typer.ml 21.8 KB
Newer Older
1
2
(* I. Transform the abstract syntax of types and patterns into
      the internal form *)
3
4
5
6

open Location
open Ast

7
8
exception Pattern of string
exception NonExhaustive of Types.descr
9
exception MultipleLabel of Types.label
10
exception Constraint of Types.descr * Types.descr * string
11
exception ShouldHave of Types.descr * string
12
exception WrongLabel of Types.descr * Types.label
13
exception UnboundId of string
14
15

let raise_loc loc exn = raise (Location (loc,exn))
16
17
18
19

(* Internal representation as a graph (desugar recursive types and regexp),
   to compute freevars, etc... *)

20
type ti = {
21
22
23
24
25
26
27
28
  id : int; 
  mutable loc' : loc;
  mutable fv : string SortedList.t option; 
  mutable descr': descr;
  mutable type_node: Types.node option;
  mutable pat_node: Patterns.node option
} 
and descr =
29
   [ `Alias of string * ti
30
31
   | `Type of Types.descr
   | `Or of ti * ti
32
   | `And of ti * ti * bool
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
   | `Diff of ti * ti
   | `Times of ti * ti
   | `Arrow of ti * ti
   | `Record of Types.label * bool * ti
   | `Capture of Patterns.capture
   | `Constant of Patterns.capture * Types.const
   ]
    


module S = struct type t = string let compare = compare end
module StringMap = Map.Make(S)
module StringSet = Set.Make(S)

let mk' =
  let counter = ref 0 in
49
  fun loc ->
50
    incr counter;
51
52
    let rec x = { 
      id = !counter; 
53
      loc' = loc; 
54
55
56
57
58
      fv = None; 
      descr' = `Alias ("__dummy__", x);  
      type_node = None; 
      pat_node = None 
    } in
59
60
61
    x

let cons loc d =
62
  let x = mk' loc in
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
  x.descr' <- d;
  x
    
(* Note:
   Compilation of Regexp is implemented as a ``rewriting'' of
   the parsed syntax, in order to be able to print its result
   (for debugging for instance)
   
   It would be possible (and a little more efficient) to produce
   directly ti nodes.
*)
    
module Regexp = struct
  let defs = ref []
  let name =
    let c = ref 0 in
    fun () ->
      incr c;
      "#" ^ (string_of_int !c)

  let rec seq_vars accu = function
    | Epsilon | Elem _ -> accu
    | Seq (r1,r2) | Alt (r1,r2) -> seq_vars (seq_vars accu r1) r2
    | Star r | WeakStar r -> seq_vars accu r
    | SeqCapture (v,r) -> seq_vars (StringSet.add v accu) r

89
90
91
92
93
94
95
96
97
98
99
  let uniq_id = let r = ref 0 in fun () -> incr r; !r

  type flat = [ `Epsilon 
	      | `Elem of int * Ast.ppat  (* the int arg is used to
					    to stop generic comparison *)
	      | `Seq of flat * flat
	      | `Alt of flat * flat
	      | `Star of flat
	      | `WeakStar of flat ]

  let rec propagate vars : regexp -> flat = function
100
    | Epsilon -> `Epsilon
101
    | Elem x -> let p = vars x in `Elem (uniq_id (),p)
102
103
104
105
    | Seq (r1,r2) -> `Seq (propagate vars r1,propagate vars r2)
    | Alt (r1,r2) -> `Alt (propagate vars r1, propagate vars r2)
    | Star r -> `Star (propagate vars r)
    | WeakStar r -> `WeakStar (propagate vars r)
106
107
108
    | SeqCapture (v,x) -> 
	let v= mk noloc (Capture v) in
	propagate (fun p -> mk noloc (And (vars p,v,true))) x
109
110
111
112
113
114
115

  let cup r1 r2 = 
    match (r1,r2) with
      | (_, `Empty) -> r1
      | (`Empty, _) -> r2
      | (`Res t1, `Res t2) -> `Res (mk noloc (Or (t1,t2)))

116
117
118
119
120
121
122
(*TODO: review this compilation schema to avoid explosion when
  coding (Optional x) by  (Or(Epsilon,x)); memoization ... *)

  module Memo = Map.Make(struct type t = flat list let compare = compare end)
  module Coind = Set.Make(struct type t = flat list let compare = compare end)
  let memo = ref Memo.empty

123
  let rec compile fin e seq : [`Res of Ast.ppat | `Empty] = 
124
125
126
    if Coind.mem seq !e then `Empty
    else (
      e := Coind.add seq !e;
127
128
129
130
131
      match seq with
	| [] ->
	    `Res fin
	| `Epsilon :: rest -> 
	    compile fin e rest
132
133
	| `Elem (_,p) :: rest -> 
	    `Res (mk noloc (Prod (p, guard_compile fin rest)))
134
135
136
137
	| `Seq (r1,r2) :: rest -> 
	    compile fin e (r1 :: r2 :: rest)
	| `Alt (r1,r2) :: rest -> 
	    cup (compile fin e (r1::rest)) (compile fin e (r2::rest))
138
139
140
141
142
	| `Star r :: rest -> 
	    cup (compile fin e (r::seq)) (compile fin e rest) 
	| `WeakStar r :: rest -> 
	    cup (compile fin e rest) (compile fin e (r::seq))
    )
143
  and guard_compile fin seq =
144
    try Memo.find seq !memo
145
146
147
148
    with
	Not_found ->
          let n = name () in
	  let v = mk noloc (PatVar n) in
149
150
          memo := Memo.add seq v !memo;
	  let d = compile fin (ref Coind.empty) seq in
151
152
153
154
155
156
157
158
	  (match d with
	     | `Empty -> assert false
	     | `Res d -> defs := (n,d) :: !defs);
	  v


  let atom_nil = Types.mk_atom "nil"
  let constant_nil v t = 
159
    mk noloc (And (t, (mk noloc (Constant (v, Types.Atom atom_nil))), true))
160
161
162

  let compile regexp queue : ppat =
    let vars = seq_vars StringSet.empty regexp in
163
164
165
   let fin = StringSet.fold constant_nil vars queue in
    let n = guard_compile fin [propagate (fun p -> p) regexp] in
    memo := Memo.empty; 
166
167
168
169
170
171
172
173
174
175
176
177
    let d = !defs in
    defs := [];
    mk noloc (Recurs (n,d))
end

let compile_regexp = Regexp.compile


let rec compile env { loc = loc; descr = d } : ti = 
  match (d : Ast.ppat') with
  | PatVar s -> 
      (try StringMap.find s env
178
179
       with Not_found -> 
	 raise_loc loc (Pattern ("Undefined type variable " ^ s))
180
      )
181
  | Recurs (t, b) -> compile (compile_many env b) t
182
183
184
  | Regexp (r,q) -> compile env (Regexp.compile r q)
  | Internal t -> cons loc (`Type t)
  | Or (t1,t2) -> cons loc (`Or (compile env t1, compile env t2))
185
  | And (t1,t2,e) -> cons loc (`And (compile env t1, compile env t2,e))
186
187
188
189
190
191
192
  | Diff (t1,t2) -> cons loc (`Diff (compile env t1, compile env t2))
  | Prod (t1,t2) -> cons loc (`Times (compile env t1, compile env t2))
  | Arrow (t1,t2) -> cons loc (`Arrow (compile env t1, compile env t2))
  | Record (l,o,t) -> cons loc (`Record (l,o,compile env t))
  | Constant (x,v) -> cons loc (`Constant (x,v))
  | Capture x -> cons loc (`Capture x)

193
194
195
196
197
198
199
200
and compile_many env b = 
  let b = List.map (fun (v,t) -> (v,t,mk' t.loc)) b in
  let env = 
    List.fold_left (fun env (v,t,x) -> StringMap.add v x env) env b in
  List.iter (fun (v,t,x) -> x.descr' <- `Alias (v, compile env t)) b;
  env


201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
let comp_fv_seen = ref []
let comp_fv_res = ref []
let rec comp_fv s =
  if List.memq s !comp_fv_seen then ()
  else (
    comp_fv_seen := s :: !comp_fv_seen;
    (match s.descr' with
      | `Alias (_,x) -> comp_fv x
      | `Or (s1,s2) 
      | `And (s1,s2,_)
      | `Diff (s1,s2)
      | `Times (s1,s2)
      | `Arrow (s1,s2) -> comp_fv s1; comp_fv s2
      | `Record (l,opt,s) -> comp_fv s
      | `Type _ -> ()
      | `Capture x
      | `Constant (x,_) -> comp_fv_res := x :: !comp_fv_res);
    if (!comp_fv_res = []) then s.fv <- Some [];
    (* TODO: check that the above line is correct *)
  )



let fv s =   
225
226
  match s.fv with
    | Some l -> l
227
228
229
230
231
232
    | None -> 
	comp_fv s;
	let l = SortedList.from_list !comp_fv_res in
	comp_fv_res := [];
	comp_fv_seen := [];
	s.fv <- Some l; 
233
234
235
236
	l

let rec typ seen s : Types.descr =
  match s.descr' with
237
238
239
240
241
    | `Alias (v,x) ->
	if List.memq s seen then 
	  raise_loc s.loc' 
	    (Pattern 
	       ("Unguarded recursion on variable " ^ v ^ " in this type"))
242
243
244
	else typ (s :: seen) x
    | `Type t -> t
    | `Or (s1,s2) -> Types.cup (typ seen s1) (typ seen s2)
245
    | `And (s1,s2,_) ->  Types.cap (typ seen s1) (typ seen s2)
246
247
248
249
    | `Diff (s1,s2) -> Types.diff (typ seen s1) (typ seen s2)
    | `Times (s1,s2) ->	Types.times (typ_node s1) (typ_node s2)
    | `Arrow (s1,s2) ->	Types.arrow (typ_node s1) (typ_node s2)
    | `Record (l,o,s) -> Types.record l o (typ_node s)
250
    | `Capture _ | `Constant _ -> assert false
251
252
253
254
255
256
257
258
259
260
261

and typ_node s : Types.node =
  match s.type_node with
    | Some x -> x
    | None ->
	let x = Types.make () in
	s.type_node <- Some x;
	let t = typ [] s in
	Types.define x t;
	x

262
263
264
265
266
let type_node s = 
  let s = typ_node s in
  let s = Types.internalize s in
(*  Types.define s (Types.normalize (Types.descr s)); *)
  s
267
268
269
270

let rec pat seen s : Patterns.descr =
  if fv s = [] then Patterns.constr (type_node s) else
  match s.descr' with
271
272
273
274
275
    | `Alias (v,x) ->
	if List.memq s seen then 
	  raise_loc s.loc' 
	    (Pattern 
	       ("Unguarded recursion on variable " ^ v ^ " in this pattern"))
276
277
	else pat (s :: seen) x
    | `Or (s1,s2) -> Patterns.cup (pat seen s1) (pat seen s2)
278
    | `And (s1,s2,e) -> Patterns.cap (pat seen s1) (pat seen s2) e
279
280
    | `Diff (s1,s2) when fv s2 = [] ->
	let s2 = Types.cons (Types.neg (Types.descr (type_node s2)))in
281
	Patterns.cap (pat seen s1) (Patterns.constr s2) true
282
283
    | `Diff _ ->
	raise_loc s.loc' (Pattern "Difference not allowed in patterns")
284
285
    | `Times (s1,s2) -> Patterns.times (pat_node s1) (pat_node s2)
    | `Record (l,false,s) -> Patterns.record l (pat_node s)
286
287
288
    | `Record _ ->
	raise_loc s.loc' 
	  (Pattern "Optional field not allowed in record patterns")
289
290
    | `Capture x ->  Patterns.capture x
    | `Constant (x,c) -> Patterns.constant x c
291
292
293
    | `Arrow _ ->
	raise_loc s.loc' (Pattern "Arrow not allowed in patterns")
    | `Type _ -> assert false
294
295
296
297
298
299
300
301
302
303
304

and pat_node s : Patterns.node =
  match s.pat_node with
    | Some x -> x
    | None ->
	let x = Patterns.make (fv s) in
	s.pat_node <- Some x;
	let t = pat [] s in
	Patterns.define x t;
	x

305
306
307
let global_types = ref StringMap.empty

let mk_typ e =
308
  if fv e = [] then type_node e
309
310
311
312
313
  else raise_loc e.loc' (Pattern "Capture variables are not allowed in types")
    

let typ e =
  mk_typ (compile !global_types e)
314
315

let pat e =
316
  let e = compile !global_types e in
317
318
  pat_node e

319
320
let register_global_types b =
  let env = compile_many !global_types b in
321
322
  List.iter (fun (v,_) -> 
	       let d = Types.descr (mk_typ (StringMap.find v env)) in
323
324
325
(*	       let d = Types.normalize d in*)
	       Types.Print.register_global v d;
	       ()
326
	    ) b;
327
  global_types := env
328
329


330
331
(* II. Build skeleton *)

332
333
module Fv = StringSet

334
let rec expr { loc = loc; descr = d } = 
335
  let (fv,td) = 
336
    match d with
337
      | DebugTyper t -> (Fv.empty, Typed.DebugTyper (typ t))
338
339
340
      | Forget (e,t) ->
	  let (fv,e) = expr e and t = typ t in
	  (fv, Typed.Forget (e,t))
341
342
343
344
      | Var s -> (Fv.singleton s, Typed.Var s)
      | Apply (e1,e2) -> 
	  let (fv1,e1) = expr e1 and (fv2,e2) = expr e2 in
	  (Fv.union fv1 fv2, Typed.Apply (e1,e2))
345
      | Abstraction a ->
346
347
348
349
	  let iface = List.map (fun (t1,t2) -> (typ t1, typ t2)) a.fun_iface in
	  let t = List.fold_left 
		    (fun accu (t1,t2) -> Types.cap accu (Types.arrow t1 t2)) 
		    Types.any iface in
350
351
352
	  let iface = List.map 
			(fun (t1,t2) -> (Types.descr t1, Types.descr t2)) 
			iface in
353
354
355
356
357
358
359
360
361
362
	  let (fv0,body) = branches a.fun_body in
	  let fv = match a.fun_name with
	    | None -> fv0
	    | Some f -> Fv.remove f fv0 in
	  (fv,
	   Typed.Abstraction 
	     { Typed.fun_name = a.fun_name;
	       Typed.fun_iface = iface;
	       Typed.fun_body = body;
	       Typed.fun_typ = t;
363
	       Typed.fun_fv = Fv.elements fv
364
365
366
367
368
369
	     }
	  )
      | Cst c -> (Fv.empty, Typed.Cst c)
      | Pair (e1,e2) ->
	  let (fv1,e1) = expr e1 and (fv2,e2) = expr e2 in
	  (Fv.union fv1 fv2, Typed.Pair (e1,e2))
370
371
      | Dot (e,l) ->
	  let (fv,e) = expr e in
372
	  (fv,  Typed.Dot (e,l))
373
374
      | RecordLitt r -> 
	  let fv = ref Fv.empty in
375
	  let r  = List.sort (fun (l1,_) (l2,_) -> compare l1 l2) r in
376
377
	  let r = List.map 
		    (fun (l,e) -> 
378
379
380
381
382
383
384
385
		       let (fv2,e) = expr e in fv := Fv.union !fv fv2; (l,e))
		    r in
	  let rec check = function
	    | (l1,_) :: (l2,_) :: _ when l1 = l2 -> 
		raise_loc loc (MultipleLabel l1)
	    | _ :: rem -> check rem
	    | _ -> () in
	  check r;
386
	  (!fv, Typed.RecordLitt r)
387
388
389
390
      | Op (op,le) ->
	  let (fvs,ltes) = List.split (List.map expr le) in
	  let fv = List.fold_left Fv.union Fv.empty fvs in
	  (fv, Typed.Op (op,ltes))
391
392
393
394
395
396
397
398
      | Match (e,b) -> 
	  let (fv1,e) = expr e
	  and (fv2,b) = branches b in
	  (Fv.union fv1 fv2, Typed.Match (e, b))
      | Map (e,b) ->
	  let (fv1,e) = expr e
	  and (fv2,b) = branches b in
	  (Fv.union fv1 fv2, Typed.Map (e, b))
399
400
401
402
      | Try (e,b) ->
	  let (fv1,e) = expr e
	  and (fv2,b) = branches b in
	  (Fv.union fv1 fv2, Typed.Try (e, b))
403
  in
404
405
  fv,
  { Typed.exp_loc = loc;
406
407
408
409
    Typed.exp_typ = Types.empty;
    Typed.exp_descr = td;
  }
	      
410
411
  and branches b = 
    let fv = ref Fv.empty in
412
    let accept = ref Types.empty in
413
414
415
    let b = List.map 
	      (fun (p,e) ->
		 let (fv2,e) = expr e in
416
		 let p = pat p in
417
418
		 let fv2 = List.fold_right Fv.remove (Patterns.fv p) fv2 in
		 fv := Fv.union !fv fv2;
419
		 accept := Types.cup !accept (Types.descr (Patterns.accept p));
420
		 { Typed.br_used = false;
421
		   Typed.br_pat = p;
422
423
		   Typed.br_body = e }
	      ) b in
424
425
426
427
    (!fv, 
     { 
       Typed.br_typ = Types.empty; 
       Typed.br_branches = b; 
428
429
       Typed.br_accept = !accept;
       Typed.br_compiled = None;
430
431
     } 
    )
432

433
434
435
436
437
438
439
440
let let_decl p e =
  let (_,e) = expr e in
  { Typed.let_pat = pat p;
    Typed.let_body = e;
    Typed.let_compiled = None }

(* III. Type-checks *)

441
module Env = StringMap
442
type env = Types.descr Env.t
443
444
445

open Typed

446
447
448
let warning loc msg =
  Format.fprintf Format.std_formatter 
    "Warning %a:@\n%s@\n" Location.print_loc loc msg
449
450
451
452

let check loc t s msg =
  if not (Types.subtype t s) then raise_loc loc (Constraint (t, s, msg))

453
let rec type_check env e constr precise = 
454
(*  Format.fprintf Format.std_formatter "constr=%a precise=%b@\n"
455
456
    Types.Print.print_descr constr precise; 
*)
457
  let d = type_check' e.exp_loc env e.exp_descr constr precise in
458
459
460
  e.exp_typ <- Types.cup e.exp_typ d;
  d

461
and type_check' loc env e constr precise = match e with
462
463
464
465
  | Forget (e,t) ->
      let t = Types.descr t in
      ignore (type_check env e t false);
      t
466
  | Abstraction a ->
467
468
469
470
471
472
473
      let t =
	try Types.Arrow.check_strenghten a.fun_typ constr 
	with Not_found -> 
	  raise_loc loc 
	  (ShouldHave
	     (constr, "but the interface of the abstraction is not compatible"))
      in
474
475
476
      let env = match a.fun_name with
	| None -> env
	| Some f -> Env.add f a.fun_typ env in
477
478
      List.iter 
	(fun (t1,t2) ->
479
	   ignore (type_check_branches loc env t1 a.fun_body t2 false)
480
481
	) a.fun_iface;
      t
482

483
484
  | Match (e,b) ->
      let t = type_check env e b.br_accept true in
485
      type_check_branches loc env t b constr precise
486
487
488

  | Try (e,b) ->
      let te = type_check env e constr precise in
489
      let tb = type_check_branches loc env Types.any b constr precise in
490
      Types.cup te tb
491

492
  | Pair (e1,e2) -> 
493
494
495
496
497
498
499
500
501
502
503
504
505
      let rects = Types.Product.get constr in
      if Types.Product.is_empty rects then 
	raise_loc loc (ShouldHave (constr,"but it is a pair."));
      let pi1 = Types.Product.pi1 rects in

      let t1 = type_check env e1 (Types.Product.pi1 rects) 
		 (precise || (Types.Product.need_second rects))in
      let rects = Types.Product.restrict_1 rects t1 in
      let t2 = type_check env e2 (Types.Product.pi2 rects) precise in
      if precise then 
	Types.times (Types.cons t1) (Types.cons t2)
      else
	constr
506

507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
  | RecordLitt r ->
      let rconstr = Types.Record.get constr in
      if Types.Record.is_empty rconstr then
	raise_loc loc (ShouldHave (constr,"but it is a record."));

      let (rconstr,res) = 
	List.fold_left 
	  (fun (rconstr,res) (l,e) ->
	     let rconstr = Types.Record.restrict_label_present rconstr l in
	     let pi = Types.Record.project_field rconstr l in
	     if Types.Record.is_empty rconstr then
	       raise_loc loc 
		 (ShouldHave (constr,(Printf.sprintf 
					"Field %s is not allowed here."
					(Types.label_name l)
				     )
			     ));
	     let t = type_check env e pi true in
	     let rconstr = Types.Record.restrict_field rconstr l t in
	     
	     let res = 
	       if precise 
	       then Types.cap res (Types.record l false (Types.cons t))
	       else res in
	     (rconstr,res)
	  ) (rconstr, if precise then Types.Record.any else constr) r
      in
      res

536
537
538
539
540
  | Map (e,b) ->
      let t = type_check env e (Sequence.star b.br_accept) true in

      let constr' = Sequence.approx (Types.cap Sequence.any constr) in
      let exact = Types.subtype (Sequence.star constr') constr in
541
542
543
544
545
546
547
      (* Note: 
	 - could be more precise by integrating the decomposition
	 of constr inside Sequence.map.
      *)
      let res = 
	Sequence.map 
	  (fun t -> 
548
	     type_check_branches loc env t b constr' (precise || (not exact)))
549
550
551
	  t in
      if not exact then check loc res constr "";
      if precise then res else constr
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
  | Op ("@", [e1;e2]) ->
      let constr' = Sequence.star 
		      (Sequence.approx (Types.cap Sequence.any constr)) in
      let exact = Types.subtype constr' constr in
      if exact then
	let t1 = type_check env e1 constr' precise
	and t2 = type_check env e2 constr' precise in
	if precise then Sequence.concat t1 t2 else constr
      else
	(* Note:
	   the knownledge of t1 may makes it useless to
	   check t2 with 'precise' ... *)
	let t1 = type_check env e1 constr' true
	and t2 = type_check env e2 constr' true in
	let res = Sequence.concat t1 t2 in
	check loc res constr "";
	if precise then res else constr
569
570
571
572
573
574
575
576
577
578
579
580
581
  | Op ("flatten", [e]) ->
      let constr' = Sequence.star 
		      (Sequence.approx (Types.cap Sequence.any constr)) in
      let sconstr' = Sequence.star constr' in
      let exact = Types.subtype constr' constr in
      if exact then
	let t = type_check env e sconstr' precise in
	if precise then Sequence.flatten t else constr
      else
	let t = type_check env e sconstr' true in
	let res = Sequence.flatten t in
	check loc res constr "";
	if precise then res else constr
582
583
584
585
586
587
588
589
590
591
  | _ -> 
      let t : Types.descr = compute_type' loc env e in
      check loc t constr "";
      t

and compute_type env e =
  type_check env e Types.any true

and compute_type' loc env = function
  | DebugTyper t -> Types.descr t
592
593
594
595
  | Var s -> 
      (try Env.find s env 
       with Not_found -> raise_loc loc (UnboundId s)
      )
596
597
598
599
600
601
602
603
604
605
  | Apply (e1,e2) ->
      let t1 = type_check env e1 Types.Arrow.any true in
      let t1 = Types.Arrow.get t1 in
      let dom = Types.Arrow.domain t1 in
      if Types.Arrow.need_arg t1 then
	let t2 = type_check env e2 dom true in
	Types.Arrow.apply t1 t2
      else
	(ignore (type_check env e2 dom false); Types.Arrow.apply_noarg t1)
  | Cst c -> Types.constant c
606
607
608
609
  | Dot (e,l) ->
      let t = type_check env e Types.Record.any true in
         (try (Types.Record.project t l) 
          with Not_found -> raise_loc loc (WrongLabel(t,l)))
610
611
612
  | Op (op, el) ->
      let args = List.map (fun e -> (e.exp_loc, compute_type env e)) el in
      type_op loc op args
613
614
  | Map (e,b) ->
      let t = compute_type env e in
615
      Sequence.map (fun t -> type_check_branches loc env t b Types.any true) t
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633

(* We keep these cases here to allow comparison and benchmarking ...
   Just comment the corresponding cases in type_check' to
   activate these ones.
*)
  | Pair (e1,e2) -> 
      let t1 = compute_type env e1 
      and t2 = compute_type env e2 in
      Types.times (Types.cons t1) (Types.cons t2)
  | RecordLitt r ->
      List.fold_left 
        (fun accu (l,e) ->
           let t = compute_type env e in
           let t = Types.record l false (Types.cons t) in
           Types.cap accu t
        ) Types.Record.any r


634
  | _ -> assert false
635

636
and type_check_branches loc env targ brs constr precise =
637
  if Types.is_empty targ then Types.empty 
638
639
  else (
    brs.br_typ <- Types.cup brs.br_typ targ;
640
    branches_aux loc env targ 
641
642
      (if precise then Types.empty else constr) 
      constr precise brs.br_branches
643
  )
644
    
645
646
and branches_aux loc env targ tres constr precise = function
  | [] -> raise_loc loc (NonExhaustive targ)
647
648
649
650
651
652
  | b :: rem ->
      let p = b.br_pat in
      let acc = Types.descr (Patterns.accept p) in

      let targ' = Types.cap targ acc in
      if Types.is_empty targ' 
653
      then branches_aux loc env targ tres constr precise rem
654
655
656
657
658
659
      else 
	( b.br_used <- true;
	  let res = Patterns.filter targ' p in
	  let env' = List.fold_left 
		       (fun env (x,t) -> Env.add x (Types.descr t) env) 
		       env res in
660
661
	  let t = type_check env' b.br_body constr precise in
	  let tres = if precise then Types.cup t tres else tres in
662
663
	  let targ'' = Types.diff targ acc in
	  if (Types.non_empty targ'') then 
664
	    branches_aux loc env targ'' tres constr precise rem 
665
666
	  else
	    tres
667
	)
668

669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
and type_let_decl env l =
  let acc = Types.descr (Patterns.accept l.let_pat) in
  let t = type_check env l.let_body acc true in
  let res = Patterns.filter t l.let_pat in
  List.map (fun (x,t) -> (x, Types.descr t)) res

and type_rec_funs env l =
  let types = 
    List.fold_left
      (fun accu -> function  {let_body={exp_descr=Abstraction a}} as l ->
	 let t = a.fun_typ in
	 let acc = Types.descr (Patterns.accept l.let_pat) in
	 if not (Types.subtype t acc) then
	   raise_loc l.let_body.exp_loc (NonExhaustive (Types.diff t acc));
	 let res = Patterns.filter t l.let_pat in
	 List.fold_left (fun accu (x,t) -> (x, Types.descr t)::accu) accu res
	 | _ -> assert false) [] l
  in
  let env' = List.fold_left (fun env (x,t) -> Env.add x t env) env types in
  List.iter 
    (function  { let_body = { exp_descr = Abstraction a } } as l ->
       ignore (type_check env' l.let_body Types.any false)
       | _ -> assert false) l;
  types


695
696
and type_op loc op args =
  match (op,args) with
697
    | "+", [loc1,t1; loc2,t2] ->
698
	type_int_binop Intervals.add loc1 t1 loc2 t2
699
700
701
    | "-", [loc1,t1; loc2,t2] ->
	type_int_binop Intervals.sub loc1 t1 loc2 t2
    | ("*" | "/"), [loc1,t1; loc2,t2] ->
702
	type_int_binop (fun i1 i2 -> Intervals.any) loc1 t1 loc2 t2
703
    | "@", [loc1,t1; loc2,t2] ->
704
705
706
	check loc1 t1 Sequence.any
	  "The first argument of @ must be a sequence";
	Sequence.concat t1 t2
707
    | "flatten", [loc1,t1] ->
708
709
710
	check loc1 t1 Sequence.seqseq 
	  "The argument of flatten must be a sequence of sequences";
	Sequence.flatten t1
711
712
713
714
    | "load_xml", [loc1,t1] ->
	check loc1 t1 Sequence.string
	  "The argument of load_xml must be a string (filename)";
	Types.any
715
716
    | "raise", [loc1,t1] ->
	Types.empty
717
718
719
720
721
722
    | "int_of", [loc1,t1] ->
	check loc1 t1 Sequence.string
	  "The argument of int_of must a string";
	if not (Types.subtype t1 Builtin.intstr) then
	  warning loc "This application of int_of may fail";
	Types.interval Intervals.any
723
724
725
726
727
728
729
730
731
732
733
    | _ -> assert false

and type_int_binop f loc1 t1 loc2 t2 =
  if not (Types.Int.is_int t1) then
    raise_loc loc1 
      (Constraint 
	 (t1,Types.Int.any,
	  "The first argument must be an integer"));
  if not (Types.Int.is_int t2) then
    raise_loc loc2
      (Constraint 
734
	       (t2,Types.Int.any,
735
736
737
738
739
		"The second argument must be an integer"));
  Types.Int.put
    (f (Types.Int.get t1) (Types.Int.get t2));