typer.ml 54.5 KB
Newer Older
1
(* TODO:
2
 - rewrite type-checking of operators to propagate constraint
3
4
 - optimize computation of pattern free variables
 - check whether it is worth using recursive hash-consing internally
5
6
*)

7
8
9
open Location
open Ast
open Ident
10

11
12
13
14
15
16
let (=) (x:int) y = x = y
let (<=) (x:int) y = x <= y
let (<) (x:int) y = x < y
let (>=) (x:int) y = x >= y
let (>) (x:int) y = x > y

17
18
let debug_schema = false

19
let warning loc msg =
20
  let v = Location.get_viewport () in
21
  let ppf = if Html.is_html v then Html.ppf v else Format.err_formatter in
22
23
24
  Format.fprintf ppf "Warning %a:@\n" Location.print_loc (loc,`Full);
  Location.html_hilight (loc,`Full);
  Format.fprintf ppf "%s@." msg
25

26
27
28
29
30
31
32
33
34
exception NonExhaustive of Types.descr
exception Constraint of Types.descr * Types.descr
exception ShouldHave of Types.descr * string
exception ShouldHave2 of Types.descr * string * Types.descr
exception WrongLabel of Types.descr * label
exception UnboundId of id * bool
exception UnboundExtId of Types.CompUnit.t * id
exception Error of string

35
36
37

exception Warning of string * Types.t

38
39
40
41
let raise_loc loc exn = raise (Location (loc,`Full,exn))
let raise_loc_str loc ofs exn = raise (Location (loc,`Char ofs,exn))
let error loc msg = raise_loc loc (Error msg)

42
43
type item =
  | Type of Types.t
44
  | Val of Types.t
45

46
47
module UEnv = Map.Make(U)

48
type t = {
49
  ids : item Env.t;
50
  ns: Ns.table;
51
  cu: Types.CompUnit.t UEnv.t;
52
  schemas: string UEnv.t
53
}
54

55
56
57
58
59
let hash _ = failwith "Typer.hash"
let compare _ _ = failwith "Typer.compare"
let dump ppf _ = failwith "Typer.dump"
let equal _ _ = failwith "Typer.equal"
let check _ = failwith "Typer.check"
60

61
62
63
64
65
66
67
68

let load_schema_fwd = ref (fun x uri -> assert false)

let enter_schema x uri env =
  !load_schema_fwd x uri;
  { env with schemas = UEnv.add x uri env.schemas }


69
(* TODO: filter out builtin defs ? *)
70
71
72
73
let serialize_item s = function
  | Type t -> Serialize.Put.bits 1 s 0; Types.serialize s t
  | Val t -> Serialize.Put.bits 1 s 1; Types.serialize s t

74
let serialize s env =
75
  Serialize.Put.env Id.serialize serialize_item Env.iter s env.ids;
76
77
78
79
80
  Ns.serialize_table s env.ns;

  let schs =
    UEnv.fold (fun name uri accu -> (name,uri)::accu) env.schemas [] in
  Serialize.Put.list (Serialize.Put.pair U.serialize Serialize.Put.string) s schs
81

82
83
84
85
86
let deserialize_item s = match Serialize.Get.bits 1 s with
  | 0 -> Type (Types.deserialize s)
  | 1 -> Val (Types.deserialize s)
  | _ -> assert false

87
let deserialize s =
88
  let ids = Serialize.Get.env Id.deserialize deserialize_item Env.add Env.empty s in
89
  let ns = Ns.deserialize_table s in
90
91
92
93
94
95
  let schs = 
    Serialize.Get.list 
      (Serialize.Get.pair U.deserialize Serialize.Get.string) s in
  let env = 
    { ids = ids; ns = ns; cu = UEnv.empty; schemas = UEnv.empty } in
  List.fold_left (fun env (name,uri) -> enter_schema name uri env) env schs
96
97


98
99
let empty_env = {
  ids = Env.empty;
100
  ns = Ns.empty_table;
101
  cu = UEnv.empty;
102
  schemas = UEnv.empty
103
104
}

105
106
let from_comp_unit = ref (fun cu -> assert false)

107
let enter_cu x cu env =
108
  { env with cu = UEnv.add x cu env.cu }
109

110
111
112
let find_cu x env =
  try UEnv.find x env.cu
  with Not_found -> Types.CompUnit.mk x
113
114


115
116
117
118
let find_schema x env =
  try UEnv.find x env.schemas
  with Not_found -> raise (Error (Printf.sprintf "%s: no such schema" (U.get_str x)))

119
120
121
122
123
124
125
126
let enter_type id t env =
  { env with ids = Env.add id (Type t) env.ids }
let enter_types l env =
  { env with ids = 
      List.fold_left (fun accu (id,t) -> Env.add id (Type t) accu) env.ids l }
let find_type id env =
  match Env.find id env.ids with
    | Type t -> t
127
    | Val _ -> raise Not_found
128

129
let find_type_global loc cu id env =
130
  let cu = find_cu cu env in
131
132
133
  let env = !from_comp_unit cu in
  find_type id env

134
let enter_value id t env = 
135
  { env with ids = Env.add id (Val t) env.ids }
136
137
let enter_values l env =
  { env with ids = 
138
      List.fold_left (fun accu (id,t) -> Env.add id (Val t) accu) env.ids l }
139
140
141
let enter_values_dummy l env =
  { env with ids = 
      List.fold_left (fun accu id -> Env.add id (Val Types.empty) accu) env.ids l }
142
143
let find_value id env =
  match Env.find id env.ids with
144
    | Val t -> t
145
    | _ -> raise Not_found
146
147
148
let find_value_global cu id env =
  let env = !from_comp_unit cu in
  find_value id env
149
	
150
151
152
153
154
155
let value_name_ok id env =
  try match Env.find id env.ids with
    | Val t -> true
    | _ -> false
  with Not_found -> true

156
157
158
159
let iter_values env f =
  Env.iter (fun x ->
	      function Val t -> f x t;
		| _ -> ()) env.ids
160

161

162
163
164
165
166
167
168
169
170
let register_types cu env =
  let prefix = U.concat (Types.CompUnit.value cu) (U.mk ":") in
  Env.iter (fun x ->
	      function 
		| Type t ->
		    let n = U.concat prefix (Id.value x) in
		    Types.Print.register_global n t
		| _ -> ()) env.ids

171

172
(* Namespaces *)
173

174
let set_ns_table_for_printer env = 
175
  Ns.InternalPrinter.set_table env.ns
176

177
let get_ns_table tenv = tenv.ns
178

179
let enter_ns p ns env =
180
  { env with ns = Ns.add_prefix p ns env.ns }
181

182
183
184
185
186
let protect_error_ns loc f x =
  try f x
  with Ns.UnknownPrefix ns ->
    raise_loc_generic loc 
    ("Undefined namespace prefix " ^ (U.to_string ns))
187

188
189
190
let qname env loc t = 
  protect_error_ns loc (Ns.map_tag env.ns) t
    
191
let parse_atom env loc t =
192
  Atoms.V.of_qname (qname env loc t)
193
194
 
let parse_ns env loc ns =
195
  protect_error_ns loc (Ns.map_prefix env.ns) ns
196

197
let parse_label env loc t =
198
  let (ns,l) = protect_error_ns loc (Ns.map_attr env.ns) t in
199
  LabelPool.mk (ns,l)
200

201
202
203
204
205
206
207
208
209
210
211
212
213
let parse_record env loc f r =
  let r = List.map (fun (l,x) -> (parse_label env loc l, f x)) r in
  LabelMap.from_list (fun _ _ -> raise_loc_generic loc "Duplicated record field") r

let rec const env loc = function
  | LocatedExpr (loc,e) -> const env loc e
  | Pair (x,y) -> Types.Pair (const env loc x, const env loc y)
  | Xml (x,y) -> Types.Xml (const env loc x, const env loc y)
  | RecordLitt x -> Types.Record (parse_record env loc (const env loc) x)
  | String (i,j,s,c) -> Types.String (i,j,s,const env loc c)
  | Atom t -> Types.Atom (parse_atom env loc t)
  | Integer i -> Types.Integer i
  | Char c -> Types.Char c
214
  | Const c -> c
215
216
217
218
  | _ -> raise_loc_generic loc "This should be a scalar or structured constant"

(* I. Transform the abstract syntax of types and patterns into
      the internal form *)
219

220

221
(* Schema *)
222

223
224
225
let is_registered_schema env s = UEnv.mem s env.schemas

(* uri -> schema binding *)
226
let schemas = State.ref "Typer.schemas" (Hashtbl.create 3)
227
228
229

let schema_types = State.ref "Typer.schema_types" (Hashtbl.create 51)
let schema_elements = State.ref "Typer.schema_elements" (Hashtbl.create 51)
230
let schema_attributes = State.ref "Typer.schema_attributes" (Hashtbl.create 51)
231
232
233
234
let schema_attribute_groups =
  State.ref "Typer.schema_attribute_groups" (Hashtbl.create 51)
let schema_model_groups =
  State.ref "Typer.schema_model_groups" (Hashtbl.create 51)
235

236

237
238
239
240
241
(*
let get_schema uri =
  try Hashtbl.find !schemas uri
  with Not_found -> assert false
*)
242

243
let find_schema_descr_uri kind uri (name : Ns.qname) =
244
  try
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
    let elt () = Hashtbl.find !schema_elements (uri, name) in
    let typ () = Hashtbl.find !schema_types (uri, name) in
    let att () = Hashtbl.find !schema_attributes (uri, name) in
    let att_group () = Hashtbl.find !schema_attribute_groups (uri, name) in
    let mod_group () = Hashtbl.find !schema_model_groups (uri, name) in
    let rec do_try n = function
      | [] -> raise Not_found
      | f :: rem -> (try f () with Not_found -> do_try n rem)
    in
    match kind with
      | Some `Element -> do_try "element" [ elt ]
      | Some `Type -> do_try "type" [ typ ]
      | Some `Attribute -> do_try "atttribute" [ att ]
      | Some `Attribute_group -> do_try "attribute group" [ att_group ]
      | Some `Model_group -> do_try "model group" [ mod_group ]
      | None ->
          (* policy for unqualified schema component resolution. This order should
           * be consistent with Schema_component.get_component *)
          do_try "component" [ elt; typ; att; att_group; mod_group ]
    with Not_found ->    
265
      raise (Error (Printf.sprintf "No %s named '%s' found in schema '%s'"
266
		      (Schema_common.string_of_component_kind kind) (Ns.QName.to_string name) uri))
267
268
269
270
271

let find_schema_descr env kind schema name =
  let uri = find_schema schema env in
  find_schema_descr_uri kind uri name

272

273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
module IType = struct
  type node = {
    mutable desc: desc;
    mutable smallhash: int;  (* Local hash *)
    mutable rechash: int;    (* Global (recursive) hash *)
    mutable sid: int;        (* Sequential id used to compute rechash *)
    mutable t: Types.t option;
    mutable tnode: Types.Node.t option;
    mutable p: Patterns.descr option;
    mutable pnode: Patterns.node option;
    mutable fv: fv option
  } 
  and desc =
    | ILink of node
    | IType of Types.descr * int
    | IOr of node * node
    | IAnd of node * node
    | IDiff of node * node
    | ITimes of node * node
    | IXml of node * node
    | IArrow of node * node
    | IOptional of node
    | IRecord of bool * (node * node option) label_map
    | ICapture of id
    | IConstant of id * Types.const

  let rec node_temp = { 
    desc = ILink node_temp;
    smallhash = 0; rechash = 0; sid = 0;
    t = None; tnode = None; p = None; pnode = None;
    fv = None
  }
			
306
(* Recursive hash-consing *)
307

308
309
310
311
312
313
  let hash_field f = function
    | (p, Some e) -> 1 + 17 * f p + 257 * f e
    | (p, None) -> 2 + 17 * f p

  let rec hash f n = match n.desc with
    | ILink n -> hash f n
314
    | IType (t,h) -> 1 + 17 * h
315
316
317
318
319
320
321
322
323
    | IOr (p1,p2) -> 2 + 17 * f p1 + 257 * f p2
    | IAnd (p1,p2) -> 3 + 17 * f p1 + 257 * f p2
    | IDiff (p1,p2) -> 4 + 17 * f p1 + 257 * f p2
    | ITimes (p1,p2) -> 5 + 17 * f p1 + 257 * f p2
    | IXml (p1,p2) -> 6 + 17 * f p1 + 257 * f p2
    | IArrow (p1,p2) -> 7 + 17 * f p1 + 257 * f p2
    | IOptional p -> 8 + 17 * f p
    | IRecord (o,r)->9+(if o then 17 else 0)+
	257*(LabelMap.hash (hash_field f) r)
324
325
326
    | ICapture x -> 10 + 17 * (Id.hash x)
    | IConstant (x,c) -> 11 + 17 * (Id.hash x) + 257*(Types.Const.hash c)

327
328
329
330
331
  let hash0 = hash (fun n -> 1)
  let hash1 = hash hash0
  let hash2 = hash hash1
  let hash3 = hash hash2

332
333
  let smallhash n =
    if n.smallhash !=0 then n.smallhash
334
335
336
337
    else (
      let h = hash2 n in 
      n.smallhash <- h; h
    )
338
339

  let rec repr = function
340
    | { desc = ILink n } as m -> let z = repr n in m.desc <- ILink z; z
341
342
343
344
    | n -> n

  let back = ref []

345
346
347
348
  let rec prot_repr = function
    | { desc = ILink n } -> repr n
    | n -> n

349
350
351
352
353
354
355
356
357
  let link x y = match x,y with
    | { t = None } as x, y 
    | y, ({ t = None } as x) -> back := (x,x.desc) :: !back; x.desc <- ILink y
    | _ -> assert false

  exception Unify

  let rec unify x y =
    if x == y then ()
358
359
360
361
362
    else let x = prot_repr x and y = prot_repr y in if x == y then ()
    else if (smallhash x != smallhash y) then raise Unify 
    else if (x.t != None) && (y.t != None) then raise Unify
      (* x and y have been internalized; if they were equivalent,
	 they would be equal *)
363
    else match x.desc,y.desc with
364
      | IType (tx,_), IType (ty,_) when Types.equal tx ty -> link x y
365
366
367
368
369
      | IOr (x1,x2), IOr (y1,y2)
      | IAnd (x1,x2), IAnd (y1,y2)
      | IDiff (x1,x2), IDiff (y1,y2)
      | ITimes (x1,x2), ITimes (y1,y2)
      | IXml (x1,x2), IXml (y1,y2)
370
371
      | IArrow (x1,x2), IArrow (y1,y2) -> link x y; unify x1 y1; unify x2 y2
      | IOptional x1, IOptional y1 -> link x y; unify x1 y1
372
373
374
375
376
377
378
379
380
381
382
      | IRecord (xo,xr), IRecord (yo,yr) when xo == yo ->
	  link x y; LabelMap.may_collide unify_field Unify xr yr
      | ICapture xv, ICapture yv when Id.equal xv yv -> ()
      | IConstant (xv,xc), IConstant (yv,yc) when
	  Id.equal xv yv && Types.Const.equal xc yc -> ()
      | _ -> raise Unify
  and unify_field f1 f2 = match f1,f2 with
    | (p1, Some e1), (p2, Some e2) -> unify p1 p2; unify e1 e2
    | (p1, None), (p2, None) -> unify p1 p2
    | _ -> raise Unify

383

384
385
  let may_unify x y =
    try unify x y; back := []; true
386
    with Unify ->
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
      List.iter (fun (x,xd) -> x.desc <- xd) !back; back := []; false

  module SmallHash = Hashtbl.Make(
    struct 
      type t = node
      let equal = may_unify
      let hash = smallhash
    end
  )

  let iter_field f = function
    | (x, Some y) -> f x; f y
    | (x, None) -> f x
  let iter f = function
    | IOr (x,y) | IAnd (x,y) | IDiff (x,y)
    | ITimes (x,y) | IXml (x,y) | IArrow (x,y) -> f x; f y
    | IOptional x -> f x
    | IRecord (_,r) -> LabelMap.iter (iter_field f) r
    | _ -> ()

  let minimize ((mem,add) as h) =
    let rec aux n =
      let n = repr n in
410
411
412
413
      if mem n then () else (
	let n = repr n in add n (); 
	if n.t == None then iter aux n.desc
      )
414
415
416
417
418
419
420
    in aux

  let to_clear = ref []
  let sid = ref 0
  let rec rechash n =
    let n = repr n in
    if (n.sid != 0) then 17 * n.sid
421
    else (incr sid; n.sid <- !sid; to_clear := n :: !to_clear; hash rechash n)
422
423

  let clear () =
424
425
    sid := 0; List.iter (fun x -> x.sid <- 0) !to_clear;
    to_clear := []
426
427
428
429
430
431
432
433
434
435
436
437
438
439

  let rechash n =
    let n = repr n in
    if (n.rechash != 0) then n.rechash 
    else (let h = rechash n in clear (); n.rechash <- h; h)

  module RecHash = Hashtbl.Make(
    struct
      type t = node
      let equal = may_unify
      let hash = smallhash
    end
  )

440
441
442

(** Two-phases recursive hash-consing **)
(*
443
444
445
  let gtable = RecHash.create 17577

  let internalize n =
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
    let local = SmallHash.create 17 in
    minimize (SmallHash.mem local, SmallHash.add local) n; 
    minimize (RecHash.mem gtable, RecHash.add gtable) n;
    ()
*)

(** Single-phase hash-consing **)
  let gtable = SmallHash.create 17

  let internalize n =
    minimize (SmallHash.mem gtable, SmallHash.add gtable) n



(*  let internalize n = () *)
461
462
463
464
465
466
467
468
469

(* Compute free variables *)

  let fv n =
    let fv = ref IdSet.empty in
    let rec aux n =
      let n = repr n in
      if (n.sid = 0) then (
	n.sid <- 1;
470
	to_clear := n :: !to_clear; 
471
472
473
474
475
476
477
478
479
480
	match n.fv, n.desc with
	  | Some x, _ -> fv := IdSet.cup !fv x
	  | None, (ICapture x | IConstant (x,_)) -> fv := IdSet.add x !fv
	  | None, d -> iter aux d
      )
    in
    match n.fv with
      | Some x -> x
      | None -> aux n; clear (); n.fv <- Some !fv; !fv

481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
(* optimized version to check closedness *)

  let no_fv = Some IdSet.empty
  let check_no_fv loc n =
    let err x = 
      raise_loc_generic loc 
	("Capture variable not allowed: " ^ (Ident.to_string x))
    in
    let rec aux n =
      let n = repr n in
      if (n.sid = 0) then (
	n.sid <- 1;
	to_clear := n :: !to_clear; 
	match n.fv, n.desc with
	  | Some x, _ -> (match IdSet.pick x with Some x -> err x | None -> ())
	  | None, (ICapture x | IConstant (x,_)) -> err x;
	  | None, d -> iter aux d
      )
    in
    try
      match n.fv with
	| Some x -> (match IdSet.pick x with Some x -> err x | None -> ())
	| None -> aux n; 
	    List.iter (fun n -> n.sid <- 0; n.fv <- no_fv) !to_clear;
	    to_clear := []
    with exn -> clear (); raise exn

(* From the intermediate representation to the internal one *)
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533


  let rec typ n =
    let n = repr n in
    match n.t with
      | Some t -> t
      | None -> let t = compute_typ n.desc in n.t <- Some t; t
  and compute_typ = function
    | IType (t,_) -> t
    | IOr (s1,s2) -> Types.cup (typ s1) (typ s2)
    | IAnd (s1,s2) ->  Types.cap (typ s1) (typ s2)
    | IDiff (s1,s2) -> Types.diff (typ s1) (typ s2)
    | ITimes (s1,s2) -> Types.times (typ_node s1) (typ_node s2)
    | IXml (s1,s2) -> Types.xml (typ_node s1) (typ_node s2)
    | IArrow (s1,s2) -> Types.arrow (typ_node s1) (typ_node s2)
    | IOptional s -> Types.Record.or_absent (typ s)
    | IRecord (o,r) ->  Types.record' (o, LabelMap.map compute_typ_field r)
    | ILink _ -> assert false
    | ICapture _ | IConstant (_,_) -> assert false
  and compute_typ_field = function
    | (s, None) -> typ_node s
    | (s, Some _) -> 
	raise (Patterns.Error "Or-else clauses are not allowed in types")

  and typ_node n =
534
    let n = repr n in
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
    match n.tnode with
      | Some t -> t
      | None ->
	  let x = Types.make () in
	  n.tnode <- Some x;
	  Types.define x (typ n);
	  x
      
  let rec pat n =
    let n = repr n in
    if IdSet.is_empty (fv n)
    then Patterns.constr (typ n)
    else match n.p with
      | Some p -> p
      | None -> let p = compute_pat n.desc in n.p <- Some p; p

  and compute_pat = function
    | IOr (s1,s2) -> Patterns.cup (pat s1) (pat s2)
    | IAnd (s1,s2) -> Patterns.cap (pat s1) (pat s2)
    | IDiff (s1,s2) when IdSet.is_empty (fv s2) ->
	let s2 = Types.neg (typ s2) in
	Patterns.cap (pat s1) (Patterns.constr s2)
    | IDiff _ ->
	raise (Patterns.Error "Differences are not allowed in patterns")
    | ITimes (s1,s2) -> Patterns.times (pat_node s1) (pat_node s2)
    | IXml (s1,s2) -> Patterns.xml (pat_node s1) (pat_node s2)
    | IOptional _ -> 
	raise (Patterns.Error "Optional fields are not allowed in record patterns")
    | IRecord (o,r) ->
	let pats = ref [] in
	let aux l = function
	  | (s,None) ->
	      if IdSet.is_empty (fv s) then typ_node s
	      else
		( pats := Patterns.record l (pat_node s) :: !pats;
		  Types.any_node )
	  | (s,Some e) ->
	      if IdSet.is_empty (fv s) then
		raise (Patterns.Error "Or-else clauses are not allowed in types")
	      else
		( pats := Patterns.cup 
		    (Patterns.record l (pat_node s))
		    (pat e) :: !pats;
		  Types.Record.any_or_absent_node )
	in
	let constr = Types.record' (o,LabelMap.mapi aux r) in
	List.fold_left Patterns.cap (Patterns.constr constr) !pats
	  (* TODO: can avoid constr when o=true, and all fields have fv *)
    | ICapture x -> Patterns.capture x
    | IConstant (x,c) -> Patterns.constant x c
    | IArrow _ ->
	raise (Patterns.Error "Arrows are not allowed in patterns")
    | IType _ | ILink _ -> assert false
      
  and pat_node n =
590
    let n = repr n in
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
    match n.pnode with
      | Some p -> p
      | None ->
	  let x = Patterns.make (fv n) in
	  try
	    n.pnode <- Some x;
	    Patterns.define x (pat n);
	    x
	  with exn -> n.pnode <- None; raise exn

(* From AST to the intermediate representation *)

  type penv = {
    penv_tenv : t;
    penv_derec : node Env.t;
  }

  let penv tenv = { penv_tenv = tenv; penv_derec = Env.empty }

  let mk d = { node_temp with desc = d }
  let mk_delayed () = { node_temp with desc = ILink node_temp }
  let itype t = mk (IType (t, Types.hash t))
  let iempty = itype Types.empty

  let ior p1 p2 =
616
617
    if p1.desc == iempty.desc then p2 
    else if p2.desc == iempty.desc then p1 
618
619
620
    else mk (IOr (p1,p2))

  let iand p1 p2 =
621
    if (p1.desc == iempty.desc) || (p2.desc == iempty.desc) then iempty 
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
    else mk (IAnd (p1,p2))

  type regexp =
    | PEpsilon
    | PElem of node
    | PGuard of node
    | PSeq of regexp * regexp
    | PAlt of regexp * regexp
    | PStar of regexp
    | PWeakStar of regexp

  let rec remove_regexp r q = match r with
    | PEpsilon ->
	q
    | PElem p ->
	mk (ITimes (p, q))
    | PGuard p ->
	iand p q
    | PSeq (r1,r2) ->
	remove_regexp r1 (remove_regexp r2 q)
    | PAlt (r1,r2) ->
	ior (remove_regexp r1 q) (remove_regexp r2 q)
    | PStar r ->
	let x = mk_delayed () in
	let res = ior x q in
	x.desc <- ILink (remove_regexp2 r res iempty);
	res
    | PWeakStar r ->
	let x = mk_delayed () in
	let res = ior q x in
	x.desc <- ILink (remove_regexp2 r res iempty);
	res
	  
  and remove_regexp2 r q_nonempty q_empty =
    if q_nonempty == q_empty then remove_regexp r q_empty
    else match r with
      | PEpsilon ->
          q_empty
      | PElem p ->
          mk (ITimes (p, q_nonempty))
      | PGuard p ->
	  iand p q_empty
      | PSeq (r1,r2) ->
          remove_regexp2 r1
            (remove_regexp2 r2 q_nonempty q_nonempty)
            (remove_regexp2 r2 q_nonempty q_empty)
      | PAlt (r1,r2) ->
          ior
            (remove_regexp2 r1 q_nonempty q_empty)
            (remove_regexp2 r2 q_nonempty q_empty)
      | PStar r ->
 	  let x = mk_delayed () in
          x.desc <- ILink (remove_regexp2 r (ior x q_nonempty) iempty);
          ior x q_empty
      | PWeakStar r ->
 	  let x = mk_delayed () in
          x.desc <- ILink (remove_regexp2 r (ior q_nonempty x) iempty);
          ior q_empty x


  let cst_nil = Types.Atom Sequence.nil_atom
  let capture_all vars p = 
    IdSet.fold (fun p x -> iand p (mk (ICapture x))) p vars
  let termin b vars p = 
    if b then p 
    else IdSet.fold 
      (fun p x -> PSeq (p, PGuard (mk (IConstant (x,cst_nil))))) p vars

  let rexp r = remove_regexp r (itype Sequence.nil_type)

692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
  let all_delayed = ref []

  let delayed loc =
    let s = mk_delayed () in
    all_delayed := (loc,s) :: !all_delayed;
    s

  let check_one_delayed (loc,p) =
    let rec aux q = if p == q then raise Exit; aux2 q.desc
    and aux2 = function
      | IOr (q1,q2) | IAnd (q1,q2) | IDiff (q1,q2) -> aux q1; aux q2
      | ILink q -> aux q
      | _ -> ()
    in
    try aux2 p.desc
    with Exit -> error loc "Ill-formed recursion"
    
  let check_delayed () =
    let l = !all_delayed in
    all_delayed := []; 
    List.iter check_one_delayed l
    
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
  let rec derecurs env p = match p.descr with
    | PatVar v -> derecurs_var env p.loc v
    | SchemaVar (kind, schema_name, component_name) ->

	let name = qname env.penv_tenv  p.loc component_name in
	itype (find_schema_descr env.penv_tenv kind schema_name name)

    | Recurs (p,b) -> derecurs (derecurs_def env b) p
    | Internal t -> itype t
    | NsT ns -> 
	itype (Types.atom (Atoms.any_in_ns (parse_ns env.penv_tenv p.loc ns)))
    | Or (p1,p2) -> mk (IOr (derecurs env p1, derecurs env p2))
    | And (p1,p2) -> mk (IAnd (derecurs env p1, derecurs env p2))
    | Diff (p1,p2) -> mk (IDiff (derecurs env p1, derecurs env p2))
    | Prod (p1,p2) -> mk (ITimes (derecurs env p1, derecurs env p2))
    | XmlT (p1,p2) -> mk (IXml (derecurs env p1, derecurs env p2))
    | Arrow (p1,p2) -> mk (IArrow (derecurs env p1, derecurs env p2))
    | Optional p -> mk (IOptional (derecurs env p))
    | Record (o,r) -> 
	let aux = function
	  | (p,Some e) -> (derecurs env p, Some (derecurs env e))
	  | (p,None) -> derecurs env p, None in
	mk (IRecord (o, parse_record env.penv_tenv p.loc aux r))
    | Constant (x,c) -> mk (IConstant (x,const env.penv_tenv p.loc c))
    | Cst c -> itype (Types.constant (const env.penv_tenv p.loc c))
    | Regexp r ->
	let r,_ = derecurs_regexp IdSet.empty false IdSet.empty true env r in
	rexp r
	  
  and derecurs_regexp vars b rvars f env = function
      (* - vars: seq variables to be propagated top-down and added
	 to each captured element
	 - b: below a star ?
	 - rvars: seq variables that appear on the right of the regexp
	 - f: tail position
	 
	 returns the set of seq variable of the regexp minus rvars
	 (they have already been terminated if not below a star)
      *)
    | Epsilon -> 
	PEpsilon, IdSet.empty
    | Elem p -> 
	PElem (capture_all vars (derecurs env p)), IdSet.empty
    | Guard p ->
	PGuard (derecurs env p), IdSet.empty
    | Seq (p1,p2) -> 
	let (p2,v2) = derecurs_regexp vars b rvars f env p2 in
	let (p1,v1) = derecurs_regexp vars b (IdSet.cup rvars v2) false env p1 in
	PSeq (p1,p2), IdSet.cup v1 v2
    | Alt (p1,p2) -> 
	let (p1,v1) = derecurs_regexp vars b rvars f env p1
	and (p2,v2) = derecurs_regexp vars b rvars f env p2 in
	PAlt (termin b (IdSet.diff v2 v1) p1, termin b (IdSet.diff v1 v2) p2),
	IdSet.cup v1 v2
    | Star p -> 
	let (p,v) = derecurs_regexp vars true rvars false env p in
	termin b v (PStar p), v
    | WeakStar p -> 
	let (p,v) = derecurs_regexp vars true rvars false env p in
	termin b v (PWeakStar p), v
    | SeqCapture (x,p) -> 
	let vars = if f then vars else IdSet.add x vars in
	let after = IdSet.mem rvars x in
	let rvars = IdSet.add x rvars in
	let (p,v) = derecurs_regexp vars b rvars false env p in
	(if f 
	 then PSeq (PGuard (mk (ICapture x)), p) 
	 else termin (after || b) (IdSet.singleton x) p), 
	(if after then v else IdSet.add x v)
	  
	  
  and derecurs_var env loc v =
    match Ns.split_qname v with
      | "", v ->
	  let v = ident v in
	  (try Env.find v env.penv_derec
	   with Not_found -> 
	     try itype (find_type v env.penv_tenv)
	     with Not_found -> mk (ICapture v))
      | cu, v -> 
	  try 
	    let cu = U.mk cu in
	    itype (find_type_global loc cu (ident v) env.penv_tenv)
	  with Not_found ->
	    raise_loc_generic loc 
	      ("Unbound external type " ^ cu ^ ":" ^ (U.to_string v))
	      
  and derecurs_def env b =
802
    let b = List.map (fun (v,p) -> (v,p,delayed p.loc)) b in
803
804
805
806
807
808
    let n = 
      List.fold_left (fun env (v,p,s) -> Env.add v s env) env.penv_derec b in
    let env = { env with penv_derec = n } in
    List.iter (fun (v,p,s) -> s.desc <- ILink (derecurs env p)) b;
    env

809
810
811
812
813
  let derec penv p =
    let d = derecurs penv p in
    check_delayed ();
    internalize d;
    d
814
815


816
(* API *)
817
818
819
820
821
822
823
824
825
826
827
828
829
830

  module Ids = Set.Make(Id)
  let type_defs env b =
    ignore 
      (List.fold_left 
	 (fun seen (v,p) ->
	    if Ids.mem v seen then 
	      raise_loc_generic p.loc 
		("Multiple definitions for the type identifer " ^ 
		   (Ident.to_string v));
	    Ids.add v seen
	 ) Ids.empty b);
    
    let penv = derecurs_def (penv env) b in
831
832
833
834
835
836
    let aux t =
      let d = derec penv t in
      check_no_fv t.loc d;
      try typ d
      with Patterns.Error s -> raise_loc_generic t.loc s
    in
837
838
    let b = 
      List.map 
839
840
	(fun (v,p) ->
	   let t = aux p in
841
842
843
844
845
846
847
	   if (p.loc <> noloc) && (Types.is_empty t) then
	     warning p.loc 
	       ("This definition yields an empty type for " ^ (Ident.to_string v));
	   (v,t)) b in
    List.iter (fun (v,t) -> Types.Print.register_global (Id.value v) t) b;
    b

848

849
850
851
  let typ_descr d =
    internalize d;
    typ d
852

853
854
855
856
857
858
859
860
861
862
863
  let typ env t = 
    let d = derec (penv env) t in
    check_no_fv t.loc d;
    try typ_node d
    with Patterns.Error s -> raise_loc_generic t.loc s

  let pat env t = 
    let d = derec (penv env) t in
    try pat_node d
    with Patterns.Error s -> raise_loc_generic t.loc s
end
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

let typ = IType.typ
let pat = IType.pat
let type_defs = IType.type_defs

let dump_types ppf env =
  Env.iter (fun v -> 
	      function 
		  (Type _) -> Format.fprintf ppf " %a" Ident.print v
		| _ -> ()) env.ids

let dump_ns ppf env =
  Ns.dump_table ppf env.ns



880

881
882
(* II. Build skeleton *)

883

884
type type_fun = Types.t -> bool -> Types.t
885

886
module Fv = IdSet
887

888
889
890
type branch = Branch of Typed.branch * branch list

let cur_branch : branch list ref = ref []
891

892
let exp loc fv e =
893
894
  fv,
  { Typed.exp_loc = loc;
895
    Typed.exp_typ = Types.empty;
896
    Typed.exp_descr = e;
897
  }
898

899
let ops = Hashtbl.create 13
900
901
let register_op op arity f = Hashtbl.add ops op (arity,f)
let typ_op op = snd (Hashtbl.find ops op)
902

903
904
905
906
907
let is_op env s = 
  if (Env.mem (ident s) env.ids) then None
  else 
    try let s = U.get_str s in Some (s, fst (Hashtbl.find ops s))
    with Not_found -> None
908

909
910
let rec expr env loc = function
  | LocatedExpr (loc,e) -> expr env loc e
911
  | Forget (e,t) ->
912
      let (fv,e) = expr env loc e and t = typ env t in
913
      exp loc fv (Typed.Forget (e,t))
914
915
  | Check (e,t) ->
      let (fv,e) = expr env loc e and t = typ env t in
916
      exp loc fv (Typed.Check (ref Types.empty,e,t))
917
  | Var s -> var env loc s
918
  | Apply (e1,e2) -> 
919
920
921
922
923
924
925
926
      let (fv1,e1) = expr env loc e1 and (fv2,e2) = expr env loc e2 in
      let fv = Fv.cup fv1 fv2 in
      (match e1.Typed.exp_descr with
	 | Typed.Op (op,arity,args) when arity > 0 -> 
	     exp loc fv (Typed.Op (op,arity - 1,args @ [e2]))
	 | _ ->
	     exp loc fv (Typed.Apply (e1,e2)))
  | Abstraction a -> abstraction env loc a
927
  | (Integer _ | Char _ | Atom _ | Const _) as c -> 
928
      exp loc Fv.empty (Typed.Cst (const env loc c))
929
  | Pair (e1,e2) ->
930
      let (fv1,e1) = expr env loc e1 and (fv2,e2) = expr env loc e2 in
931
932
      exp loc (Fv.cup fv1 fv2) (Typed.Pair (e1,e2))
  | Xml (e1,e2) ->
933
      let (fv1,e1) = expr env loc e1 and (fv2,e2) = expr env loc e2 in
934
935
      exp loc (Fv.cup fv1 fv2) (Typed.Xml (e1,e2))
  | Dot (e,l) ->
936
937
      let (fv,e) = expr env loc e in
      exp loc fv (Typed.Dot (e,parse_label env loc l))
938
  | RemoveField (e,l) ->
939
940
      let (fv,e) = expr env loc e in
      exp loc fv (Typed.RemoveField (e,parse_label env loc l))
941
942
  | RecordLitt r -> 
      let fv = ref Fv.empty in
943
      let r = parse_record env loc
944
		(fun e -> 
945
		   let (fv2,e) = expr env loc e 
946
947
948
		   in fv := Fv.cup !fv fv2; e)
		r in
      exp loc !fv (Typed.RecordLitt r)
949
  | String (i,j,s,e) ->
950
      let (fv,e) = expr env loc e in
951
      exp loc fv (Typed.String (i,j,s,e))
952
  | Match (e,b) -> 
953
954
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
955
      exp loc (Fv.cup fv1 fv2) (Typed.Match (e, b))
956
  | Map (e,b) ->
957
958
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
959
960
      exp loc (Fv.cup fv1 fv2) (Typed.Map (e, b))
  | Transform (e,b) ->
961
962
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
963
      exp loc (Fv.cup fv1 fv2) (Typed.Transform (e, b))
964
  | Xtrans (e,b) ->
965
966
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
967
      exp loc (Fv.cup fv1 fv2) (Typed.Xtrans (e, b))
968
  | Validate (e,kind,schema,elt) ->
969
      let (fv,e) = expr env loc e in
970
      let uri = find_schema schema env in
971
      exp loc fv (Typed.Validate (e, kind, uri, qname env loc elt))
972
  | Try (e,b) ->
973
974
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
975
      exp loc (Fv.cup fv1 fv2) (Typed.Try (e, b))
976
  | NamespaceIn (pr,ns,e) ->
977
978
      let env = enter_ns pr ns env in
      expr env loc e
979
  | Ref (e,t) ->
980
      let (fv,e) = expr env loc e and t = typ env t in
981
      exp loc fv (Typed.Ref (e,t))
982
  | External (s,args) ->
983
      extern loc env s args
984
985
986
987
988
989
990
991
992
993
	
and extern loc env s args = 
  let args = List.map (typ env) args in
  try
    let (i,t) = Externals.resolve s args in
    exp loc Fv.empty (Typed.External (t,i))
  with exn -> raise_loc loc exn
    
and var env loc s =
  match is_op env s with
994
    | Some (s,arity) -> 
995
996
	let need_ns = match s with "print_xml" | "print_xml_utf8" -> true
	  | _ -> false in
997
998
999
	let e = Typed.Op (s, arity, []) in
	let e = if need_ns then Typed.NsTable (env.ns,e) else e in
	exp loc Fv.empty e
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
    | None ->
	match Ns.split_qname s with
	  | "", id -> 
	      let s = U.get_str id in
	      if String.contains s '.' then
		extern loc env s []
	      else
		let id = ident id in
		(try ignore (find_value id env)
		 with Not_found -> raise_loc loc (UnboundId (id, Env.mem id env.ids)));
1010
	  exp loc (Fv.singleton id) (Typed.Var id)
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
	  | cu, id -> 
	      let cu = find_cu (U.mk cu) env in
	      let id = ident id in
	      let t =
		try find_value_global cu id env
		with Not_found ->
		  raise_loc loc (UnboundExtId (cu,id) ) in
	      exp loc Fv.empty (Typed.ExtVar (cu, id, t))

and abstraction env loc a =
  let iface = 
    List.map 
      (fun (t1,t2) -> (typ env t1, typ env t2)) a.fun_iface in
  let t = 
    List.fold_left 
      (fun accu (t1,t2) -> Types.cap accu (Types.arrow t1 t2)) 
      Types.any iface in
  let iface = 
    List.map 
      (fun (t1,t2) -> (Types.descr t1, Types.descr t2)) 
      iface in
  let env' = 
    match a.fun_name with 
      | None -> env
      | Some f -> enter_values_dummy [ f ] env
  in
  let (fv0,body) = branches env' a.fun_body in
  let fv = match a.fun_name with
    | None -> fv0
    | Some f -> Fv.remove f fv0 in
  let e = Typed.Abstraction 
	    { Typed.fun_name = a.fun_name;
	      Typed.fun_iface = iface;
	      Typed.fun_body = body;
	      Typed.fun_typ = t;
	      Typed.fun_fv = fv
	    } in
  exp loc fv e
    
and branches env b = 
  let fv = ref Fv.empty in
  let accept = ref Types.empty in
  let branch (p,e) = 
    let cur_br = !cur_branch in
    cur_branch := [];
    let p' = pat env p in
    let fvp = Patterns.fv p' in
    let env' = enter_values_dummy fvp env in
    let (fv2,e) = expr env' noloc e in
    let br_loc = merge_loc p.loc e.Typed.exp_loc in
    (match Fv.pick (Fv.diff fvp fv2) with
       | None -> ()
       | Some x ->
	   let x = U.to_string (Id.value x) in
	   warning br_loc 
	     ("The capture variable " ^ x ^ 
	      " is declared in the pattern but not used in the body of this branch. It might be a misspelled or undeclared type or name (if it isn't, use _ instead)."));
    let fv2 = Fv.diff fv2 fvp in
    fv := Fv.cup !fv fv2;
    accept := Types.cup !accept (Types.descr (Patterns.accept p'));
    let br = 
      { 
	Typed.br_loc = br_loc;
1074
	Typed.br_used = br_loc == noloc;
1075
	Typed.br_vars_empty = Patterns.fv p';
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
	Typed.br_pat = p';
	Typed.br_body = e } in
    cur_branch := Branch (br, !cur_branch) :: cur_br;
    br in
  let b = List.map branch b in
  (!fv, 
   { 
     Typed.br_typ = Types.empty; 
     Typed.br_branches = b; 
     Typed.br_accept = !accept;
     Typed.br_compiled = None;
   } 
  )
1089

1090
let expr env e = snd (expr env noloc e)
1091

1092
1093
let let_decl env p e =
  { Typed.let_pat = pat env p;
1094
    Typed.let_body = expr env e;
1095
1096
    Typed.let_compiled = None }

1097
1098
1099

(* Hide global "typing/parsing" environment *)

1100

1101
1102
(* III. Type-checks *)

1103
1104
open Typed

1105
1106
1107
1108
1109
1110
let localize loc f x =
  try f x
  with 
    | (Error _ | Constraint (_,_)) as exn -> raise (Location.Location (loc,`Full,exn))
    | Warning (s,t) -> warning loc s; t

1111
1112
let require loc t s = 
  if not (Types.subtype t s) then raise_loc loc (Constraint (t, s))
1113

1114
let verify loc t s = 
1115
1116
  require loc t s; t

1117
1118
1119
1120
let verify_noloc t s =
  if not (Types.subtype t s) then raise (Constraint (t, s));
  t

1121
1122
1123
1124
1125
let check_str loc ofs t s = 
  if not (Types.subtype t s) then raise_loc_str loc ofs (Constraint (t, s));
  t

let should_have loc constr s = 
1126
1127
  raise_loc loc (ShouldHave (constr,s))

1128
1129
1130
let should_have_str loc ofs constr s = 
  raise_loc_str loc ofs (ShouldHave (constr,s))

1131
let flatten arg constr precise =
1132
1133
1134
1135
1136
1137
1138
1139
1140
  let constr' = Sequence.star 
		  (Sequence.approx (Types.cap Sequence.any constr)) in
  let sconstr' = Sequence.star constr' in
  let exact = Types.subtype constr' constr in
  if exact then
    let t = arg sconstr' precise in
    if precise then Sequence.flatten t else constr
  else
    let t = arg sconstr' true in
1141
    verify_noloc (Sequence.flatten t) constr
1142

1143
1144
let rec type_check env e constr precise = 
  let d = type_check' e.exp_loc env e.exp_descr constr precise in
1145
  let d = if precise then d else constr in
1146
1147
1148
  e.exp_typ <- Types.cup e.exp_typ d;
  d

1149
and type_check' loc env e constr precise = match e with
1150
1151
1152
  | Forget (e,t) ->
      let t = Types.descr t in
      ignore (type_check env e t false);
1153
      verify loc t constr
1154

1155
1156
1157
  | Check (t0,e,t) ->
      let te = type_check env e Types.any true in
      t0 := Types.cup !t0 te;
1158
      verify loc (Types.cap te (Types.descr t)) constr
1159

1160
  | Abstraction a ->
1161
1162
1163
      let t =
	try Types.Arrow.check_strenghten a.fun_typ constr 
	with Not_found -> 
1164
1165
	  should_have loc constr
	    "but the interface of the abstraction is not compatible"
1166
      in
1167
1168
      let env = match a.fun_name with
	| None -> env
1169
	| Some f -> enter_value f a.fun_typ env in
1170
1171
      List.iter 
	(fun (t1,t2) ->
1172
1173
1174
	   let acc = a.fun_body.br_accept in 
	   if not (Types.subtype t1 acc) then
	     raise_loc loc (NonExhaustive (Types.diff t1 acc));
1175
	   ignore (type_check_branches loc env t1 a.fun_body t2 false)
1176
1177
	) a.fun_iface;
      t
1178

1179
1180
  | Match (e,b) ->
      let t = type_check env e b.br_accept true in
1181
      type_check_branches loc env t b constr precise
1182
1183
1184

  | Try (e,b) ->
      let te = type_check env e constr precise in
1185
      let tb = type_check_branches loc env Types.any b constr precise in
1186
      Types.cup te tb
1187

1188
1189
  | Pair (e1,e2) ->
      type_check_pair loc env e1 e2 constr precise
1190

1191
1192
  | Xml (e1,e2) ->
      type_check_pair ~kind:`XML loc env e1 e2 constr precise
1193