)  
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618

let non_empty d = 
  not (is_empty d)

let subtype d1 d2 =
  is_empty (diff d1 d2)

module Product =
struct
  type t = (descr * descr) list

  let other ?(kind=`Normal) d = 
    match kind with
      | `Normal -> { d with times = empty.times }
      | `XML -> { d with xml = empty.xml }

  let is_product ?kind d = is_empty (other ?kind d)

  let need_second = function _::_::_ -> true | _ -> false

619
620
621
622
  let normal_aux = function
    | ([] | [ _ ]) as d -> d
    | d ->

623
624
625
626
627
628
629
    let res = ref [] in

    let add (t1,t2) =
      let rec loop t1 t2 = function
	| [] -> res := (ref (t1,t2)) :: !res
	| ({contents = (d1,d2)} as r)::l ->
	    (*OPT*) 
630
(*	    if equal_descr d1 t1 then r := (d1,cup d2 t2) else*)
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
	      
	      let i = cap t1 d1 in
	      if is_empty i then loop t1 t2 l
	      else (
		r := (i, cup t2 d2);
		let k = diff d1 t1 in 
		if non_empty k then res := (ref (k,d2)) :: !res;
		
		let j = diff t1 d1 in 
		if non_empty j then loop j t2 l
	      )
      in
      loop t1 t2 !res
    in
    List.iter add d;
    List.map (!) !res


(* Partitioning:

(t,s) - ((t1,s1) | (t2,s2) | ... | (tn,sn))
=
(t & t1, s - s1) | ... | (t & tn, s - sn) | (t - (t1|...|tn), s)

655
*)
656
  let get_aux any_right d =
657
658
    let accu = ref [] in
    let line (left,right) =
659
      let (d1,d2) = cap_product any any_right left in
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
      if (non_empty d1) && (non_empty d2) then
	let right = List.map (fun (t1,t2) -> descr t1, descr t2) right in
	let right = normal_aux right in
	let resid1 = ref d1 in
	let () = 
	  List.iter
	    (fun (t1,t2) ->
	       let t1 = cap d1 t1 in
	       if (non_empty t1) then
		 let () = resid1 := diff !resid1 t1 in
		 let t2 = diff d2 t2 in
		 if (non_empty t2) then accu := (t1,t2) :: !accu
	    ) right in
	if non_empty !resid1 then accu := (!resid1, d2) :: !accu 
    in
675
    List.iter line (BoolPair.get d);
676
    !accu
677
678
679
(* Maybe, can improve this function with:
     (t,s) \ (t1,s1) = (t&t',s\s') | (t\t',s),
   don't call normal_aux *)
680

681

682
683
  let get ?(kind=`Normal) d = 
    match kind with
684
685
      | `Normal -> get_aux any d.times
      | `XML -> get_aux any_pair d.xml
686
687
688

  let pi1 = List.fold_left (fun acc (t1,_) -> cup acc t1) empty
  let pi2 = List.fold_left (fun acc (_,t2) -> cup acc t2) empty
689
690
691
692
  let pi2_restricted restr = 
    List.fold_left (fun acc (t1,t2) -> 
		      if is_empty (cap t1 restr) then acc
		      else cup acc t2) empty
693
694

  let restrict_1 rects pi1 =
695
696
    let aux acc (t1,t2) = 
      let t1 = cap t1 pi1 in if is_empty t1 then acc else (t1,t2)::acc in
697
698
699
700
    List.fold_left aux [] rects
  
  type normal = t

701
  module Memo = Map.Make(BoolPair)
702

703
704
  (* TODO: try with an hashtable *)
  (* Also, avoid lookup for simple products (t1,t2) *)
705
  let memo = ref Memo.empty
706
  let normal_times d = 
707
708
709
    try Memo.find d !memo 
    with
	Not_found ->
710
	  let gd = get_aux any d in
711
	  let n = normal_aux gd in
712
713
(* Could optimize this call to normal_aux because one already
   know that each line is normalized ... *)
714
715
	  memo := Memo.add d n !memo;
	  n
716

717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
  let memo_xml = ref Memo.empty
  let normal_xml d = 
    try Memo.find d !memo_xml
    with
	Not_found ->
	  let gd = get_aux any_pair d in
	  let n = normal_aux gd in
	  memo_xml := Memo.add d n !memo_xml;
	  n

  let normal ?(kind=`Normal) d =
    match kind with 
      | `Normal -> normal_times d.times 
      | `XML -> normal_xml d.xml


733
734
735
736
737
738
739
740
741
742
  let merge_same_2 r =
    let r = 
      List.fold_left 
	(fun accu (t1,t2) ->
	   let t = try DescrMap.find t2 accu with Not_found -> empty in
	   DescrMap.add t2 (cup t t1) accu
	) DescrMap.empty r in
    DescrMap.fold (fun t2 t1 accu -> (t1,t2)::accu) r []
	 

743
744
745
746
747
748
749
  let constraint_on_2 n t1 =
    List.fold_left 
      (fun accu (d1,d2) ->
	 if is_empty (cap d1 t1) then accu else cap accu d2)
      any
      n

750
751
  let any = { empty with times = any.times }
  and any_xml = { empty with xml = any.xml }
752
  let is_empty d = d == []
753
end
754

755
module Record = 
756
struct
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
  let has_record d = not (is_empty { empty with record = d.record })
  let or_absent d = { d with absent = true }
  let any_or_absent = or_absent any
  let has_absent d = d.absent

  let only_absent = {empty with absent = true}
  let only_absent_node = cons only_absent

  module T = struct
    type t = descr
    let any = any_or_absent
    let cap = cap
    let cup = cup
    let diff = diff
    let is_empty = is_empty
    let empty = empty
  end
  module R = struct
    type t = descr
    let any = { empty with record = any.record }
    let cap = cap
    let cup = cup
    let diff = diff
    let is_empty = is_empty
    let empty = empty
  end
  module TR = Normal.Make(T)(R)

  let any_record = { empty with record = BoolRec.full }

  let atom o l = 
    if o && LabelMap.is_empty l then any_record else
    { empty with record = BoolRec.atom (o,l) }

  type zor = Pair of descr * descr | Any

  let aux_split d l=
    let f (o,r) =
      try
	let (lt,rem) = LabelMap.assoc_remove l r in
	Pair (descr lt, atom o rem)
      with Not_found -> 
	if o then
	  if LabelMap.is_empty r then Any else
	    Pair (any_or_absent, { empty with record = BoolRec.atom (o,r) })
	else
	  Pair (only_absent,
		{ empty with record = BoolRec.atom (o,r) })
    in
    List.fold_left 
      (fun b (p,n) ->
	 let rec aux_p accu = function
	   | x::p -> 
	       (match f x with
		  | Pair (t1,t2) -> aux_p ((t1,t2)::accu) p
		  | Any -> aux_p accu p)
	   | [] -> aux_n accu [] n
	 and aux_n p accu = function
	   | x::n -> 
	       (match f x with
		  | Pair (t1,t2) -> aux_n p ((t1,t2)::accu) n
		  | Any -> b)
	   | [] -> (p,accu) :: b in
	 aux_p [] p)
      []
      (BoolRec.get d.record)

  let split (d : descr) l =
    TR.boolean (aux_split d l)

  let split_normal d l =
    TR.boolean_normal (aux_split d l)


  let project d l =
    let t = TR.pi1 (split d l) in
    if t.absent then raise Not_found;
    t

  let project_opt d l =
    let t = TR.pi1 (split d l) in
    { t with absent = false }

  let condition d l t =
    TR.pi2_restricted t (split d l)
842

843
844
845
846
847
(* TODO: eliminate this cap ... (reord l only_absent_node) when
   not necessary. eg. {| ..... |} \ l *)

  let remove_field d l = 
    cap (TR.pi2 (split d l)) (record l only_absent_node)
848

849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
  let first_label d =
    let min = ref LabelPool.dummy_max in
    let aux (_,r) = 
      match LabelMap.get r with
	  (l,_)::_ -> if (l:int) < !min then min := l | _ -> () in
    BoolRec.iter aux d.record;
    !min

  let empty_cases d =
    let x = BoolRec.compute
	      ~empty:0 ~full:3 ~cup:(lor) ~cap:(land)
	      ~diff:(fun a b -> a land lnot b)
	      ~atom:(function (o,r) ->
		       assert (LabelMap.get r == []);
		       if o then 3 else 1
		    )
	      d.record in
    (x land 2 <> 0, x land 1 <> 0)

  let has_empty_record d =
    BoolRec.compute
      ~empty:false ~full:true ~cup:(||) ~cap:(&&)
      ~diff:(fun a b -> a && not b)
      ~atom:(function (o,r) ->
	       List.for_all 
	         (fun (l,t) -> (descr t).absent)
	         (LabelMap.get r)
	    )
      d.record
    

(*TODO: optimize merge
   - pre-compute the sequence of labels
   - remove empty or full { l = t }
*)

  let merge d1 d2 = 
    let res = ref empty in
    let rec aux accu d1 d2 =
      let l = min (first_label d1) (first_label d2) in
      if l = LabelPool.dummy_max then
	let (some1,none1) = empty_cases d1 
	and (some2,none2) = empty_cases d2 in
	let none = none1 && none2 and some = some1 || some2 in
	let accu = LabelMap.from_list (fun _ _ -> assert false) accu in
	(* approx for the case (some && not none) ... *)
	res := cup !res (record' (some, accu))
      else
	let l1 = split d1 l and l2 = split d2 l in
	let loop (t1,d1) (t2,d2) =
	  let t = 
	    if t2.absent 
	    then cup t1 { t2 with absent = false } 
	    else t2 
	  in
	  aux ((l,cons t)::accu) d1 d2
	in
	List.iter (fun x -> List.iter (loop x) l2) l1
	  
    in
    aux [] d1 d2;
    !res

  let any = { empty with record = any.record }

  let get d =
    let rec aux r accu d =
      let l = first_label d in
      if l == LabelPool.dummy_max then
	let (o1,o2) = empty_cases d in 
	if o1 || o2 then (LabelMap.from_list_disj r,o1,o2)::accu else accu
      else
	List.fold_left 
922
923
924
	  (fun accu (t1,t2) -> 
	     let x = (t1.absent, { t1 with absent = false }) in
	     aux ((l,x)::r) accu t2)
925
926
927
928
929
930
931
932
933
	  accu
	  (split d l)
    in
    aux [] [] d
end


module Print = 
struct
934
  let print_const ppf = function
935
936
937
    | Integer i -> Intervals.print_v ppf i
    | Atom a -> Atoms.print_v ppf a
    | Char c -> Chars.print_v ppf c
938

939
  let nil_atom = Atoms.mk_ascii "nil"
940
941
942
943
944
945
946
947
948
  let nil_type = atom (Atoms.atom nil_atom)
  let (seqs_node,seqs_descr) = 
    let n = make () in
    let d = cup nil_type (times any_node n) in
    define n d;
    (n, d)

  let is_regexp t = subtype t seqs_descr

949
950
951
  module S = struct
  type t = { id : int; 
	     mutable def : d list; 
952
	     mutable state : [ `Expand | `None | `Marked | `Named of U.t ] }
953
  and  d =
954
    | Name of U.t
955
956
957
958
    | Regexp of t Pretty.regexp
    | Atomic of (Format.formatter -> unit)
    | Pair of t * t
    | Char of Chars.v
959
    | Xml of [ `Tag of (Format.formatter -> unit) | `Type of t ] * t * t
960
961
    | Record of (bool * t) label_map * bool * bool
    | Arrows of (t * t) list * (t * t) list
962
    | Neg of t
963
964
965
966
  let compare x y = x.id - y.id
  end
  module Decompile = Pretty.Decompile(DescrHash)(S)
  open S
967

968
  module DescrPairMap = Map.Make(Custom.Pair(Descr)(Descr))
969
970
971

  let named = State.ref "Types.Print.named" DescrMap.empty
  let named_xml = State.ref "Types.Print.named_xml"  DescrPairMap.empty
972
  let register_global (name : U.t) d = 
973
    if equal { d with xml = BoolPair.empty } empty then 
974
975
976
977
      (let l = (*Product.merge_same_2*) (Product.get ~kind:`XML d) in
      match l with
	| [(t1,t2)] -> named_xml := DescrPairMap.add (t1,t2) name !named_xml
	| _ -> ());
978
    named := DescrMap.add d name !named
979

980
  let memo = DescrHash.create 63
981
982
  let counter = ref 0
  let alloc def = { id = (incr counter; !counter); def = def; state = `None }
983

984
985
986
  let count_name = ref 0
  let name () =
    incr count_name;
987
    U.mk ("X" ^ (string_of_int !count_name))
988

989
990
  let to_print = ref []

991
992
993
  let trivial_rec b = 
    b == BoolRec.empty || 
    (is_empty { empty with record = BoolRec.diff BoolRec.full b})
994

995
  let trivial_pair b = b == BoolPair.empty || b == BoolPair.full
996
997

  let worth_abbrev d = 
998
999
    not (trivial_pair d.times && trivial_pair d.xml && 
	 trivial_pair d.arrow && trivial_rec d.record) 
1000

1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
  let worth_complement d =
    let aux f x y = if f x y = 0 then 1 else 0 in
    let n = 
      aux Atoms.compare d.atoms any.atoms +
      aux Chars.compare d.chars any.chars +
      aux Intervals.compare d.ints any.ints +
      aux BoolPair.compare d.times any.times +
      aux BoolPair.compare d.xml any.xml +
      aux BoolPair.compare d.arrow any.arrow +
      aux BoolRec.compare d.record any.record in
    n >= 4

1013
  let rec prepare d =
1014
    try DescrHash.find memo d
1015
    with Not_found ->
1016
1017
      try 
	let n = DescrMap.find d !named in
1018
1019
	let s = alloc [] in
	s.state <- `Named n;
1020
1021
1022
	DescrHash.add memo d s;
	s
      with Not_found ->
1023
	if worth_complement d then 
1024
	  alloc [Neg (prepare (neg d))]
1025
	else
1026
1027
1028
	let slot = alloc [] in
	if not (worth_abbrev d) then slot.state <- `Expand;
	DescrHash.add memo d slot;
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
	let (seq,not_seq) =
	  if (subtype { empty with times = d.times } seqs_descr) then
	    (cap d seqs_descr, diff d seqs_descr)
	  else
	    (empty, d) in

	let add u = slot.def <- u :: slot.def in
	if (non_empty seq) then
	  add (Regexp (decompile seq));  
	List.iter
	  (fun (t1,t2) -> add (Pair (prepare t1, prepare t2)))
	  (Product.get not_seq);
	List.iter
	  (fun (t1,t2) ->
	     try 
	       let n = DescrPairMap.find (t1,t2) !named_xml in
	       add (Name n)
	     with
		 Not_found ->
	     let tag = 
1049
	       match Atoms.print_tag t1.atoms with
1050
		 | Some a when is_empty { t1 with atoms = Atoms.empty } -> `Tag a
1051
		 | _ -> `Type (prepare t1) in
1052
	     assert (equal { t2 with times = empty.times } empty);
1053
1054
1055
	     List.iter
	       (fun (ta,tb) -> add (Xml (tag, prepare ta, prepare tb)))
	       (Product.get t2)
1056
	  )
1057
1058
1059
	  ((*Product.merge_same_2*) (Product.get ~kind:`XML not_seq));
	List.iter
	  (fun (r,some,none) -> 
1060
	     let r = LabelMap.map (fun (o,t) -> (o, prepare t)) r in
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
	     add (Record (r,some,none)))
	  (Record.get not_seq);
	(match Chars.is_char not_seq.chars with
	  | Some c -> add (Char c)
	  | None ->
	      List.iter (fun x -> add (Atomic x)) (Chars.print not_seq.chars));
	List.iter (fun x -> add (Atomic x)) (Intervals.print not_seq.ints);
	List.iter (fun x -> add (Atomic x)) (Atoms.print not_seq.atoms);
	List.iter
	  (fun (p,n) ->
	     let aux (t,s) = prepare (descr t), prepare (descr s) in
	     let p = List.map aux p and n = List.map aux n in
	     add (Arrows (p,n)))
	  (BoolPair.get not_seq.arrow);
	slot.def <- List.rev slot.def;
	slot
	

  and decompile d =
    Decompile.decompile 
      (fun t -> 
	 let tr = Product.get t in
	 let tr = List.map (fun (l,t) -> prepare l, t) tr in
	 tr, Atoms.contains nil_atom t.atoms)
      d

1087
1088
  let gen = ref 0

1089
  let rec assign_name s =
1090
    incr gen;
1091
    match s.state with
1092
1093
1094
1095
1096
      | `None ->  
	  let g = !gen in
	  s.state <- `Marked; 
	  List.iter assign_name_rec s.def;
	  if (s.state == `Marked) && (!gen == g) then s.state <- `None
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
      | `Marked -> s.state <- `Named (name ()); to_print := s :: !to_print
      | _ -> ()
  and assign_name_rec = function
    | Neg t -> assign_name t
    | Name _ | Char _ | Atomic _ -> ()
    | Regexp r -> assign_name_regexp r
    | Pair (t1,t2) -> assign_name t1; assign_name t2
    | Xml (tag,t2,t3) -> 
	(match tag with `Type t -> assign_name t | _ -> ());
	assign_name t2;
	assign_name t3
    | Record (r,_,_) ->
	List.iter (fun (_,(_,t)) -> assign_name t) (LabelMap.get r)
    | Arrows (p,n) ->
	List.iter (fun (t1,t2) -> assign_name t1; assign_name t2) p;
	List.iter (fun (t1,t2) -> assign_name t1; assign_name t2) n
  and assign_name_regexp = function
    | Pretty.Epsilon | Pretty.Empty -> ()
    | Pretty.Alt (r1,r2) 
    | Pretty.Seq (r1,r2) -> assign_name_regexp r1; assign_name_regexp r2
    | Pretty.Star r | Pretty.Plus r -> assign_name_regexp r
    | Pretty.Trans t -> assign_name t

1120
  let rec do_print_slot pri ppf s =
1121
    match s.state with
1122
      | `Named n -> Format.fprintf ppf "%a" U.print n
1123
      | _ -> do_print_slot_real pri ppf s.def
1124
1125
1126
1127
1128
  and do_print_slot_real pri ppf def =
    let rec aux ppf = function
      | [] -> Format.fprintf ppf "Empty"
      | [ h ] -> do_print ppf h
      | h :: t -> Format.fprintf ppf "%a |@ %a" do_print h aux t
1129
    in
1130
1131
1132
1133
    if (pri >= 2) && (List.length def >= 2) 
    then Format.fprintf ppf "@[(%a)@]" aux def
    else aux ppf def
  and do_print ppf = function
1134
    | Neg t -> Format.fprintf ppf "Any \\ (@[%a@])" (do_print_slot 0) t
1135
    | Name n -> Format.fprintf ppf "%a" U.print n
1136
1137
1138
1139
1140
1141
1142
    | Char c -> Chars.print_v ppf c
    | Regexp r -> Format.fprintf ppf "@[[ %a ]@]" (do_print_regexp 0) r
    | Atomic a -> a ppf
    | Pair (t1,t2) -> 
	Format.fprintf ppf "@[(%a,%a)@]" 
	  (do_print_slot 0) t1 
	  (do_print_slot 0) t2
1143
    | Xml (tag,attr,t) -> 
1144
1145
	Format.fprintf ppf "<%a%a>%a" 
	  do_print_tag tag
1146
1147
	  do_print_attr attr
	  (do_print_slot 0) t
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
    | Record (r,some,none) ->
	if some then Format.fprintf ppf "@[{"
	else Format.fprintf ppf "@[{|";
	do_print_record ppf r;
	if not none then  Format.fprintf ppf ";@ ...";
	if some then Format.fprintf ppf " }@]"
	else Format.fprintf ppf " |}@]"
    | Arrows (p,n) ->
	(match p with
	   | [] -> Format.fprintf ppf "Arrow"
	   | (t,s)::l ->
	       Format.fprintf ppf "%a" do_print_arrow (t,s);
	       List.iter 
		 (fun (t,s) ->
		    Format.fprintf ppf " &@ %a" do_print_arrow (t,s)
		 ) l);
	List.iter 
	  (fun (t,s) ->
	     Format.fprintf ppf " \\@ %a" do_print_arrow (t,s)
	  ) n
  and do_print_arrow ppf (t,s) =
    Format.fprintf ppf "%a -> %a"
      (do_print_slot 0) t
      (do_print_slot 0) s
  and do_print_tag ppf = function
1173
    | `Tag s -> s ppf
1174
1175
    | `Type t -> Format.fprintf ppf "(%a)" (do_print_slot 0) t
  and do_print_attr ppf = function
1176
1177
    | { state = `Marked|`Expand; 
	def = [ Record (r,true,true) ] } -> do_print_record ppf r
1178
1179
    | t -> Format.fprintf ppf " %a" (do_print_slot 2) t
  and do_print_record ppf r =
1180
    let first = ref true in
1181
1182
1183
1184
    List.iter 
      (fun (l,(o,t)) ->
	 let sep = if !first then (first := false; "") else ";" in
	 let opt = if o then "?" else "" in
1185
	 Format.fprintf ppf "%s@ @[%a =%s@] %a" sep
1186
	   Label.print (LabelPool.value l) opt (do_print_slot 0) t
1187
1188
      ) (LabelMap.get r)
  and do_print_regexp pri ppf = function
1189
    | Pretty.Empty ->  Format.fprintf ppf "Empty" (*assert false *)
1190
    | Pretty.Epsilon -> ()
1191
    | Pretty.Seq (Pretty.Trans { def = [ Char _ ] }, _) as r-> 
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
	(match extract_string [] r with
	  | s, None ->
	      Format.fprintf ppf "'";
	      List.iter (Chars.print_v_in_string ppf) s;
	      Format.fprintf ppf "'"
	  | s, Some r ->
	      if pri >= 3 then Format.fprintf ppf "@[(";
	      Format.fprintf ppf "'";
	      List.iter (Chars.print_v_in_string ppf) s;
	      Format.fprintf ppf "' %a" (do_print_regexp 2) r;
	      if pri >= 3 then Format.fprintf ppf ")@]")
    | Pretty.Seq (r1,r2) -> 
	if pri >= 3 then Format.fprintf ppf "@[(";
	Format.fprintf ppf "%a@ %a" 
	  (do_print_regexp 2) r1 
	  (do_print_regexp 2) r2;
	if pri >= 3 then Format.fprintf ppf ")@]"
    | Pretty.Alt (r,Pretty.Epsilon) | Pretty.Alt (Pretty.Epsilon,r) ->
	Format.fprintf ppf "@[%a@]?" (do_print_regexp 3) r
    | Pretty.Alt (r1,r2) -> 
	if pri >= 2 then Format.fprintf ppf "@[(";
	Format.fprintf ppf "%a |@ %a" 
	  (do_print_regexp 1) r1 
	  (do_print_regexp 1) r2;
	if pri >= 2 then Format.fprintf ppf ")@]"
    | Pretty.Star r -> 
	Format.fprintf ppf "@[%a@]*" (do_print_regexp 3) r
1219
1220
    | Pretty.Plus r -> 
	Format.fprintf ppf "@[%a@]+" (do_print_regexp 3) r
1221
1222
1223
    | Pretty.Trans t ->
	do_print_slot pri ppf t
  and extract_string accu = function
1224
    | Pretty.Seq (Pretty.Trans { def = [ Char