typer.ml 41.9 KB
Newer Older
1
(* TODO:
2
 - rewrite type-checking of operators to propagate constraint
3
4
 - optimize computation of pattern free variables
 - check whether it is worth using recursive hash-consing internally
5
6
*)

7
8
9
open Location
open Ast
open Ident
10

11
12
let warning loc msg =
  Format.fprintf !Location.warning_ppf "Warning %a:@\n%a%s@\n" 
13
14
    Location.print_loc (loc,`Full)
    Location.html_hilight (loc,`Full)
15
16
    msg

17
18
type item =
  | Type of Types.t
19
  | Val of Types.t
20

21
type t = {
22
  ids : item Env.t;
23
24
  tenv_nspref: Ns.table;
}
25

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
include Custom.Dummy

(* TODO: filter out builtin defs ? *)
let serialize s env =
  Env.iter 
    (fun id item ->
       match item with
	 | Type t ->
	     Serialize.Put.bits 2 s 0b01;
	     Id.serialize s id;
	     Types.serialize s t
	 | Val t ->
	     Serialize.Put.bits 2 s 0b10;
	     Id.serialize s id;
	     Types.serialize s t
    ) env.ids;
  Serialize.Put.bits 2 s 0b00;
  Ns.serialize_table s env.tenv_nspref

let deserialize s =
  let rec aux env =
    match Serialize.Get.bits 2 s with
      | 0b00 -> env
      | 0b01 ->
	  let id = Id.deserialize s in
	  let t = Types.deserialize s in
	  aux (Env.add id (Type t) env)
      | 0b10 ->
	  let id = Id.deserialize s in
	  let t = Types.deserialize s in
	  aux (Env.add id (Val t) env) 
      | _ -> assert false
  in
  let ids = aux Env.empty in
  let ns = Ns.deserialize_table s in
  { ids = ids; tenv_nspref = ns }


64
65
66
67
68
69
70
71
72
73
74
75
76
let empty_env = {
  ids = Env.empty;
  tenv_nspref = Ns.empty_table;
}

let enter_type id t env =
  { env with ids = Env.add id (Type t) env.ids }
let enter_types l env =
  { env with ids = 
      List.fold_left (fun accu (id,t) -> Env.add id (Type t) accu) env.ids l }
let find_type id env =
  match Env.find id env.ids with
    | Type t -> t
77
    | Val _ -> raise Not_found
78
79

let enter_value id t env = 
80
  { env with ids = Env.add id (Val t) env.ids }
81
82
let enter_values l env =
  { env with ids = 
83
      List.fold_left (fun accu (id,t) -> Env.add id (Val t) accu) env.ids l }
84
85
let find_value id env =
  match Env.find id env.ids with
86
    | Val t -> t
87
88
    | _ -> raise Not_found
	
89
90
91
92
93
94
let value_name_ok id env =
  try match Env.find id env.ids with
    | Val t -> true
    | _ -> false
  with Not_found -> true

95

96
(* Namespaces *)
97

98
99
100
let set_ns_table_for_printer env = 
  Ns.InternalPrinter.set_table env.tenv_nspref

101
let get_ns_table tenv = tenv.tenv_nspref
102

103
104
105
let enter_ns p ns env =
  { env with tenv_nspref = Ns.add_prefix p ns env.tenv_nspref }

106
107
108
109
110
let protect_error_ns loc f x =
  try f x
  with Ns.UnknownPrefix ns ->
    raise_loc_generic loc 
    ("Undefined namespace prefix " ^ (U.to_string ns))
111

112
113
114
115
116
117
let parse_atom env loc t =
  let (ns,l) = protect_error_ns loc (Ns.map_tag env.tenv_nspref) t in
  Atoms.V.mk ns l
 
let parse_ns env loc ns =
  protect_error_ns loc (Ns.map_prefix env.tenv_nspref) ns
118

119
120
121
let parse_label env loc t =
  let (ns,l) = protect_error_ns loc (Ns.map_attr env.tenv_nspref) t in
  LabelPool.mk (ns,l)
122

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
let parse_record env loc f r =
  let r = List.map (fun (l,x) -> (parse_label env loc l, f x)) r in
  LabelMap.from_list (fun _ _ -> raise_loc_generic loc "Duplicated record field") r

let rec const env loc = function
  | LocatedExpr (loc,e) -> const env loc e
  | Pair (x,y) -> Types.Pair (const env loc x, const env loc y)
  | Xml (x,y) -> Types.Xml (const env loc x, const env loc y)
  | RecordLitt x -> Types.Record (parse_record env loc (const env loc) x)
  | String (i,j,s,c) -> Types.String (i,j,s,const env loc c)
  | Atom t -> Types.Atom (parse_atom env loc t)
  | Integer i -> Types.Integer i
  | Char c -> Types.Char c
  | _ -> raise_loc_generic loc "This should be a scalar or structured constant"

(* I. Transform the abstract syntax of types and patterns into
      the internal form *)
140

141
exception NonExhaustive of Types.descr
142
exception Constraint of Types.descr * Types.descr
143
exception ShouldHave of Types.descr * string
144
exception ShouldHave2 of Types.descr * string * Types.descr
145
exception WrongLabel of Types.descr * label
146
exception UnboundId of id * bool
147
exception Error of string
148

149
150
let raise_loc loc exn = raise (Location (loc,`Full,exn))
let raise_loc_str loc ofs exn = raise (Location (loc,`Char ofs,exn))
151
let error loc msg = raise_loc loc (Error msg)
152

153
154
155
  (* Schema datastructures *)

module StringSet = Set.Make (String)
156
157
158

  (* just to remember imported schemas *)
let schemas = State.ref "Typer.schemas" StringSet.empty
159
160
161

let schema_types = State.ref "Typer.schema_types" (Hashtbl.create 51)
let schema_elements = State.ref "Typer.schema_elements" (Hashtbl.create 51)
162
let schema_attributes = State.ref "Typer.schema_attributes" (Hashtbl.create 51)
163

164
165
166
167
168
169
170
171
(* Eliminate Recursion, propagate Sequence Capture Variables *)

let rec seq_vars accu = function
  | Epsilon | Elem _ -> accu
  | Seq (r1,r2) | Alt (r1,r2) -> seq_vars (seq_vars accu r1) r2
  | Star r | WeakStar r -> seq_vars accu r
  | SeqCapture (v,r) -> seq_vars (IdSet.add v accu) r

172
173
174
175
176
177
178
179
180
181
182
183
184
185
(* We use two intermediate representation from AST types/patterns
   to internal ones:

      AST -(1)-> derecurs -(2)-> slot -(3)-> internal

   (1) eliminate recursion, schema, 
       propagate sequence capture variables, keep regexps

   (2) stratify, detect ill-formed recursion, compile regexps

   (3) check additional constraints on types / patterns;
       deep (recursive) hash-consing
*)     

186
187
188
189
type derecurs_slot = {
  ploc : Location.loc;
  pid  : int;
  mutable ploop : bool;
190
  mutable pdescr : derecurs;
191
} and derecurs =
192
  | PDummy
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
  | PAlias of derecurs_slot
  | PType of Types.descr
  | POr of derecurs * derecurs
  | PAnd of derecurs * derecurs
  | PDiff of derecurs * derecurs
  | PTimes of derecurs * derecurs
  | PXml of derecurs * derecurs
  | PArrow of derecurs * derecurs
  | POptional of derecurs
  | PRecord of bool * derecurs label_map
  | PCapture of id
  | PConstant of id * Types.const
  | PRegexp of derecurs_regexp * derecurs
and derecurs_regexp =
  | PEpsilon
  | PElem of derecurs
  | PSeq of derecurs_regexp * derecurs_regexp
  | PAlt of derecurs_regexp * derecurs_regexp
  | PStar of derecurs_regexp
  | PWeakStar of derecurs_regexp

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

type descr = 
  | IDummy
  | IType of Types.descr
  | IOr of descr * descr
  | IAnd of descr * descr
  | IDiff of descr * descr
  | ITimes of slot * slot
  | IXml of slot * slot
  | IArrow of slot * slot
  | IOptional of descr
  | IRecord of bool * slot label_map
  | ICapture of id
  | IConstant of id * Types.const
and slot = {
  mutable fv : fv option;
  mutable hash : int option;
  mutable rank1: int; mutable rank2: int;
  mutable gen1 : int; mutable gen2: int;
  mutable d    : descr;
234
}
235
236
237
238
239
240
241
242
243
244
245
246
247
    

let counter = ref 0
let mk_derecurs_slot loc = 
  incr counter; 
  { ploop = false; ploc = loc; pid = !counter; pdescr = PDummy }
	  
let mk_slot () = 
  { d=IDummy; fv=None; hash=None; rank1=0; rank2=0; gen1=0; gen2=0 } 


(* This environment is used in phase (1) to eliminate recursion *)
type penv = {
248
  penv_tenv : t;
249
250
251
252
  penv_derec : derecurs_slot Env.t;
}

let penv tenv = { penv_tenv = tenv; penv_derec = Env.empty }
253

254
let rec hash_derecurs = function
255
  | PDummy -> assert false
256
257
258
  | PAlias s -> 
      s.pid
  | PType t -> 
259
      1 + 17 * (Types.hash t)
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
  | POr (p1,p2) -> 
      2 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PAnd (p1,p2) -> 
      3 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PDiff (p1,p2) -> 
      4 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PTimes (p1,p2) -> 
      5 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PXml (p1,p2) -> 
      6 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PArrow (p1,p2) -> 
      7 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | POptional p -> 
      8 + 17 * (hash_derecurs p)
  | PRecord (o,r) -> 
      (if o then 9 else 10) + 17 * (LabelMap.hash hash_derecurs r)
  | PCapture x -> 
      11 + 17 * (Id.hash x)
  | PConstant (x,c) -> 
279
      12 + 17 * (Id.hash x) + 257 * (Types.Const.hash c)
280
281
  | PRegexp (p,q) -> 
      13 + 17 * (hash_derecurs_regexp p) + 257 * (hash_derecurs q)
282
and hash_derecurs_regexp = function
283
284
285
286
287
288
289
290
291
292
293
294
  | PEpsilon -> 
      1
  | PElem p -> 
      2 + 17 * (hash_derecurs p)
  | PSeq (p1,p2) -> 
      3 + 17 * (hash_derecurs_regexp p1) + 257 * (hash_derecurs_regexp p2)
  | PAlt (p1,p2) -> 
      4 + 17 * (hash_derecurs_regexp p1) + 257 * (hash_derecurs_regexp p2)
  | PStar p -> 
      5 + 17 * (hash_derecurs_regexp p)
  | PWeakStar p -> 
      6 + 17 * (hash_derecurs_regexp p)
295
296

let rec equal_derecurs p1 p2 = (p1 == p2) || match p1,p2 with
297
298
299
  | PAlias s1, PAlias s2 -> 
      s1 == s2
  | PType t1, PType t2 -> 
300
      Types.equal t1 t2
301
302
303
304
305
  | POr (p1,q1), POr (p2,q2)
  | PAnd (p1,q1), PAnd (p2,q2)
  | PDiff (p1,q1), PDiff (p2,q2)
  | PTimes (p1,q1), PTimes (p2,q2)
  | PXml (p1,q1), PXml (p2,q2)
306
307
308
309
310
311
312
313
314
  | PArrow (p1,q1), PArrow (p2,q2) -> 
      (equal_derecurs p1 p2) && (equal_derecurs q1 q2)
  | POptional p1, POptional p2 -> 
      equal_derecurs p1 p2
  | PRecord (o1,r1), PRecord (o2,r2) -> 
      (o1 == o2) && (LabelMap.equal equal_derecurs r1 r2)
  | PCapture x1, PCapture x2 -> 
      Id.equal x1 x2
  | PConstant (x1,c1), PConstant (x2,c2) -> 
315
      (Id.equal x1 x2) && (Types.Const.equal c1 c2)
316
317
  | PRegexp (p1,q1), PRegexp (p2,q2) -> 
      (equal_derecurs_regexp p1 p2) && (equal_derecurs q1 q2)
318
319
  | _ -> false
and equal_derecurs_regexp r1 r2 = match r1,r2 with
320
321
322
323
  | PEpsilon, PEpsilon -> 
      true
  | PElem p1, PElem p2 -> 
      equal_derecurs p1 p2
324
  | PSeq (p1,q1), PSeq (p2,q2) 
325
326
  | PAlt (p1,q1), PAlt (p2,q2) -> 
      (equal_derecurs_regexp p1 p2) && (equal_derecurs_regexp q1 q2)
327
  | PStar p1, PStar p2
328
329
  | PWeakStar p1, PWeakStar p2 -> 
      equal_derecurs_regexp p1 p2
330
  | _ -> false
331

332
333
334
335
336
337
338
339
340
341
342
module DerecursTable = Hashtbl.Make(
  struct 
    type t = derecurs 
    let hash = hash_derecurs
    let equal = equal_derecurs
  end
)

module RE = Hashtbl.Make(
  struct 
    type t = derecurs_regexp * derecurs 
343
344
345
346
    let hash (p,q) = 
      (hash_derecurs_regexp p) + 17 * (hash_derecurs q)
    let equal (p1,q1) (p2,q2) = 
      (equal_derecurs_regexp p1 p2) && (equal_derecurs q1 q2)
347
348
  end
)
349

350
351
352
353
let gen = ref 0
let rank = ref 0
	     
let rec hash_descr = function
354
  | IDummy -> assert false
355
  | IType x -> Types.hash x
356
357
358
359
360
361
362
363
364
  | IOr (d1,d2) -> 1 + 17 * (hash_descr d1) + 257 * (hash_descr d2)
  | IAnd (d1,d2) -> 2 + 17 * (hash_descr d1) + 257 * (hash_descr d2)
  | IDiff (d1,d2) -> 3 + 17 * (hash_descr d1) + 257 * (hash_descr d2)
  | IOptional d -> 4 + 17 * (hash_descr d)
  | ITimes (s1,s2) -> 5 + 17 * (hash_slot s1) + 257 * (hash_slot s2)
  | IXml (s1,s2) -> 6 + 17 * (hash_slot s1) + 257 * (hash_slot s2)
  | IArrow (s1,s2) -> 7 + 17 * (hash_slot s1) + 257 * (hash_slot s2)
  | IRecord (o,r) -> (if o then 8 else 9) + 17 * (LabelMap.hash hash_slot r)
  | ICapture x -> 10 + 17 * (Id.hash x)
365
  | IConstant (x,y) -> 11 + 17 * (Id.hash x) + 257 * (Types.Const.hash y)
366
367
368
369
370
and hash_slot s =
  if s.gen1 = !gen then 13 * s.rank1
  else (
    incr rank;
    s.rank1 <- !rank; s.gen1 <- !gen;
371
    hash_descr s.d
372
373
374
375
  )
    
let rec equal_descr d1 d2 = 
  match (d1,d2) with
376
  | IType x1, IType x2 -> Types.equal x1 x2
377
378
379
380
381
382
383
  | IOr (x1,y1), IOr (x2,y2) 
  | IAnd (x1,y1), IAnd (x2,y2) 
  | IDiff (x1,y1), IDiff (x2,y2) -> (equal_descr x1 x2) && (equal_descr y1 y2)
  | IOptional x1, IOptional x2 -> equal_descr x1 x2
  | ITimes (x1,y1), ITimes (x2,y2) 
  | IXml (x1,y1), IXml (x2,y2) 
  | IArrow (x1,y1), IArrow (x2,y2) -> (equal_slot x1 x2) && (equal_slot y1 y2)
384
385
  | IRecord (o1,r1), IRecord (o2,r2) -> 
      (o1 = o2) && (LabelMap.equal equal_slot r1 r2)
386
  | ICapture x1, ICapture x2 -> Id.equal x1 x2
387
  | IConstant (x1,y1), IConstant (x2,y2) -> 
388
      (Id.equal x1 x2) && (Types.Const.equal y1 y2)
389
390
391
392
393
394
395
396
  | _ -> false
and equal_slot s1 s2 =
  ((s1.gen1 = !gen) && (s2.gen2 = !gen) && (s1.rank1 = s2.rank2))
  ||
  ((s1.gen1 <> !gen) && (s2.gen2 <> !gen) && (
     incr rank;
     s1.rank1 <- !rank; s1.gen1 <- !gen;
     s2.rank2 <- !rank; s2.gen2 <- !gen;
397
     equal_descr s1.d s2.d
398
399
   ))
  
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
module SlotTable = Hashtbl.Make(
  struct
    type t = slot
	
    let hash s =
      match s.hash with
	| Some h -> h
	| None ->
	    incr gen; rank := 0; 
	    let h = hash_slot s in
	    s.hash <- Some h;
	    h
	      
    let equal s1 s2 = 
      (s1 == s2) || 
      (incr gen; rank := 0; 
       let e = equal_slot s1 s2 in
       (*     if e then Printf.eprintf "Recursive hash-consing: Equal\n";  *)
       e)
  end)


let rec derecurs env p = match p.descr with
  | PatVar v ->
      (try PAlias (Env.find v env.penv_derec)
       with Not_found -> 
426
	 try PType (find_type v env.penv_tenv)
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
	 with Not_found -> PCapture v)
  | SchemaVar (kind, schema, item) ->
      PType (derecurs_schema env kind schema item)
  | Recurs (p,b) -> derecurs (derecurs_def env b) p
  | Internal t -> PType t
  | NsT ns -> PType (Types.atom (Atoms.any_in_ns (parse_ns env.penv_tenv p.loc ns)))
  | Or (p1,p2) -> POr (derecurs env p1, derecurs env p2)
  | And (p1,p2) -> PAnd (derecurs env p1, derecurs env p2)
  | Diff (p1,p2) -> PDiff (derecurs env p1, derecurs env p2)
  | Prod (p1,p2) -> PTimes (derecurs env p1, derecurs env p2)
  | XmlT (p1,p2) -> PXml (derecurs env p1, derecurs env p2)
  | Arrow (p1,p2) -> PArrow (derecurs env p1, derecurs env p2)
  | Optional p -> POptional (derecurs env p)
  | Record (o,r) -> PRecord (o, parse_record env.penv_tenv p.loc (derecurs env) r)
  | Constant (x,c) -> PConstant (x,const env.penv_tenv p.loc c)
  | Cst c -> PType (Types.constant (const env.penv_tenv p.loc c))
  | Regexp (r,q) -> 
      let constant_nil t v = 
	PAnd (t, PConstant (v, Types.Atom Sequence.nil_atom)) in
      let vars = seq_vars IdSet.empty r in
      let q = IdSet.fold constant_nil (derecurs env q) vars in
      let r = derecurs_regexp (fun p -> p) env r in
      PRegexp (r, q)
and derecurs_regexp vars env = function
  | Epsilon -> 
      PEpsilon
  | Elem p -> 
      PElem (vars (derecurs env p))
  | Seq (p1,p2) -> 
      PSeq (derecurs_regexp vars env p1, derecurs_regexp vars env p2)
  | Alt (p1,p2) -> 
      PAlt (derecurs_regexp vars env p1, derecurs_regexp vars env p2)
  | Star p -> 
      PStar (derecurs_regexp vars env p)
  | WeakStar p -> 
      PWeakStar (derecurs_regexp vars env p)
  | SeqCapture (x,p) -> 
      derecurs_regexp (fun p -> PAnd (vars p, PCapture x)) env p


and derecurs_def env b =
  let b = List.map (fun (v,p) -> (v,p,mk_derecurs_slot p.loc)) b in
  let n = 
    List.fold_left (fun env (v,p,s) -> Env.add v s env) env.penv_derec b in
  let env = { env with penv_derec = n } in
  List.iter (fun (v,p,s) -> s.pdescr <- derecurs env p) b;
  env

and derecurs_schema env kind schema item =
  let elt () = fst (Hashtbl.find !schema_elements (schema, item)) in
  let typ () = Hashtbl.find !schema_types (schema, item) in
  let att () = Hashtbl.find !schema_attributes (schema, item) in
  let rec do_try n = function
    | [] -> 
	let s = Printf.sprintf 
		  "No %s named '%s' found in schema '%s'" n item schema in
	failwith s
    | f :: rem -> (try f () with Not_found -> do_try n rem)  in
  match kind with
    | `Element -> do_try "element" [ elt ]
    | `Type -> do_try "type" [ typ ]
    | `Attribute -> do_try "atttribute" [ att ]
    | `Any -> do_try "item" [ elt; typ; att ]

    
492
493
494
495
496
let rec fv_slot s =
  match s.fv with
    | Some x -> x
    | None ->
	if s.gen1 = !gen then IdSet.empty 
497
	else (s.gen1 <- !gen; fv_descr s.d)
498
and fv_descr = function
499
  | IDummy -> assert false
500
  | IType _ -> IdSet.empty
501
502
503
504
505
506
507
  | IOr (d1,d2)
  | IAnd (d1,d2)  
  | IDiff (d1,d2) -> IdSet.cup (fv_descr d1) (fv_descr d2)
  | IOptional d -> fv_descr d
  | ITimes (s1,s2)  
  | IXml (s1,s2)  
  | IArrow (s1,s2) -> IdSet.cup (fv_slot s1) (fv_slot s2)
508
509
  | IRecord (o,r) -> 
      List.fold_left IdSet.cup IdSet.empty (LabelMap.map_to_list fv_slot r)
510
  | ICapture x | IConstant (x,_) -> IdSet.singleton x
511

512
513
514
515
516
517
518
519
let compute_fv s =
  match s.fv with
    | Some x -> ()
    | None ->
	incr gen;
	let x = fv_slot s in
	s.fv <- Some x
	  
520
521
522
let check_no_capture loc s =
  match IdSet.pick s with
    | Some x ->  
523
	raise_loc_generic loc ("Unbound type name " ^ (Ident.to_string x))
524
    | None -> ()
525
    
526
527
528
let compile_slot_hash = DerecursTable.create 67
let compile_hash = DerecursTable.create 67

529
530
let todo_defs = ref []
let todo_fv = ref []
531
532
533
534
535
536
537
538

let rec compile p =
  try DerecursTable.find compile_hash p
  with Not_found ->
    let c = real_compile p in
    DerecursTable.replace compile_hash p c;
    c
and real_compile = function
539
  | PDummy -> assert false
540
541
542
543
  | PAlias v ->
      if v.ploop then
	raise_loc_generic v.ploc ("Unguarded recursion on type/pattern");
      v.ploop <- true;
544
      let r = compile v.pdescr in
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
      v.ploop <- false;
      r
  | PType t -> IType t
  | POr (t1,t2) -> IOr (compile t1, compile t2)
  | PAnd (t1,t2) -> IAnd (compile t1, compile t2)
  | PDiff (t1,t2) -> IDiff (compile t1, compile t2)
  | PTimes (t1,t2) -> ITimes (compile_slot t1, compile_slot t2)
  | PXml (t1,t2) -> IXml (compile_slot t1, compile_slot t2)
  | PArrow (t1,t2) -> IArrow (compile_slot t1, compile_slot t2)
  | POptional t -> IOptional (compile t)
  | PRecord (o,r) ->  IRecord (o, LabelMap.map compile_slot r)
  | PConstant (x,v) -> IConstant (x,v)
  | PCapture x -> ICapture x
  | PRegexp (r,q) -> compile_regexp r q
and compile_regexp r q =
  let memo = RE.create 17 in
  let rec aux accu r q =
    if RE.mem memo (r,q) then accu
    else (
      RE.add memo (r,q) ();
      match r with
566
	| PEpsilon ->
567
568
569
	    (match q with 
	       | PRegexp (r,q) -> aux accu r q 
	       | _ -> (compile q) :: accu)
570
571
572
573
574
575
576
577
578
579
580
581
582
	| PElem p -> ITimes (compile_slot p, compile_slot q) :: accu
	| PSeq (r1,r2) -> aux accu r1 (PRegexp (r2,q))
	| PAlt (r1,r2) -> aux (aux accu r1 q) r2 q
	| PStar r1 -> aux (aux accu r1 (PRegexp (r,q))) PEpsilon q
	| PWeakStar r1 -> aux (aux accu PEpsilon q) r1 (PRegexp (r,q))
    )
  in
  let accu = aux [] r q in
  match accu with
    | [] -> assert false
    | p::l -> List.fold_left (fun acc p -> IOr (p,acc)) p l
and compile_slot p =
  try DerecursTable.find compile_slot_hash p
583
  with Not_found ->
584
585
586
    let s = mk_slot () in
    todo_defs := (s,p) :: !todo_defs;
    todo_fv := s :: !todo_fv;
587
    DerecursTable.add compile_slot_hash p s;
588
    s
589

590
      
591
let timer_fv = Stats.Timer.create "Typer.fv"
592
let rec flush_defs () = 
593
594
595
596
  match !todo_defs with
    | [] -> 
	Stats.Timer.start timer_fv;
	List.iter compute_fv !todo_fv;
597
598
	todo_fv := [];
	Stats.Timer.stop timer_fv ()
599
600
601
602
    | (s,p)::t -> 
	todo_defs := t; 
	s.d <- compile p; 
	flush_defs ()
603
604
605
606
607
608
609
610
611
612
613
614
615
616
	
let typ_nodes = SlotTable.create 67
let pat_nodes = SlotTable.create 67
		  
let rec typ = function
  | IType t -> t
  | IOr (s1,s2) -> Types.cup (typ s1) (typ s2)
  | IAnd (s1,s2) ->  Types.cap (typ s1) (typ s2)
  | IDiff (s1,s2) -> Types.diff (typ s1) (typ s2)
  | ITimes (s1,s2) -> Types.times (typ_node s1) (typ_node s2)
  | IXml (s1,s2) -> Types.xml (typ_node s1) (typ_node s2)
  | IArrow (s1,s2) -> Types.arrow (typ_node s1) (typ_node s2)
  | IOptional s -> Types.Record.or_absent (typ s)
  | IRecord (o,r) -> Types.record' (o, LabelMap.map typ_node r)
617
  | IDummy | ICapture _ | IConstant (_,_) -> assert false
618
      
619
and typ_node s : Types.Node.t =
620
621
622
623
  try SlotTable.find typ_nodes s
  with Not_found ->
    let x = Types.make () in
    SlotTable.add typ_nodes s x;
624
    Types.define x (typ s.d);
625
626
627
628
629
630
631
632
    x
      
let rec pat d : Patterns.descr =
  if IdSet.is_empty (fv_descr d)
  then Patterns.constr (typ d)
  else pat_aux d
    
and pat_aux = function
633
  | IDummy -> assert false
634
635
636
637
638
639
  | IOr (s1,s2) -> Patterns.cup (pat s1) (pat s2)
  | IAnd (s1,s2) -> Patterns.cap (pat s1) (pat s2)
  | IDiff (s1,s2) when IdSet.is_empty (fv_descr s2) ->
      let s2 = Types.neg (typ s2) in
      Patterns.cap (pat s1) (Patterns.constr s2)
  | IDiff _ ->
640
      raise (Patterns.Error "Differences are not allowed in patterns")
641
642
643
  | ITimes (s1,s2) -> Patterns.times (pat_node s1) (pat_node s2)
  | IXml (s1,s2) -> Patterns.xml (pat_node s1) (pat_node s2)
  | IOptional _ -> 
644
      raise (Patterns.Error "Optional fields are not allowed in record patterns")
645
646
647
648
649
650
651
652
653
654
655
656
657
658
  | IRecord (o,r) ->
      let pats = ref [] in
      let aux l s = 
	if IdSet.is_empty (fv_slot s) then typ_node s
	else
	  ( pats := Patterns.record l (pat_node s) :: !pats;
	    Types.any_node )
      in
      let constr = Types.record' (o,LabelMap.mapi aux r) in
      List.fold_left Patterns.cap (Patterns.constr constr) !pats
	(* TODO: can avoid constr when o=true, and all fields have fv *)
  | ICapture x -> Patterns.capture x
  | IConstant (x,c) -> Patterns.constant x c
  | IArrow _ ->
659
      raise (Patterns.Error "Arrows are not allowed in patterns")
660
661
662
663
664
665
  | IType _ -> assert false
      
and pat_node s : Patterns.node =
  try SlotTable.find pat_nodes s
  with Not_found ->
    let x = Patterns.make (fv_slot s) in
666
667
    try
      SlotTable.add pat_nodes s x;
668
      Patterns.define x (pat s.d);
669
670
671
      x
    with exn -> SlotTable.remove pat_nodes s; raise exn
      (* For the toplevel ... *)
672

673

674
let type_defs env b =
675
676
  List.iter 
    (fun (v,p) ->
677
678
       if Env.mem v env.ids
       then raise_loc_generic p.loc ("Identifier " ^ (Ident.to_string v) ^ " is already bound")
679
    ) b;
680
681
  let penv = derecurs_def (penv env) b in
  let b = List.map (fun (v,p) -> (v,p,compile (derecurs penv p))) b in
682
683
684
685
  flush_defs ();
  let b = 
    List.map 
      (fun (v,p,s) -> 
686
	 check_no_capture p.loc (fv_descr s);
687
688
689
	 let t = typ s in
	 if (p.loc <> noloc) && (Types.is_empty t) then
	   warning p.loc 
690
	     ("This definition yields an empty type for " ^ (Ident.to_string v));
691
	 (v,t)) b in
692
  List.iter (fun (v,t) -> Types.Print.register_global (Id.value v) t) b;
693
  b
694
695


696
697
698
699
700
let dump_types ppf env =
  Env.iter (fun v -> 
	      function 
		  (Type _) -> Format.fprintf ppf " %a" Ident.print v
		| _ -> ()) env.ids
701

702
703
let dump_ns ppf env =
  Ns.dump_table ppf env.tenv_nspref
704

705

706
707
let do_typ loc r = 
  let s = compile_slot r in
708
  flush_defs ();
709
710
  check_no_capture loc (fv_slot s);
  typ_node s
711
   
712
713
let typ env p =
  do_typ p.loc (derecurs (penv env) p)
714
    
715
716
let pat env p = 
  let s = compile_slot (derecurs (penv env) p) in
717
718
719
  flush_defs ();
  try pat_node s
  with Patterns.Error e -> raise_loc_generic p.loc e
720
    | Location (loc,_,exn) when loc = noloc -> raise (Location (p.loc, `Full, exn))
721
722


723
724
(* II. Build skeleton *)

725

726
727
728
729
730
type type_fun = Types.t -> bool -> Types.t
let mk_unary_op = ref (fun _ _ -> assert false)
let typ_unary_op = ref (fun _ _ _ -> assert false)
let mk_binary_op = ref (fun _ _ -> assert false)
let typ_binary_op = ref (fun _ _ _ _ -> assert false)
731
732


733
module Fv = IdSet
734

735
736
737
type branch = Branch of Typed.branch * branch list

let cur_branch : branch list ref = ref []
738

739
let exp loc fv e =
740
741
  fv,
  { Typed.exp_loc = loc;
742
    Typed.exp_typ = Types.empty;
743
    Typed.exp_descr = e;
744
  }
745
746


747
748
let rec expr env loc = function
  | LocatedExpr (loc,e) -> expr env loc e
749
  | Forget (e,t) ->
750
      let (fv,e) = expr env loc e and t = typ env t in
751
752
753
754
      exp loc fv (Typed.Forget (e,t))
  | Var s -> 
      exp loc (Fv.singleton s) (Typed.Var s)
  | Apply (e1,e2) -> 
755
      let (fv1,e1) = expr env loc e1 and (fv2,e2) = expr env loc e2 in
756
757
      exp loc (Fv.cup fv1 fv2) (Typed.Apply (e1,e2))
  | Abstraction a ->
758
      let iface = List.map (fun (t1,t2) -> (typ env t1, typ env t2)) 
759
760
761
762
763
764
765
		    a.fun_iface in
      let t = List.fold_left 
		(fun accu (t1,t2) -> Types.cap accu (Types.arrow t1 t2)) 
		Types.any iface in
      let iface = List.map 
		    (fun (t1,t2) -> (Types.descr t1, Types.descr t2)) 
		    iface in
766
      let (fv0,body) = branches env a.fun_body in
767
768
769
770
771
772
773
774
775
776
777
      let fv = match a.fun_name with
	| None -> fv0
	| Some f -> Fv.remove f fv0 in
      let e = Typed.Abstraction 
		{ Typed.fun_name = a.fun_name;
		  Typed.fun_iface = iface;
		  Typed.fun_body = body;
		  Typed.fun_typ = t;
		  Typed.fun_fv = fv
		} in
      exp loc fv e
778
  | (Integer _ | Char _ | Atom _) as c -> 
779
      exp loc Fv.empty (Typed.Cst (const env loc c))
780
  | Pair (e1,e2) ->
781
      let (fv1,e1) = expr env loc e1 and (fv2,e2) = expr env loc e2 in
782
783
      exp loc (Fv.cup fv1 fv2) (Typed.Pair (e1,e2))
  | Xml (e1,e2) ->
784
      let (fv1,e1) = expr env loc e1 and (fv2,e2) = expr env loc e2 in
785
786
      exp loc (Fv.cup fv1 fv2) (Typed.Xml (e1,e2))
  | Dot (e,l) ->
787
788
      let (fv,e) = expr env loc e in
      exp loc fv (Typed.Dot (e,parse_label env loc l))
789
  | RemoveField (e,l) ->
790
791
      let (fv,e) = expr env loc e in
      exp loc fv (Typed.RemoveField (e,parse_label env loc l))
792
793
  | RecordLitt r -> 
      let fv = ref Fv.empty in
794
      let r = parse_record env loc
795
		(fun e -> 
796
		   let (fv2,e) = expr env loc e 
797
798
799
		   in fv := Fv.cup !fv fv2; e)
		r in
      exp loc !fv (Typed.RecordLitt r)
800
  | String (i,j,s,e) ->
801
      let (fv,e) = expr env loc e in
802
      exp loc fv (Typed.String (i,j,s,e))
803
  | Op (op,le) ->
804
      let (fvs,ltes) = List.split (List.map (expr env loc) le) in
805
      let fv = List.fold_left Fv.cup Fv.empty fvs in
806
      (try
807
808
809
	 (match ltes with
	    | [e] -> exp loc fv (Typed.UnaryOp (!mk_unary_op op env, e))
	    | [e1;e2] -> exp loc fv (Typed.BinaryOp (!mk_binary_op op env, e1,e2))
810
811
812
	    | _ -> assert false)
       with Not_found -> assert false)

813
  | Match (e,b) -> 
814
815
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
816
      exp loc (Fv.cup fv1 fv2) (Typed.Match (e, b))
817
  | Map (e,b) ->
818
819
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
820
821
      exp loc (Fv.cup fv1 fv2) (Typed.Map (e, b))
  | Transform (e,b) ->
822
823
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
824
      exp loc (Fv.cup fv1 fv2) (Typed.Transform (e, b))
825
  | Xtrans (e,b) ->
826
827
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
828
      exp loc (Fv.cup fv1 fv2) (Typed.Xtrans (e, b))
829
  | Validate (e,schema,elt) ->
830
      let (fv,e) = expr env loc e in
831
      exp loc fv (Typed.Validate (e, schema, elt))
832
  | Try (e,b) ->
833
834
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
835
      exp loc (Fv.cup fv1 fv2) (Typed.Try (e, b))
836
  | NamespaceIn (pr,ns,e) ->
837
838
      let env = enter_ns pr ns env in
      expr env loc e
839
  | Ref (e,t) ->
840
      let (fv,e) = expr env loc e and t = typ env t in
841
      exp loc fv (Typed.Ref (e,t))
842
	      
843
  and branches env b = 
844
    let fv = ref Fv.empty in
845
    let accept = ref Types.empty in
846
    let branch (p,e) = 
847
848
      let cur_br = !cur_branch in
      cur_branch := [];
849
      let (fv2,e) = expr env noloc e in
850
      let br_loc = merge_loc p.loc e.Typed.exp_loc in
851
      let p = pat env p in
852
853
854
855
856
857
      (match Fv.pick (Fv.diff (Patterns.fv p) fv2) with
	| None -> ()
	| Some x ->
	    let x = U.to_string (Id.value x) in
	    warning br_loc 
	      ("The capture variable " ^ x ^ 
858
	       " is declared in the pattern but not used in the body of this branch. It might be a misspelled type or name (if not use _ instead)."));
859
860
861
862
863
864
865
866
867
      let fv2 = Fv.diff fv2 (Patterns.fv p) in
      fv := Fv.cup !fv fv2;
      accept := Types.cup !accept (Types.descr (Patterns.accept p));
      let br = 
	{ 
	  Typed.br_loc = br_loc;
	  Typed.br_used = br_loc = noloc;
	  Typed.br_pat = p;
	  Typed.br_body = e } in
868
      cur_branch := Branch (br, !cur_branch) :: cur_br;
869
870
      br in
    let b = List.map branch b in
871
872
873
874
    (!fv, 
     { 
       Typed.br_typ = Types.empty; 
       Typed.br_branches = b; 
875
876
       Typed.br_accept = !accept;
       Typed.br_compiled = None;
877
878
     } 
    )
879

880
let expr env = expr env noloc
881

882
883
884
let let_decl env p e =
  let (_,e) = expr env e in
  { Typed.let_pat = pat env p;
885
886
887
    Typed.let_body = e;
    Typed.let_compiled = None }

888
889
890

(* Hide global "typing/parsing" environment *)

891

892
893
(* III. Type-checks *)

894
895
open Typed

896
897
let require loc t s = 
  if not (Types.subtype t s) then raise_loc loc (Constraint (t, s))
898

899
let verify loc t s = 
900
901
  require loc t s; t

902
903
904
905
906
let check_str loc ofs t s = 
  if not (Types.subtype t s) then raise_loc_str loc ofs (Constraint (t, s));
  t

let should_have loc constr s = 
907
908
  raise_loc loc (ShouldHave (constr,s))

909
910
911
let should_have_str loc ofs constr s = 
  raise_loc_str loc ofs (ShouldHave (constr,s))

912
913
914
915
916
917
918
919
920
921
922
let flatten loc arg constr precise =
  let constr' = Sequence.star 
		  (Sequence.approx (Types.cap Sequence.any constr)) in
  let sconstr' = Sequence.star constr' in
  let exact = Types.subtype constr' constr in
  if exact then
    let t = arg sconstr' precise in
    if precise then Sequence.flatten t else constr
  else
    let t = arg sconstr' true in
    Sequence.flatten t
923

924
925
let rec type_check env e constr precise = 
  let d = type_check' e.exp_loc env e.exp_descr constr precise in
926
  let d = if precise then d else constr in
927
928
929
  e.exp_typ <- Types.cup e.exp_typ d;
  d

930
and type_check' loc env e constr precise = match e with
931
932
933
  | Forget (e,t) ->
      let t = Types.descr t in
      ignore (type_check env e t false);
934
      verify loc t constr
935

936
  | Abstraction a ->
937
938
939
      let t =
	try Types.Arrow.check_strenghten a.fun_typ constr 
	with Not_found -> 
940
941
	  should_have loc constr
	    "but the interface of the abstraction is not compatible"
942
      in
943
944
      let env = match a.fun_name with
	| None -> env
945
	| Some f -> enter_value f a.fun_typ env in
946
947
      List.iter 
	(fun (t1,t2) ->
948
949
950
	   let acc = a.fun_body.br_accept in 
	   if not (Types.subtype t1 acc) then
	     raise_loc loc (NonExhaustive (Types.diff t1 acc));
951
	   ignore (type_check_branches loc env t1 a.fun_body t2 false)
952
953
	) a.fun_iface;
      t
954

955
956
  | Match (e,b) ->
      let t = type_check env e b.br_accept true in
957
      type_check_branches loc env t b constr precise
958
959
960

  | Try (e,b) ->
      let te = type_check env e constr precise in
961
      let tb = type_check_branches loc env Types.any b constr precise in
962
      Types.cup te tb
963

964
965
  | Pair (e1,e2) ->
      type_check_pair loc env e1 e2 constr precise
966

967
968
  | Xml (e1,e2) ->
      type_check_pair ~kind:`XML loc env e1 e2 constr precise
969

970
  | RecordLitt r ->
971
972
973
974
975
976
977
978
      type_record loc env r constr precise

  | Map (e,b) ->
      type_map loc env false e b constr precise

  | Transform (e,b) ->
      flatten loc (type_map loc env true e b) constr precise

979
980
981
982
  | Apply (e1,e2) ->
      let t1 = type_check env e1 Types.Arrow.any true in
      let t1 = Types.Arrow.get t1 in
      let dom = Types.Arrow.domain t1 in
983
984
985
986
987
988
989
      let res =
	if Types.Arrow.need_arg t1 then
	  let t2 = type_check env e2 dom true in
	  Types.Arrow.apply t1 t2
	else
	  (ignore (type_check env e2 dom false); Types.Arrow.apply_noarg t1)
      in
990
      verify loc res constr
991
992

  | UnaryOp (o,e) ->
993
994
      let t = !typ_unary_op o loc (type_check env e) constr precise in
      verify loc t constr
995
996

  | BinaryOp (o,e1,e2) ->
997
998
999
      let t = !typ_binary_op o loc 
		(type_check env e1) (type_check env e2) constr precise in
      verify loc t constr
1000
1001
1002

  | Var s -> 
      let t = 
1003
	try find_value s env
1004
	with Not_found -> 
1005
	  raise_loc loc (UnboundId (s, Env.mem s env.ids) ) in
1006
      verify loc t constr
1007
1008
      
  | Cst c -> 
1009
      verify loc (Types.constant c) constr
1010

1011
1012
1013
  | String (i,j,s,e) ->
      type_check_string loc env 0 s i j e constr precise

1014
1015
1016
1017
1018
1019
  | Dot (e,l) ->
      let t = type_check env e Types.Record.any true in
      let t = 
        try (Types.Record.project t l) 
        with Not_found -> raise_loc loc (WrongLabel(t,l))
      in
1020
      verify loc t constr
1021
1022
1023
1024

  | RemoveField (e,l) ->
      let t = type_check env e Types.Record.any true in
      let t = Types.Record.remove_field t l in
1025
      verify loc t constr
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035

  | Xtrans (e,b) ->
      let t = type_check env e Sequence.any true in
      let t = 
	Sequence.map_tree 
	  (fun t ->
	     let resid = Types.diff t b.br_accept in
	     let res = type_check_branches loc env t b Sequence.any true in
	     (res,resid)
	  ) t in
1036
      verify loc t constr
1037

1038
1039
1040
  | Validate (e, schema_name, elt_name) ->
      ignore (type_check env e Types.