mlstub.ml 14.9 KB
Newer Older
1
2
3
4
#load "q_MLast.cmo";;

(* TODO:
   - optimizations: generate labels and atoms only once.
5
   - translate record to open record on positive occurence
6
7
8
9
10
11
12
13
14
15
16
17
18
19
*)


open Mltypes
open Ident

module IntMap = 
  Map.Make(struct type t = int let compare : t -> t -> int = compare end)

module IntHash =
  Hashtbl.Make(struct type t = int let hash i = i let equal i j = i == j end)

(* Compute CDuce type *)

20
21
let vars = ref [||]

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
let memo_typ = IntHash.create 13

let atom lab = Types.atom (Atoms.atom (Atoms.V.mk_ascii lab))
let label lab = LabelPool.mk (Ns.empty, U.mk lab)
let bigcup f l = List.fold_left (fun accu x -> Types.cup accu (f x)) Types.empty l

let rec typ t =
  try IntHash.find memo_typ t.uid
  with Not_found ->
    let node = Types.make () in
    IntHash.add memo_typ t.uid node;
    Types.define node (typ_descr t.def);
    node

and typ_descr = function
  | Link t -> typ_descr t.def
  | Arrow (t,s) -> Types.arrow (typ t) (typ s)
  | Tuple tl -> Types.tuple (List.map typ tl)
  | PVariant l -> bigcup pvariant l
  | Variant (l,_) -> bigcup variant l
  | Record (l,_) ->
      let l = List.map (fun (lab,t) -> label lab, typ t) l in
      Types.record' (false,(LabelMap.from_list_disj l))
  | Abstract "int" -> Builtin_defs.caml_int
  | Abstract "char" -> Builtin_defs.char_latin1
  | Abstract "string" -> Builtin_defs.string_latin1
48
  | Abstract s -> Types.abstract (Types.Abstract.atom s)
49
  | Builtin ("list", [t]) -> Types.descr (Sequence.star_node (typ t))
50
  | Builtin ("Pervasives.ref", [t]) -> Builtin_defs.ref_type (typ t)
51
52
  | Builtin ("CDuce_all.Value.t", []) -> Types.any
  | Builtin ("unit", []) -> Sequence.nil_type
53
  | Var i -> Types.descr (!vars).(i)
54
55
56
57
58
59
60
61
62
63
64
65
66
  | _ -> assert false
	   
and pvariant = function
  | (lab, None) -> atom lab
  | (lab, Some t) -> Types.times (Types.cons (atom lab)) (typ t)

and variant = function
  | (lab, []) -> atom lab
  | (lab, c) -> Types.tuple (Types.cons (atom lab) :: List.map typ c)


(* Syntactic tools *)

67
68
69
70
let var_counter = ref 0
let mk_var _ =
  incr var_counter;
  Printf.sprintf "x%i" !var_counter
71

72
let mk_vars = List.map mk_var
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

let loc = (-1,-1)

let let_in p e body =
  <:expr< let $list:[ p, e ]$ in $body$ >>

let atom_ascii lab =
  <:expr< Value.atom_ascii $str: String.escaped lab$ >>

let label_ascii lab =
  <:expr< Value.label_ascii $str: String.escaped lab$ >>

let pair e1 e2 = <:expr< Value.Pair ($e1$,$e2$) >>

let pmatch e l = 
  let l = List.map (fun (p,e) -> p,None,e) l in
  <:expr< match $e$ with [ $list:l$ ] >>

let rec matches ine oute = function
  | [v1;v2] ->
      let_in <:patt<($lid:v1$,$lid:v2$)>> <:expr< Value.get_pair $ine$ >> oute
  | v::vl ->
95
96
97
      let r = mk_var () in
      let oute = matches <:expr< $lid:r$ >> oute vl in
      let_in <:patt<($lid:v$,$lid:r$)>> <:expr< Value.get_pair $ine$ >> oute
98
99
100
101
102
  | [] -> assert false

let list_lit el =
  List.fold_right (fun a e -> <:expr< [$a$ :: $e$] >>) el <:expr< [] >>

103
104
105
106
107
108
109
110
let protect e f =
  match e with
    | <:expr< $lid:x$ >> -> f e
    | e ->
	let x = mk_var () in
	let r = f <:expr< $lid:x$ >> in
	<:expr< let $lid:x$ = $e$ in $r$ >> 

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
(* Registered types *)

module HashTypes = Hashtbl.Make(Types)
let registered_types = HashTypes.create 13
let nb_registered_types = ref 0

let register_type t =
  let n =
    try HashTypes.find registered_types t
    with Not_found ->
      let i = !nb_registered_types in
      HashTypes.add registered_types t i;
      incr nb_registered_types;
      i 
  in
  <:expr< types.($int:string_of_int n$) >>

let get_registered_types () =
  let a = Array.make !nb_registered_types Types.empty in
  HashTypes.iter (fun t i -> a.(i) <- t) registered_types;
  a

133
134
(* OCaml -> CDuce conversions *)

135

136
137
138
139
140
141
142
143
144
let to_cd_gen = ref []

let to_cd_fun_name t = 
  Printf.sprintf "to_cd_%i" t.uid

let to_cd_fun t =
  to_cd_gen := t :: !to_cd_gen;
  to_cd_fun_name t

145
146
147
148
149
150
151
152
153
let to_ml_gen = ref []

let to_ml_fun_name t =
  Printf.sprintf "to_ml_%i" t.uid

let to_ml_fun t =
  to_ml_gen := t :: !to_ml_gen;
  to_ml_fun_name t

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
let rec tuple = function
  | [v] -> v
  | v::l -> <:expr< Value.Pair ($v$, $tuple l$) >> 
  | [] -> assert false

let pat_tuple vars = 
  let pl = List.map (fun id -> <:patt< $lid:id$ >>) vars in
  <:patt< ($list:pl$) >>


let rec to_cd e t =
(*  Format.fprintf Format.std_formatter "to_cd %a [uid=%i; recurs=%i]@."
    Mltypes.print t t.uid t.recurs; *)
  if t.recurs > 0 then <:expr< $lid:to_cd_fun t$ $e$ >>
  else to_cd_descr e t.def

and to_cd_descr e = function
  | Link t -> to_cd e t
172
  | Arrow (t,s) -> 
173
      (* let y = <...> in Value.Abstraction ([t,s], fun x -> s(y (t(x))) *)
174
175
176
177
178
179
180
181
182
183
      protect e 
      (fun y ->
	 let x = mk_var () in
	 let arg = to_ml <:expr< $lid:x$ >> t in
	 let res = to_cd <:expr< $y$ $arg$ >> s in
	 let abs = <:expr< fun $lid:x$ -> $res$ >> in
	 let tt = register_type (Types.descr (typ t)) in
	 let ss = register_type (Types.descr (typ s)) in
	 <:expr< Value.Abstraction ([($tt$,$ss$)],$abs$) >>
      )
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
  | Tuple tl -> 
      (* let (x1,...,xn) = ... in Value.Pair (t1(x1), Value.Pair(...,tn(xn))) *)
      let vars = mk_vars tl in
      let_in (pat_tuple vars) e (tuple (tuple_to_cd tl vars))
  | PVariant l ->
      (* match <...> with 
	 | `A -> Value.atom_ascii "A" 
	 | `B x -> Value.Pair (Value.atom_ascii "B",t(x))
      *)
      let cases = 
	List.map
	  (function 
	     | (lab,None) -> <:patt< `$lid:lab$ >>, atom_ascii lab
	     | (lab,Some t) -> 
		 <:patt< `$lid:lab$ x >>, 
		 pair (atom_ascii lab) (to_cd <:expr< x >> t)
	  ) l in
      pmatch e cases
  | Variant (l,_) ->
      (* match <...> with 
	 | A -> Value.atom_ascii "A" 
	 | B (x1,x2,..) -> Value.Pair (Value.atom_ascii "B",...,Value.Pair(tn(x)))
      *)
      let cases = 
	List.map
	  (function 
	     | (lab,[]) -> <:patt< $uid:lab$ >>, atom_ascii lab
	     | (lab,tl) -> 
		 let vars = mk_vars tl in
		 <:patt< $uid:lab$ $pat_tuple vars$ >>,
		 tuple (atom_ascii lab :: tuple_to_cd tl vars)
	  ) l in
      pmatch e cases
  | Record (l,_) ->
      (* let x = <...> in Value.record [ l1,t1(x.l1); ...; ln,x.ln ] *)
219
220
221
222
223
224
225
226
227
228
      protect e
      (fun x ->
	 let l = 
	   List.map
	     (fun (lab,t) ->
		let e = to_cd <:expr<$x$.$lid:lab$>> t in
		<:expr< ($label_ascii lab$, $e$) >>)
	     l
	 in
	 <:expr< Value.record $list_lit l$ >>)
229
      
230
231
232
  | Abstract "int" -> <:expr< Value.ocaml2cduce_int $e$ >>
  | Abstract "char" -> <:expr< Value.ocaml2cduce_char $e$ >>
  | Abstract "string" -> <:expr< Value.ocaml2cduce_string $e$ >>
233
  | Abstract s -> <:expr< Value.abstract $str:String.escaped s$ $e$ >>
234
235
236
  | Builtin ("list",[t]) ->
      (* Value.sequence_rev (List.rev_map fun_t <...>) *)
      <:expr< Value.sequence_rev (List.rev_map $lid:to_cd_fun t$ $e$) >>
237
  | Builtin ("Pervasives.ref",[t]) ->
238
239
240
241
242
243
244
245
246
247
248
249
250
      (* let x = <...> in 
         Value.mk_ext_ref t (fun () -> t(!x)) (fun y -> x := t'(y)) *)
      protect e 
      (fun e ->
	 let y = mk_var () in
	 let tt = register_type (Types.descr (typ t)) in
	 let get_x = <:expr< $e$.val >> in
	 let get = <:expr< fun () -> $to_cd get_x t$ >> in
	 let tr_y = to_ml <:expr< $lid:y$ >> t in
	 let set = <:expr< fun $lid:y$ -> $e$.val := $tr_y$ >> in
	 <:expr< Value.mk_ext_ref $tt$ $get$ $set$ >>
      )

251
252
  | Builtin ("CDuce_all.Value.t", []) -> e
  | Builtin ("unit", []) -> <:expr< do { $e$; Value.nil } >>
253
  | Var _ -> e
254
255
256
257
258
259
260
261
  | _ -> assert false

and tuple_to_cd tl vars = List.map2 (fun t id -> to_cd <:expr< $lid:id$ >> t) tl vars

(* CDuce -> OCaml conversions *)



262
and to_ml e t =
263
264
265
266
267
268
269
270
(*  Format.fprintf Format.std_formatter "to_ml %a@."
    Mltypes.print t; *)
  if t.recurs > 0 then <:expr< $lid:to_ml_fun t$ $e$ >>
  else to_ml_descr e t.def

and to_ml_descr e = function
  | Link t -> to_ml e t
  | Arrow (t,s) -> 
271
      (* let y = <...> in fun x -> s(Eval.eval_apply y (t(x))) *)
272
273
274
275
276
277
278
      protect e 
      (fun y ->
	 let x = mk_var () in
	 let arg = to_cd <:expr< $lid:x$ >> t in
	 let res = to_ml <:expr< Eval.eval_apply $y$ $arg$ >> s in
	 <:expr< fun $lid:x$ -> $res$ >>
      )
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

  | Tuple tl -> 
      (* let (x1,r) = Value.get_pair <...> in
         let (x2,r) = Value.get_pair r in
         ...
         let (xn-1,xn) = Value.get_pair r in
	 (t1(x1),...,tn(xn)) *)

      let vars = mk_vars tl in
      let el = tuple_to_ml tl vars in
      matches e <:expr< ($list:el$) >> vars
  | PVariant l ->
      (* match Value.get_variant <...> with 
	 | "A",None -> `A 
	 | "B",Some x -> `B (t(x))
294
	 | _ -> assert false
295
      *)
296
      let x = mk_var () in
297
298
299
300
301
302
303
      let cases = 
	List.map 
	  (function 
	     | (lab,None) -> 
		 <:patt< ($str: String.escaped lab$, None) >>,
		 <:expr< `$lid:lab$ >>
	     | (lab,Some t) ->
304
305
306
307
		 let x = mk_var () in
		 let ex = <:expr< $lid:x$ >> in
		 <:patt< ($str: String.escaped lab$, Some $lid:x$) >>,
		 <:expr< `$lid:lab$ $to_ml ex t$ >>
308
	  ) l in
309
      let cases = cases @ [ <:patt< _ >>, <:expr< assert false >> ] in
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
      pmatch <:expr< Value.get_variant $e$ >> cases
  | Variant (l,false) ->
      failwith "Private Sum type"
  | Variant (l,true) ->
      (* match Value.get_variant <...> with 
	 | "A",None -> A 
	 | "B",Some x -> let (x1,r) = x in ... 
      *)
      let cases = 
	List.map 
	  (function 
	     | (lab,[]) -> 
		 <:patt< ($str: String.escaped lab$, None) >>,
		 (match lab with (* Stupid Camlp4 *)
		    | "true" -> <:expr< True >>
		    | "false" -> <:expr< False >>
		    | lab -> <:expr< $lid:lab$ >>)
	     | (lab,[t]) ->
328
329
330
331
		 let x = mk_var () in
		 let ex = <:expr< $lid:x$ >> in
		 <:patt< ($str: String.escaped lab$, Some $lid:x$) >>,
		 <:expr< $lid:lab$ $to_ml ex t$ >>
332
333
334
	     | (lab,tl) ->
		 let vars = mk_vars tl in
		 let el = tuple_to_ml tl vars in
335
336
337
338
		 let x = mk_var () in
		 <:patt< ($str: String.escaped lab$, Some $lid:x$) >>,
		 matches <:expr< $lid:x$ >> 
		         <:expr< $lid:lab$ ($list:el$) >> vars
339
	  ) l in
340
      let cases = cases @ [ <:patt< _ >>, <:expr< assert False >> ] in
341
342
343
344
345
346
      pmatch <:expr< Value.get_variant $e$ >> cases
  | Record (l,false) ->
      failwith "Private Record type"
  | Record (l,true) ->
      (* let x = <...> in
	 { l1 = t1(Value.get_field x "l1"); ... } *)
347
348
349
350
351
352
353
354
355
      protect e 
      (fun x ->
	 let l = 
	   List.map
	     (fun (lab,t) ->
		(<:patt< $uid:lab$>>,
		 to_ml 
		 <:expr< Value.get_field $x$ $label_ascii lab$ >> t)) l in
	 <:expr< {$list:l$} >>)
356

357
358
359
  | Abstract "int" -> <:expr< Value.cduce2ocaml_int $e$ >>
  | Abstract "char" -> <:expr< Value.cduce2ocaml_char $e$ >>
  | Abstract "string" -> <:expr< Value.cduce2ocaml_string $e$ >>
360
  | Abstract s -> <:expr< Value.get_abstract $e$ >>
361
362
363
  | Builtin ("list",[t]) ->
      (* List.rev_map fun_t (Value.get_sequence_rev <...> *)
      <:expr< List.rev_map $lid:to_ml_fun t$ (Value.get_sequence_rev $e$) >>
364
365
366
367
368
  | Builtin ("Pervasives.ref",[t]) ->
      (* ref t(Eval.eval_apply (Value.get_field <...> "get") Value.nil)  *)
      let e = <:expr< Value.get_field $e$ $label_ascii "get"$ >> in
      let e = <:expr< Eval.eval_apply $e$ Value.nil >> in
      <:expr< Pervasives.ref $to_ml e t$ >>
369
370
  | Builtin ("CDuce_all.Value.t", []) -> e
  | Builtin ("unit", []) -> <:expr< ignore $e$ >>
371
  | Var _ -> e
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
  | _ -> assert false

and tuple_to_ml tl vars = List.map2 (fun t id -> to_ml <:expr< $lid:id$ >> t) tl vars


let to_ml_done = IntHash.create 13
let to_cd_done = IntHash.create 13

let global_transl () = 
  let defs = ref [] in
  let rec aux hd tl gen don fun_name to_descr =
    gen := tl;
    if not (IntHash.mem don hd.uid) then (
      IntHash.add don hd.uid ();
      let p = <:patt< $lid:fun_name hd$ >> in
      let e = <:expr< fun x -> $to_descr <:expr< x >> hd.def$ >> in
      defs := (p,e) :: !defs
    );
    loop ()
  and loop () = match !to_cd_gen,!to_ml_gen with
    | hd::tl,_ -> aux hd tl to_cd_gen to_cd_done to_cd_fun_name to_cd_descr
    | _,hd::tl -> aux hd tl to_ml_gen to_ml_done to_ml_fun_name to_ml_descr
    | [],[] -> ()
  in
  loop ();
  !defs

(* Check type constraints and generate stub code *)

401
402
let err_ppf = Format.err_formatter

403
404
let exts = ref []

405
let check_value ty_env c_env (s,caml_t,t) =
406
407
408
409
410
  (* Find the type for the value in the CDuce module *)
  let id = Id.mk (U.mk s) in
  let vt = 
    try Typer.find_value id ty_env
    with Not_found ->
411
412
      Format.fprintf err_ppf
      "The interface exports a value %s which is not available in the module@." s;
413
414
415
416
417
418
419
420
421
422
      exit 1
  in

  (* Compute expected CDuce type *)
  let et = Types.descr (typ t) in

  (* Check subtyping *)
  if not (Types.subtype vt et) then
    (
      Format.fprintf
423
424
425
426
427
       err_ppf
       "The type for the value %s is invalid@\n\
        Expected Caml type:@[%a@]@\n\
        Expected CDuce type:@[%a@]@\n\
        Inferred type:@[%a@]@."
428
       s
429
       print_ocaml caml_t
430
431
432
433
434
435
436
       Types.Print.print et
       Types.Print.print vt;
      exit 1
    );
   
  (* Generate stub code *)
  (* let x = t(Eval.get_slot cu slot) *)
437
  let x = mk_var () in
438
439
  let slot = Compile.find_slot id c_env in
  let e = to_ml <:expr< Eval.get_slot cu $int:string_of_int slot$ >> t in
440
  <:patt< $uid:s$ >>, <:expr< C.$uid:x$ >>, (<:patt< $uid:x$ >>, e)
441

442
let stub name ty_env c_env values =
443
  let items = List.map (check_value ty_env c_env) values in
444
445
446
447
448
449
450
451
  let exts = 
    List.map 
      (fun (s,i,t) ->
	 let c = to_cd <:expr< $lid:s$ >> t in
	 <:str_item< Eval.set_slot cu $int:string_of_int i$ $c$ >>
      ) !exts in


452
453
  let g = global_transl () in

454
455
456
457
458
459
460
461
462
463
464
  (* 
     let (v1,v2,...,vn) = 
     let module C = struct
      let cu = ...
      open CDuce_all
      let types = ...
      let rec <global translation functions>
      <fills external slots>
      <run the unit>
      let <stubs for values>
     end in (C.x1,...,C.xn)
465
466
  *)

467
468
469
470
471
  let items_def = List.map (fun (_,_,d) -> d) items in
  let items_expr = List.map (fun (_,e,_) -> e)  items in
  let items_pat = List.map (fun (p,_,_) -> p) items in

  let m = 
472
    [ <:str_item< open CDuce_all >>;
473
474
475
476
477
478
479
480
481
482
483
484
      <:str_item< value types = Librarian.registered_types cu >> ] @
    (if g = [] then [] else [ <:str_item< value rec $list:g$ >> ]) @
    [ <:str_item< declare $list:exts$ end >>;
    <:str_item< Librarian.run cu >> ] @
    (if items = [] then [] else [ <:str_item< value $list:items_def$ >> ]) in

  let items_expr = 
    match items_expr with 
      | [] -> <:expr< () >> 
      | l -> <:expr< ($list:l$) >> in

  <:patt< ($list:items_pat$) >>, m, items_expr
485
486


487
let () =
488
489
490
491
  Librarian.stub_ml := 
  (fun cu ty_env c_env ->
     try
       let name = String.capitalize cu in
492
493
494
495
496
       let (prolog, values) = 
	 try Mltypes.read_cmi name
	 with Not_found ->  
	   Printf.eprintf "Warning: no caml interface\n";
	   ("",[]) in
497
498
499
       let code = stub cu ty_env c_env values in
       Some (Obj.magic (prolog,code)),
       get_registered_types ()
500
     with Mltypes.Error s -> raise (Location.Generic s)
501
502
  );

503
504
505
  Externals.resolve :=
  (fun i s args ->
     let (t,n) = 
506
507
508
509
510
       try Mltypes.find_value s 
       with Not_found ->
	 Printf.eprintf "Cannot resolve the external symbol %s\n" s;
	 exit 1
     in
511
512
513
514
515
516
     let m = List.length args in
     if n <> m then
       (
	 Printf.eprintf "Wrong arity for external symbol %s (real arity = %i; given = %i)\n" s n m;
	 exit 1
       );
517
     exts := (s, i, t) :: !exts;
518
519
520
521
522
523
524

     vars := Array.of_list args;
     let cdt = Types.descr (typ t) in
(*     Format.fprintf Format.std_formatter "Instance: %a@."
       Types.Print.print cdt; *)
     vars := [| |];
     cdt
525
  )