typer.ml 42.6 KB
Newer Older
1
(* TODO:
2
 - rewrite type-checking of operators to propagate constraint
3
4
 - optimize computation of pattern free variables
 - check whether it is worth using recursive hash-consing internally
5
6
*)

7
8
9
open Location
open Ast
open Ident
10

11
let warning loc msg =
12
  Format.fprintf !Location.warning_ppf "Warning %a:@\n%a%s@." 
13
14
    Location.print_loc (loc,`Full)
    Location.html_hilight (loc,`Full)
15
16
    msg

17
18
type item =
  | Type of Types.t
19
  | Val of Types.t
20

21
type t = {
22
  ids : item Env.t;
23
24
  tenv_nspref: Ns.table;
}
25

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
include Custom.Dummy

(* TODO: filter out builtin defs ? *)
let serialize s env =
  Env.iter 
    (fun id item ->
       match item with
	 | Type t ->
	     Serialize.Put.bits 2 s 0b01;
	     Id.serialize s id;
	     Types.serialize s t
	 | Val t ->
	     Serialize.Put.bits 2 s 0b10;
	     Id.serialize s id;
	     Types.serialize s t
    ) env.ids;
  Serialize.Put.bits 2 s 0b00;
  Ns.serialize_table s env.tenv_nspref

let deserialize s =
  let rec aux env =
    match Serialize.Get.bits 2 s with
      | 0b00 -> env
      | 0b01 ->
	  let id = Id.deserialize s in
	  let t = Types.deserialize s in
	  aux (Env.add id (Type t) env)
      | 0b10 ->
	  let id = Id.deserialize s in
	  let t = Types.deserialize s in
	  aux (Env.add id (Val t) env) 
      | _ -> assert false
  in
  let ids = aux Env.empty in
  let ns = Ns.deserialize_table s in
  { ids = ids; tenv_nspref = ns }


64
65
66
67
68
69
70
71
72
73
74
75
76
let empty_env = {
  ids = Env.empty;
  tenv_nspref = Ns.empty_table;
}

let enter_type id t env =
  { env with ids = Env.add id (Type t) env.ids }
let enter_types l env =
  { env with ids = 
      List.fold_left (fun accu (id,t) -> Env.add id (Type t) accu) env.ids l }
let find_type id env =
  match Env.find id env.ids with
    | Type t -> t
77
    | Val _ -> raise Not_found
78
79

let enter_value id t env = 
80
  { env with ids = Env.add id (Val t) env.ids }
81
82
let enter_values l env =
  { env with ids = 
83
      List.fold_left (fun accu (id,t) -> Env.add id (Val t) accu) env.ids l }
84
85
let find_value id env =
  match Env.find id env.ids with
86
    | Val t -> t
87
88
    | _ -> raise Not_found
	
89
90
91
92
93
94
let value_name_ok id env =
  try match Env.find id env.ids with
    | Val t -> true
    | _ -> false
  with Not_found -> true

95
96
97
98
let iter_values env f =
  Env.iter (fun x ->
	      function Val t -> f x t;
		| _ -> ()) env.ids
99

100
(* Namespaces *)
101

102
103
104
let set_ns_table_for_printer env = 
  Ns.InternalPrinter.set_table env.tenv_nspref

105
let get_ns_table tenv = tenv.tenv_nspref
106

107
108
109
let enter_ns p ns env =
  { env with tenv_nspref = Ns.add_prefix p ns env.tenv_nspref }

110
111
112
113
114
let protect_error_ns loc f x =
  try f x
  with Ns.UnknownPrefix ns ->
    raise_loc_generic loc 
    ("Undefined namespace prefix " ^ (U.to_string ns))
115

116
117
118
119
120
121
let parse_atom env loc t =
  let (ns,l) = protect_error_ns loc (Ns.map_tag env.tenv_nspref) t in
  Atoms.V.mk ns l
 
let parse_ns env loc ns =
  protect_error_ns loc (Ns.map_prefix env.tenv_nspref) ns
122

123
124
125
let parse_label env loc t =
  let (ns,l) = protect_error_ns loc (Ns.map_attr env.tenv_nspref) t in
  LabelPool.mk (ns,l)
126

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
let parse_record env loc f r =
  let r = List.map (fun (l,x) -> (parse_label env loc l, f x)) r in
  LabelMap.from_list (fun _ _ -> raise_loc_generic loc "Duplicated record field") r

let rec const env loc = function
  | LocatedExpr (loc,e) -> const env loc e
  | Pair (x,y) -> Types.Pair (const env loc x, const env loc y)
  | Xml (x,y) -> Types.Xml (const env loc x, const env loc y)
  | RecordLitt x -> Types.Record (parse_record env loc (const env loc) x)
  | String (i,j,s,c) -> Types.String (i,j,s,const env loc c)
  | Atom t -> Types.Atom (parse_atom env loc t)
  | Integer i -> Types.Integer i
  | Char c -> Types.Char c
  | _ -> raise_loc_generic loc "This should be a scalar or structured constant"

(* I. Transform the abstract syntax of types and patterns into
      the internal form *)
144

145
exception NonExhaustive of Types.descr
146
exception Constraint of Types.descr * Types.descr
147
exception ShouldHave of Types.descr * string
148
exception ShouldHave2 of Types.descr * string * Types.descr
149
exception WrongLabel of Types.descr * label
150
exception UnboundId of id * bool
151
exception Error of string
152

153
154
let raise_loc loc exn = raise (Location (loc,`Full,exn))
let raise_loc_str loc ofs exn = raise (Location (loc,`Char ofs,exn))
155
let error loc msg = raise_loc loc (Error msg)
156

157
158
159
  (* Schema datastructures *)

module StringSet = Set.Make (String)
160
161
162

  (* just to remember imported schemas *)
let schemas = State.ref "Typer.schemas" StringSet.empty
163
164
165

let schema_types = State.ref "Typer.schema_types" (Hashtbl.create 51)
let schema_elements = State.ref "Typer.schema_elements" (Hashtbl.create 51)
166
let schema_attributes = State.ref "Typer.schema_attributes" (Hashtbl.create 51)
167

168
169
170
171
172
173
174
175
(* Eliminate Recursion, propagate Sequence Capture Variables *)

let rec seq_vars accu = function
  | Epsilon | Elem _ -> accu
  | Seq (r1,r2) | Alt (r1,r2) -> seq_vars (seq_vars accu r1) r2
  | Star r | WeakStar r -> seq_vars accu r
  | SeqCapture (v,r) -> seq_vars (IdSet.add v accu) r

176
177
178
179
180
181
182
183
184
185
186
187
188
189
(* We use two intermediate representation from AST types/patterns
   to internal ones:

      AST -(1)-> derecurs -(2)-> slot -(3)-> internal

   (1) eliminate recursion, schema, 
       propagate sequence capture variables, keep regexps

   (2) stratify, detect ill-formed recursion, compile regexps

   (3) check additional constraints on types / patterns;
       deep (recursive) hash-consing
*)     

190
191
192
193
type derecurs_slot = {
  ploc : Location.loc;
  pid  : int;
  mutable ploop : bool;
194
  mutable pdescr : derecurs;
195
} and derecurs =
196
  | PDummy
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
  | PAlias of derecurs_slot
  | PType of Types.descr
  | POr of derecurs * derecurs
  | PAnd of derecurs * derecurs
  | PDiff of derecurs * derecurs
  | PTimes of derecurs * derecurs
  | PXml of derecurs * derecurs
  | PArrow of derecurs * derecurs
  | POptional of derecurs
  | PRecord of bool * derecurs label_map
  | PCapture of id
  | PConstant of id * Types.const
  | PRegexp of derecurs_regexp * derecurs
and derecurs_regexp =
  | PEpsilon
  | PElem of derecurs
  | PSeq of derecurs_regexp * derecurs_regexp
  | PAlt of derecurs_regexp * derecurs_regexp
  | PStar of derecurs_regexp
  | PWeakStar of derecurs_regexp

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

type descr = 
  | IDummy
  | IType of Types.descr
  | IOr of descr * descr
  | IAnd of descr * descr
  | IDiff of descr * descr
  | ITimes of slot * slot
  | IXml of slot * slot
  | IArrow of slot * slot
  | IOptional of descr
  | IRecord of bool * slot label_map
  | ICapture of id
  | IConstant of id * Types.const
and slot = {
  mutable fv : fv option;
  mutable hash : int option;
  mutable rank1: int; mutable rank2: int;
  mutable gen1 : int; mutable gen2: int;
  mutable d    : descr;
238
}
239
240
241
242
243
244
245
246
247
248
249
250
251
    

let counter = ref 0
let mk_derecurs_slot loc = 
  incr counter; 
  { ploop = false; ploc = loc; pid = !counter; pdescr = PDummy }
	  
let mk_slot () = 
  { d=IDummy; fv=None; hash=None; rank1=0; rank2=0; gen1=0; gen2=0 } 


(* This environment is used in phase (1) to eliminate recursion *)
type penv = {
252
  penv_tenv : t;
253
254
255
256
  penv_derec : derecurs_slot Env.t;
}

let penv tenv = { penv_tenv = tenv; penv_derec = Env.empty }
257

258
let rec hash_derecurs = function
259
  | PDummy -> assert false
260
261
262
  | PAlias s -> 
      s.pid
  | PType t -> 
263
      1 + 17 * (Types.hash t)
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
  | POr (p1,p2) -> 
      2 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PAnd (p1,p2) -> 
      3 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PDiff (p1,p2) -> 
      4 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PTimes (p1,p2) -> 
      5 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PXml (p1,p2) -> 
      6 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PArrow (p1,p2) -> 
      7 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | POptional p -> 
      8 + 17 * (hash_derecurs p)
  | PRecord (o,r) -> 
      (if o then 9 else 10) + 17 * (LabelMap.hash hash_derecurs r)
  | PCapture x -> 
      11 + 17 * (Id.hash x)
  | PConstant (x,c) -> 
283
      12 + 17 * (Id.hash x) + 257 * (Types.Const.hash c)
284
285
  | PRegexp (p,q) -> 
      13 + 17 * (hash_derecurs_regexp p) + 257 * (hash_derecurs q)
286
and hash_derecurs_regexp = function
287
288
289
290
291
292
293
294
295
296
297
298
  | PEpsilon -> 
      1
  | PElem p -> 
      2 + 17 * (hash_derecurs p)
  | PSeq (p1,p2) -> 
      3 + 17 * (hash_derecurs_regexp p1) + 257 * (hash_derecurs_regexp p2)
  | PAlt (p1,p2) -> 
      4 + 17 * (hash_derecurs_regexp p1) + 257 * (hash_derecurs_regexp p2)
  | PStar p -> 
      5 + 17 * (hash_derecurs_regexp p)
  | PWeakStar p -> 
      6 + 17 * (hash_derecurs_regexp p)
299
300

let rec equal_derecurs p1 p2 = (p1 == p2) || match p1,p2 with
301
302
303
  | PAlias s1, PAlias s2 -> 
      s1 == s2
  | PType t1, PType t2 -> 
304
      Types.equal t1 t2
305
306
307
308
309
  | POr (p1,q1), POr (p2,q2)
  | PAnd (p1,q1), PAnd (p2,q2)
  | PDiff (p1,q1), PDiff (p2,q2)
  | PTimes (p1,q1), PTimes (p2,q2)
  | PXml (p1,q1), PXml (p2,q2)
310
311
312
313
314
315
316
317
318
  | PArrow (p1,q1), PArrow (p2,q2) -> 
      (equal_derecurs p1 p2) && (equal_derecurs q1 q2)
  | POptional p1, POptional p2 -> 
      equal_derecurs p1 p2
  | PRecord (o1,r1), PRecord (o2,r2) -> 
      (o1 == o2) && (LabelMap.equal equal_derecurs r1 r2)
  | PCapture x1, PCapture x2 -> 
      Id.equal x1 x2
  | PConstant (x1,c1), PConstant (x2,c2) -> 
319
      (Id.equal x1 x2) && (Types.Const.equal c1 c2)
320
321
  | PRegexp (p1,q1), PRegexp (p2,q2) -> 
      (equal_derecurs_regexp p1 p2) && (equal_derecurs q1 q2)
322
323
  | _ -> false
and equal_derecurs_regexp r1 r2 = match r1,r2 with
324
325
326
327
  | PEpsilon, PEpsilon -> 
      true
  | PElem p1, PElem p2 -> 
      equal_derecurs p1 p2
328
  | PSeq (p1,q1), PSeq (p2,q2) 
329
330
  | PAlt (p1,q1), PAlt (p2,q2) -> 
      (equal_derecurs_regexp p1 p2) && (equal_derecurs_regexp q1 q2)
331
  | PStar p1, PStar p2
332
333
  | PWeakStar p1, PWeakStar p2 -> 
      equal_derecurs_regexp p1 p2
334
  | _ -> false
335

336
337
338
339
340
341
342
343
344
345
346
module DerecursTable = Hashtbl.Make(
  struct 
    type t = derecurs 
    let hash = hash_derecurs
    let equal = equal_derecurs
  end
)

module RE = Hashtbl.Make(
  struct 
    type t = derecurs_regexp * derecurs 
347
348
349
350
    let hash (p,q) = 
      (hash_derecurs_regexp p) + 17 * (hash_derecurs q)
    let equal (p1,q1) (p2,q2) = 
      (equal_derecurs_regexp p1 p2) && (equal_derecurs q1 q2)
351
352
  end
)
353

354
355
356
357
let gen = ref 0
let rank = ref 0
	     
let rec hash_descr = function
358
  | IDummy -> assert false
359
  | IType x -> Types.hash x
360
361
362
363
364
365
366
367
368
  | IOr (d1,d2) -> 1 + 17 * (hash_descr d1) + 257 * (hash_descr d2)
  | IAnd (d1,d2) -> 2 + 17 * (hash_descr d1) + 257 * (hash_descr d2)
  | IDiff (d1,d2) -> 3 + 17 * (hash_descr d1) + 257 * (hash_descr d2)
  | IOptional d -> 4 + 17 * (hash_descr d)
  | ITimes (s1,s2) -> 5 + 17 * (hash_slot s1) + 257 * (hash_slot s2)
  | IXml (s1,s2) -> 6 + 17 * (hash_slot s1) + 257 * (hash_slot s2)
  | IArrow (s1,s2) -> 7 + 17 * (hash_slot s1) + 257 * (hash_slot s2)
  | IRecord (o,r) -> (if o then 8 else 9) + 17 * (LabelMap.hash hash_slot r)
  | ICapture x -> 10 + 17 * (Id.hash x)
369
  | IConstant (x,y) -> 11 + 17 * (Id.hash x) + 257 * (Types.Const.hash y)
370
371
372
373
374
and hash_slot s =
  if s.gen1 = !gen then 13 * s.rank1
  else (
    incr rank;
    s.rank1 <- !rank; s.gen1 <- !gen;
375
    hash_descr s.d
376
377
378
379
  )
    
let rec equal_descr d1 d2 = 
  match (d1,d2) with
380
  | IType x1, IType x2 -> Types.equal x1 x2
381
382
383
384
385
386
387
  | IOr (x1,y1), IOr (x2,y2) 
  | IAnd (x1,y1), IAnd (x2,y2) 
  | IDiff (x1,y1), IDiff (x2,y2) -> (equal_descr x1 x2) && (equal_descr y1 y2)
  | IOptional x1, IOptional x2 -> equal_descr x1 x2
  | ITimes (x1,y1), ITimes (x2,y2) 
  | IXml (x1,y1), IXml (x2,y2) 
  | IArrow (x1,y1), IArrow (x2,y2) -> (equal_slot x1 x2) && (equal_slot y1 y2)
388
389
  | IRecord (o1,r1), IRecord (o2,r2) -> 
      (o1 = o2) && (LabelMap.equal equal_slot r1 r2)
390
  | ICapture x1, ICapture x2 -> Id.equal x1 x2
391
  | IConstant (x1,y1), IConstant (x2,y2) -> 
392
      (Id.equal x1 x2) && (Types.Const.equal y1 y2)
393
394
395
396
397
398
399
400
  | _ -> false
and equal_slot s1 s2 =
  ((s1.gen1 = !gen) && (s2.gen2 = !gen) && (s1.rank1 = s2.rank2))
  ||
  ((s1.gen1 <> !gen) && (s2.gen2 <> !gen) && (
     incr rank;
     s1.rank1 <- !rank; s1.gen1 <- !gen;
     s2.rank2 <- !rank; s2.gen2 <- !gen;
401
     equal_descr s1.d s2.d
402
403
   ))
  
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
module SlotTable = Hashtbl.Make(
  struct
    type t = slot
	
    let hash s =
      match s.hash with
	| Some h -> h
	| None ->
	    incr gen; rank := 0; 
	    let h = hash_slot s in
	    s.hash <- Some h;
	    h
	      
    let equal s1 s2 = 
      (s1 == s2) || 
      (incr gen; rank := 0; 
       let e = equal_slot s1 s2 in
       (*     if e then Printf.eprintf "Recursive hash-consing: Equal\n";  *)
       e)
  end)


let rec derecurs env p = match p.descr with
  | PatVar v ->
      (try PAlias (Env.find v env.penv_derec)
       with Not_found -> 
430
	 try PType (find_type v env.penv_tenv)
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
	 with Not_found -> PCapture v)
  | SchemaVar (kind, schema, item) ->
      PType (derecurs_schema env kind schema item)
  | Recurs (p,b) -> derecurs (derecurs_def env b) p
  | Internal t -> PType t
  | NsT ns -> PType (Types.atom (Atoms.any_in_ns (parse_ns env.penv_tenv p.loc ns)))
  | Or (p1,p2) -> POr (derecurs env p1, derecurs env p2)
  | And (p1,p2) -> PAnd (derecurs env p1, derecurs env p2)
  | Diff (p1,p2) -> PDiff (derecurs env p1, derecurs env p2)
  | Prod (p1,p2) -> PTimes (derecurs env p1, derecurs env p2)
  | XmlT (p1,p2) -> PXml (derecurs env p1, derecurs env p2)
  | Arrow (p1,p2) -> PArrow (derecurs env p1, derecurs env p2)
  | Optional p -> POptional (derecurs env p)
  | Record (o,r) -> PRecord (o, parse_record env.penv_tenv p.loc (derecurs env) r)
  | Constant (x,c) -> PConstant (x,const env.penv_tenv p.loc c)
  | Cst c -> PType (Types.constant (const env.penv_tenv p.loc c))
  | Regexp (r,q) -> 
      let constant_nil t v = 
	PAnd (t, PConstant (v, Types.Atom Sequence.nil_atom)) in
      let vars = seq_vars IdSet.empty r in
      let q = IdSet.fold constant_nil (derecurs env q) vars in
      let r = derecurs_regexp (fun p -> p) env r in
      PRegexp (r, q)
and derecurs_regexp vars env = function
  | Epsilon -> 
      PEpsilon
  | Elem p -> 
      PElem (vars (derecurs env p))
  | Seq (p1,p2) -> 
      PSeq (derecurs_regexp vars env p1, derecurs_regexp vars env p2)
  | Alt (p1,p2) -> 
      PAlt (derecurs_regexp vars env p1, derecurs_regexp vars env p2)
  | Star p -> 
      PStar (derecurs_regexp vars env p)
  | WeakStar p -> 
      PWeakStar (derecurs_regexp vars env p)
  | SeqCapture (x,p) -> 
      derecurs_regexp (fun p -> PAnd (vars p, PCapture x)) env p


and derecurs_def env b =
  let b = List.map (fun (v,p) -> (v,p,mk_derecurs_slot p.loc)) b in
  let n = 
    List.fold_left (fun env (v,p,s) -> Env.add v s env) env.penv_derec b in
  let env = { env with penv_derec = n } in
  List.iter (fun (v,p,s) -> s.pdescr <- derecurs env p) b;
  env

and derecurs_schema env kind schema item =
  let elt () = fst (Hashtbl.find !schema_elements (schema, item)) in
  let typ () = Hashtbl.find !schema_types (schema, item) in
  let att () = Hashtbl.find !schema_attributes (schema, item) in
  let rec do_try n = function
    | [] -> 
	let s = Printf.sprintf 
		  "No %s named '%s' found in schema '%s'" n item schema in
	failwith s
    | f :: rem -> (try f () with Not_found -> do_try n rem)  in
  match kind with
    | `Element -> do_try "element" [ elt ]
    | `Type -> do_try "type" [ typ ]
    | `Attribute -> do_try "atttribute" [ att ]
    | `Any -> do_try "item" [ elt; typ; att ]

    
496
497
498
499
500
let rec fv_slot s =
  match s.fv with
    | Some x -> x
    | None ->
	if s.gen1 = !gen then IdSet.empty 
501
	else (s.gen1 <- !gen; fv_descr s.d)
502
and fv_descr = function
503
  | IDummy -> assert false
504
  | IType _ -> IdSet.empty
505
506
507
508
509
510
511
  | IOr (d1,d2)
  | IAnd (d1,d2)  
  | IDiff (d1,d2) -> IdSet.cup (fv_descr d1) (fv_descr d2)
  | IOptional d -> fv_descr d
  | ITimes (s1,s2)  
  | IXml (s1,s2)  
  | IArrow (s1,s2) -> IdSet.cup (fv_slot s1) (fv_slot s2)
512
513
  | IRecord (o,r) -> 
      List.fold_left IdSet.cup IdSet.empty (LabelMap.map_to_list fv_slot r)
514
  | ICapture x | IConstant (x,_) -> IdSet.singleton x
515

516
517
518
519
520
521
522
523
let compute_fv s =
  match s.fv with
    | Some x -> ()
    | None ->
	incr gen;
	let x = fv_slot s in
	s.fv <- Some x
	  
524
525
526
let check_no_capture loc s =
  match IdSet.pick s with
    | Some x ->  
527
	raise_loc_generic loc ("Capture variable not allowed: " ^ (Ident.to_string x))
528
    | None -> ()
529
    
530
531
532
let compile_slot_hash = DerecursTable.create 67
let compile_hash = DerecursTable.create 67

533
534
let todo_defs = ref []
let todo_fv = ref []
535
536
537
538
539
540
541
542

let rec compile p =
  try DerecursTable.find compile_hash p
  with Not_found ->
    let c = real_compile p in
    DerecursTable.replace compile_hash p c;
    c
and real_compile = function
543
  | PDummy -> assert false
544
545
546
547
  | PAlias v ->
      if v.ploop then
	raise_loc_generic v.ploc ("Unguarded recursion on type/pattern");
      v.ploop <- true;
548
      let r = compile v.pdescr in
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
      v.ploop <- false;
      r
  | PType t -> IType t
  | POr (t1,t2) -> IOr (compile t1, compile t2)
  | PAnd (t1,t2) -> IAnd (compile t1, compile t2)
  | PDiff (t1,t2) -> IDiff (compile t1, compile t2)
  | PTimes (t1,t2) -> ITimes (compile_slot t1, compile_slot t2)
  | PXml (t1,t2) -> IXml (compile_slot t1, compile_slot t2)
  | PArrow (t1,t2) -> IArrow (compile_slot t1, compile_slot t2)
  | POptional t -> IOptional (compile t)
  | PRecord (o,r) ->  IRecord (o, LabelMap.map compile_slot r)
  | PConstant (x,v) -> IConstant (x,v)
  | PCapture x -> ICapture x
  | PRegexp (r,q) -> compile_regexp r q
and compile_regexp r q =
  let memo = RE.create 17 in
565
566
567
568
569
570
571
  let add accu i = 
    match accu with None -> Some i | Some j -> Some (IOr (j,i)) in
  let get = function Some x -> x | None -> assert false in
  let rec queue accu r = function
    | PRegexp (r,q) -> aux accu r q 
    | _ -> add accu (compile q)
  and aux accu r q =
572
573
574
575
    if RE.mem memo (r,q) then accu
    else (
      RE.add memo (r,q) ();
      match r with
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
	| PEpsilon -> queue accu r q
	| PElem p ->
(* Be careful not to create pairs with same second component *)
	    let rec extract = function
	      | PConstant (x,v) -> `Const (x,v)
	      | POr (x,y) ->
		  (match extract x, extract y with
		    | `Pat x, `Pat y -> `Pat (POr (x,y))
		    | x, y -> `Or (x,y))
	      | p -> `Pat p
	    in
	    let rec mk accu = function
	      | `Const (x,v) -> add accu (IAnd (IConstant (x,v), compile q))
	      | `Or (x,y) -> mk (mk accu x) y
	      | `Pat p -> add accu (ITimes (compile_slot p, compile_slot q))
	    in
	    mk accu (extract p)
593
594
595
596
597
598
	| PSeq (r1,r2) -> aux accu r1 (PRegexp (r2,q))
	| PAlt (r1,r2) -> aux (aux accu r1 q) r2 q
	| PStar r1 -> aux (aux accu r1 (PRegexp (r,q))) PEpsilon q
	| PWeakStar r1 -> aux (aux accu PEpsilon q) r1 (PRegexp (r,q))
    )
  in
599
  get (aux None r q)
600
601
and compile_slot p =
  try DerecursTable.find compile_slot_hash p
602
  with Not_found ->
603
604
605
    let s = mk_slot () in
    todo_defs := (s,p) :: !todo_defs;
    todo_fv := s :: !todo_fv;
606
    DerecursTable.add compile_slot_hash p s;
607
    s
608

609
      
610
let timer_fv = Stats.Timer.create "Typer.fv"
611
let rec flush_defs () = 
612
613
614
615
  match !todo_defs with
    | [] -> 
	Stats.Timer.start timer_fv;
	List.iter compute_fv !todo_fv;
616
617
	todo_fv := [];
	Stats.Timer.stop timer_fv ()
618
619
620
621
    | (s,p)::t -> 
	todo_defs := t; 
	s.d <- compile p; 
	flush_defs ()
622
623
624
625
626
627
628
629
630
631
632
633
634
635
	
let typ_nodes = SlotTable.create 67
let pat_nodes = SlotTable.create 67
		  
let rec typ = function
  | IType t -> t
  | IOr (s1,s2) -> Types.cup (typ s1) (typ s2)
  | IAnd (s1,s2) ->  Types.cap (typ s1) (typ s2)
  | IDiff (s1,s2) -> Types.diff (typ s1) (typ s2)
  | ITimes (s1,s2) -> Types.times (typ_node s1) (typ_node s2)
  | IXml (s1,s2) -> Types.xml (typ_node s1) (typ_node s2)
  | IArrow (s1,s2) -> Types.arrow (typ_node s1) (typ_node s2)
  | IOptional s -> Types.Record.or_absent (typ s)
  | IRecord (o,r) -> Types.record' (o, LabelMap.map typ_node r)
636
  | IDummy | ICapture _ | IConstant (_,_) -> assert false
637
      
638
and typ_node s : Types.Node.t =
639
640
641
642
  try SlotTable.find typ_nodes s
  with Not_found ->
    let x = Types.make () in
    SlotTable.add typ_nodes s x;
643
    Types.define x (typ s.d);
644
645
646
647
648
649
650
651
    x
      
let rec pat d : Patterns.descr =
  if IdSet.is_empty (fv_descr d)
  then Patterns.constr (typ d)
  else pat_aux d
    
and pat_aux = function
652
  | IDummy -> assert false
653
654
655
656
657
658
  | IOr (s1,s2) -> Patterns.cup (pat s1) (pat s2)
  | IAnd (s1,s2) -> Patterns.cap (pat s1) (pat s2)
  | IDiff (s1,s2) when IdSet.is_empty (fv_descr s2) ->
      let s2 = Types.neg (typ s2) in
      Patterns.cap (pat s1) (Patterns.constr s2)
  | IDiff _ ->
659
      raise (Patterns.Error "Differences are not allowed in patterns")
660
661
662
  | ITimes (s1,s2) -> Patterns.times (pat_node s1) (pat_node s2)
  | IXml (s1,s2) -> Patterns.xml (pat_node s1) (pat_node s2)
  | IOptional _ -> 
663
      raise (Patterns.Error "Optional fields are not allowed in record patterns")
664
665
666
667
668
669
670
671
672
673
674
675
676
677
  | IRecord (o,r) ->
      let pats = ref [] in
      let aux l s = 
	if IdSet.is_empty (fv_slot s) then typ_node s
	else
	  ( pats := Patterns.record l (pat_node s) :: !pats;
	    Types.any_node )
      in
      let constr = Types.record' (o,LabelMap.mapi aux r) in
      List.fold_left Patterns.cap (Patterns.constr constr) !pats
	(* TODO: can avoid constr when o=true, and all fields have fv *)
  | ICapture x -> Patterns.capture x
  | IConstant (x,c) -> Patterns.constant x c
  | IArrow _ ->
678
      raise (Patterns.Error "Arrows are not allowed in patterns")
679
680
681
682
683
684
  | IType _ -> assert false
      
and pat_node s : Patterns.node =
  try SlotTable.find pat_nodes s
  with Not_found ->
    let x = Patterns.make (fv_slot s) in
685
686
    try
      SlotTable.add pat_nodes s x;
687
      Patterns.define x (pat s.d);
688
689
690
      x
    with exn -> SlotTable.remove pat_nodes s; raise exn
      (* For the toplevel ... *)
691

692

693
let type_defs env b =
694
695
  List.iter 
    (fun (v,p) ->
696
697
       if Env.mem v env.ids
       then raise_loc_generic p.loc ("Identifier " ^ (Ident.to_string v) ^ " is already bound")
698
    ) b;
699
700
  let penv = derecurs_def (penv env) b in
  let b = List.map (fun (v,p) -> (v,p,compile (derecurs penv p))) b in
701
702
703
704
  flush_defs ();
  let b = 
    List.map 
      (fun (v,p,s) -> 
705
	 check_no_capture p.loc (fv_descr s);
706
707
708
	 let t = typ s in
	 if (p.loc <> noloc) && (Types.is_empty t) then
	   warning p.loc 
709
	     ("This definition yields an empty type for " ^ (Ident.to_string v));
710
	 (v,t)) b in
711
  List.iter (fun (v,t) -> Types.Print.register_global (Id.value v) t) b;
712
  b
713
714


715
716
717
718
719
let dump_types ppf env =
  Env.iter (fun v -> 
	      function 
		  (Type _) -> Format.fprintf ppf " %a" Ident.print v
		| _ -> ()) env.ids
720

721
722
let dump_ns ppf env =
  Ns.dump_table ppf env.tenv_nspref
723

724

725
726
let do_typ loc r = 
  let s = compile_slot r in
727
  flush_defs ();
728
729
  check_no_capture loc (fv_slot s);
  typ_node s
730
   
731
732
let typ env p =
  do_typ p.loc (derecurs (penv env) p)
733
    
734
735
let pat env p = 
  let s = compile_slot (derecurs (penv env) p) in
736
737
738
  flush_defs ();
  try pat_node s
  with Patterns.Error e -> raise_loc_generic p.loc e
739
    | Location (loc,_,exn) when loc = noloc -> raise (Location (p.loc, `Full, exn))
740
741


742
743
(* II. Build skeleton *)

744

745
746
747
748
749
type type_fun = Types.t -> bool -> Types.t
let mk_unary_op = ref (fun _ _ -> assert false)
let typ_unary_op = ref (fun _ _ _ -> assert false)
let mk_binary_op = ref (fun _ _ -> assert false)
let typ_binary_op = ref (fun _ _ _ _ -> assert false)
750
751


752
module Fv = IdSet
753

754
755
756
type branch = Branch of Typed.branch * branch list

let cur_branch : branch list ref = ref []
757

758
let exp loc fv e =
759
760
  fv,
  { Typed.exp_loc = loc;
761
    Typed.exp_typ = Types.empty;
762
    Typed.exp_descr = e;
763
  }
764
765


766
767
let rec expr env loc = function
  | LocatedExpr (loc,e) -> expr env loc e
768
  | Forget (e,t) ->
769
      let (fv,e) = expr env loc e and t = typ env t in
770
771
772
773
      exp loc fv (Typed.Forget (e,t))
  | Var s -> 
      exp loc (Fv.singleton s) (Typed.Var s)
  | Apply (e1,e2) -> 
774
      let (fv1,e1) = expr env loc e1 and (fv2,e2) = expr env loc e2 in
775
776
      exp loc (Fv.cup fv1 fv2) (Typed.Apply (e1,e2))
  | Abstraction a ->
777
      let iface = List.map (fun (t1,t2) -> (typ env t1, typ env t2)) 
778
779
780
781
782
783
784
		    a.fun_iface in
      let t = List.fold_left 
		(fun accu (t1,t2) -> Types.cap accu (Types.arrow t1 t2)) 
		Types.any iface in
      let iface = List.map 
		    (fun (t1,t2) -> (Types.descr t1, Types.descr t2)) 
		    iface in
785
      let (fv0,body) = branches env a.fun_body in
786
787
788
789
790
791
792
793
794
795
796
      let fv = match a.fun_name with
	| None -> fv0
	| Some f -> Fv.remove f fv0 in
      let e = Typed.Abstraction 
		{ Typed.fun_name = a.fun_name;
		  Typed.fun_iface = iface;
		  Typed.fun_body = body;
		  Typed.fun_typ = t;
		  Typed.fun_fv = fv
		} in
      exp loc fv e
797
  | (Integer _ | Char _ | Atom _) as c -> 
798
      exp loc Fv.empty (Typed.Cst (const env loc c))
799
  | Pair (e1,e2) ->
800
      let (fv1,e1) = expr env loc e1 and (fv2,e2) = expr env loc e2 in
801
802
      exp loc (Fv.cup fv1 fv2) (Typed.Pair (e1,e2))
  | Xml (e1,e2) ->
803
      let (fv1,e1) = expr env loc e1 and (fv2,e2) = expr env loc e2 in
804
805
      exp loc (Fv.cup fv1 fv2) (Typed.Xml (e1,e2))
  | Dot (e,l) ->
806
807
      let (fv,e) = expr env loc e in
      exp loc fv (Typed.Dot (e,parse_label env loc l))
808
  | RemoveField (e,l) ->
809
810
      let (fv,e) = expr env loc e in
      exp loc fv (Typed.RemoveField (e,parse_label env loc l))
811
812
  | RecordLitt r -> 
      let fv = ref Fv.empty in
813
      let r = parse_record env loc
814
		(fun e -> 
815
		   let (fv2,e) = expr env loc e 
816
817
818
		   in fv := Fv.cup !fv fv2; e)
		r in
      exp loc !fv (Typed.RecordLitt r)
819
  | String (i,j,s,e) ->
820
      let (fv,e) = expr env loc e in
821
      exp loc fv (Typed.String (i,j,s,e))
822
  | Op (op,le) ->
823
      let (fvs,ltes) = List.split (List.map (expr env loc) le) in
824
      let fv = List.fold_left Fv.cup Fv.empty fvs in
825
      (try
826
827
828
	 (match ltes with
	    | [e] -> exp loc fv (Typed.UnaryOp (!mk_unary_op op env, e))
	    | [e1;e2] -> exp loc fv (Typed.BinaryOp (!mk_binary_op op env, e1,e2))
829
830
831
	    | _ -> assert false)
       with Not_found -> assert false)

832
  | Match (e,b) -> 
833
834
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
835
      exp loc (Fv.cup fv1 fv2) (Typed.Match (e, b))
836
  | Map (e,b) ->
837
838
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
839
840
      exp loc (Fv.cup fv1 fv2) (Typed.Map (e, b))
  | Transform (e,b) ->
841
842
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
843
      exp loc (Fv.cup fv1 fv2) (Typed.Transform (e, b))
844
  | Xtrans (e,b) ->
845
846
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
847
      exp loc (Fv.cup fv1 fv2) (Typed.Xtrans (e, b))
848
  | Validate (e,schema,elt) ->
849
      let (fv,e) = expr env loc e in
850
      exp loc fv (Typed.Validate (e, schema, elt))
851
  | Try (e,b) ->
852
853
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
854
      exp loc (Fv.cup fv1 fv2) (Typed.Try (e, b))
855
  | NamespaceIn (pr,ns,e) ->
856
857
      let env = enter_ns pr ns env in
      expr env loc e
858
  | Ref (e,t) ->
859
      let (fv,e) = expr env loc e and t = typ env t in
860
      exp loc fv (Typed.Ref (e,t))
861
	      
862
  and branches env b = 
863
    let fv = ref Fv.empty in
864
    let accept = ref Types.empty in
865
    let branch (p,e) = 
866
867
      let cur_br = !cur_branch in
      cur_branch := [];
868
      let (fv2,e) = expr env noloc e in
869
      let br_loc = merge_loc p.loc e.Typed.exp_loc in
870
      let p = pat env p in
871
872
873
874
875
876
      (match Fv.pick (Fv.diff (Patterns.fv p) fv2) with
	| None -> ()
	| Some x ->
	    let x = U.to_string (Id.value x) in
	    warning br_loc 
	      ("The capture variable " ^ x ^ 
877
	       " is declared in the pattern but not used in the body of this branch. It might be a misspelled type or name (if not use _ instead)."));
878
879
880
881
882
883
884
885
886
      let fv2 = Fv.diff fv2 (Patterns.fv p) in
      fv := Fv.cup !fv fv2;
      accept := Types.cup !accept (Types.descr (Patterns.accept p));
      let br = 
	{ 
	  Typed.br_loc = br_loc;
	  Typed.br_used = br_loc = noloc;
	  Typed.br_pat = p;
	  Typed.br_body = e } in
887
      cur_branch := Branch (br, !cur_branch) :: cur_br;
888
889
      br in
    let b = List.map branch b in
890
891
892
893
    (!fv, 
     { 
       Typed.br_typ = Types.empty; 
       Typed.br_branches = b; 
894
895
       Typed.br_accept = !accept;
       Typed.br_compiled = None;
896
897
     } 
    )
898

899
let expr env e = snd (expr env noloc e)
900

901
902
let let_decl env p e =
  { Typed.let_pat = pat env p;
903
    Typed.let_body = expr env e;
904
905
    Typed.let_compiled = None }

906
907
908

(* Hide global "typing/parsing" environment *)

909

910
911
(* III. Type-checks *)

912
913
open Typed

914
915
let require loc t s = 
  if not (Types.subtype t s) then raise_loc loc (Constraint (t, s))
916

917
let verify loc t s = 
918
919
  require loc t s; t

920
921
922
923
924
let check_str loc ofs t s = 
  if not (Types.subtype t s) then raise_loc_str loc ofs (Constraint (t, s));
  t

let should_have loc constr s = 
925
926
  raise_loc loc (ShouldHave (constr,s))

927
928
929
let should_have_str loc ofs constr s = 
  raise_loc_str loc ofs (ShouldHave (constr,s))

930
931
932
933
934
935
936
937
938
939
940
let flatten loc arg constr precise =
  let constr' = Sequence.star 
		  (Sequence.approx (Types.cap Sequence.any constr)) in
  let sconstr' = Sequence.star constr' in
  let exact = Types.subtype constr' constr in
  if exact then
    let t = arg sconstr' precise in
    if precise then Sequence.flatten t else constr
  else
    let t = arg sconstr' true in
    Sequence.flatten t
941

942
943
let rec type_check env e constr precise = 
  let d = type_check' e.exp_loc env e.exp_descr constr precise in
944
  let d = if precise then d else constr in
945
946
947
  e.exp_typ <- Types.cup e.exp_typ d;
  d

948
and type_check' loc env e constr precise = match e with
949
950
951
  | Forget (e,t) ->
      let t = Types.descr t in
      ignore (type_check env e t false);
952
      verify loc t constr
953

954
  | Abstraction a ->
955
956
957
      let t =
	try Types.Arrow.check_strenghten a.fun_typ constr 
	with Not_found -> 
958
959
	  should_have loc constr
	    "but the interface of the abstraction is not compatible"
960
      in
961
962
      let env = match a.fun_name with
	| None -> env
963
	| Some f -> enter_value f a.fun_typ env in
964
965
      List.iter 
	(fun (t1,t2) ->
966
967
968
	   let acc = a.fun_body.br_accept in 
	   if not (Types.subtype t1 acc) then
	     raise_loc loc (NonExhaustive (Types.diff t1 acc));
969
	   ignore (type_check_branches loc env t1 a.fun_body t2 false)
970
971
	) a.fun_iface;
      t
972

973
974
  | Match (e,b) ->
      let t = type_check env e b.br_accept true in
975
      type_check_branches loc env t b constr precise
976
977
978

  | Try (e,b) ->
      let te = type_check env e constr precise in
979
      let tb = type_check_branches loc env Types.any b constr precise in
980
      Types.cup te tb
981

982
983
  | Pair (e1,e2) ->
      type_check_pair loc env e1 e2 constr precise
984

985
986
  | Xml (e1,e2) ->
      type_check_pair ~kind:`XML loc env e1 e2 constr precise
987

988
  | RecordLitt r ->
989
990
991
992
993
994
995
996
      type_record loc env r constr precise

  | Map (e,b) ->
      type_map loc env false e b constr precise

  | Transform (e,b) ->
      flatten loc (type_map loc env true e b) constr precise

997
998
999
1000
  | Apply (e1,e2) ->
      let t1 = type_check env e1 Types.Arrow.any true in
      let t1 = Types.Arrow.get t1 in
      let dom = Types.Arrow.domain t1 in
1001
1002
1003
1004
1005
1006
1007
      let res =
	if Types.Arrow.need_arg t1 then
	  let t2 = type_check env e2 dom true in
	  Types.Arrow.apply t1 t2
	else
	  (ignore (type_check env e2 dom false); Types.Arrow.apply_noarg t1)
      in
1008
      verify loc res constr
1009
1010

  | UnaryOp (o,e) ->
1011
1012
      let t = !typ_unary_op o loc (type_check env e) constr precise in
      verify loc t constr
1013
1014

  | BinaryOp (o,e1,e2) ->
1015
1016
1017
      let t = !typ_binary_op o loc 
		(type_check env e1) (type_check env e2) constr precise in
      verify loc t constr
1018
1019
1020

  | Var s -> 
      let t = 
1021
	try find_value s env
1022
	with Not_found -> 
1023
	  raise_loc loc (UnboundId (s, Env.mem s env.ids) ) in
1024
      verify loc t constr
1025
1026
      
  | Cst c -> 
1027
      verify loc (Types.constant c) constr
1028

1029
1030
1031
  | String (i,j,s,e) ->
      type_check_string loc env 0 s i j e constr precise

1032
1033
1034
1035
1036
1037
  | Dot (e,l) ->
      let t = type_check env e Types.Record.any true in
      let t = 
        try (Types.Record.project t l) 
        with Not_found -> raise_loc loc (WrongLabel(t,l))
      in