bool.ml 7.91 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
module type ARG =
sig
    type 'a t
    val dump: Format.formatter -> 'a t -> unit

    val equal: 'a t -> 'a t -> bool
    val hash: 'a t -> int
    val compare: 'a t -> 'a t -> int
end

module type S =
sig
  type 'a elem
  type 'a t

  val dump: Format.formatter -> 'a t -> unit

  val equal : 'a t -> 'a t -> bool
  val compare: 'a t -> 'a t -> int
  val hash: 'a t -> int

  val get: 'a t -> ('a elem list * 'a elem list) list

  val empty : 'a t
  val full  : 'a t
  val cup   : 'a t -> 'a t -> 'a t
  val cap   : 'a t -> 'a t -> 'a t
  val diff  : 'a t -> 'a t -> 'a t
  val atom  : 'a elem -> 'a t

  val iter: ('a elem-> unit) -> 'a t -> unit

  val compute: empty:'b -> full:'b -> cup:('b -> 'b -> 'b) 
    -> cap:('b -> 'b -> 'b) -> diff:('b -> 'b -> 'b) ->
    atom:('a elem -> 'b) -> 'a t -> 'b

  val print: string -> (Format.formatter -> 'a elem -> unit) -> 'a t ->
    (Format.formatter -> unit) list
end

module Make(X : ARG) =
struct
  type 'a elem = 'a X.t
  type 'a t =
    | True
    | False
    | Split of int * 'a elem * 'a t * 'a t * 'a t

  let rec equal a b =
    (a == b) ||
    match (a,b) with
      | Split (h1,x1, p1,i1,n1), Split (h2,x2, p2,i2,n2) ->
	  (h1 == h2) &&
	  (X.equal x1 x2) && (equal p1 p2) & (equal i1 i2) &&
	  (equal n1 n2)
      | _ -> false

  let rec compare a b =
    if (a == b) then 0 
    else match (a,b) with
      | Split (h1,x1, p1,i1,n1), Split (h2,x2, p2,i2,n2) ->
	  if h1 < h2 then -1 else if h1 > h2 then 1 
	  else let c = X.compare x1 x2 in if c <> 0 then c
	  else let c = compare p1 p2 in if c <> 0 then c
	  else let c = compare i1 i2 in if c <> 0 then c 
	  else compare n1 n2
      | True,_  -> -1
      | _, True -> 1
      | False,_ -> -1
      | _,False -> 1
71 72 73


(*
74 75 76 77 78
  let rec hash = function
    | True -> 1
    | False -> 2
    | Split (x, p,i,n) -> 
	(X.hash x) + 17 * (hash p) + 257 * (hash i) + 16637 * (hash n)
79
*)
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
  let rec hash = function
    | True -> 1
    | False -> 0
    | Split(h, _,_,_,_) -> h

  let compute_hash x p i n = 
	(X.hash x) + 17 * (hash p) + 257 * (hash i) + 16637 * (hash n)

  let atom x =
    let h = X.hash x + 17 in (* partial evaluation of compute_hash... *)
    Split (h, x,True,False,False)


  let rec iter f = function
    | Split (_, x, p,i,n) -> f x; iter f p; iter f i; iter f n
    | _ -> ()

(* TODO: precompute hash value for Split node to have fast equality... *)

  let rec dump ppf = function
    | True -> Format.fprintf ppf "+"
    | False -> Format.fprintf ppf "-"
    | Split (_,x, p,i,n) -> 
	Format.fprintf ppf "%a(@[%a,%a,%a@])" 
	X.dump x dump p dump i dump n
105 106


107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
  let rec print f ppf = function
    | True -> Format.fprintf ppf "Any"
    | False -> Format.fprintf ppf "Empty"
    | Split (_, x, p,i, n) ->
	let flag = ref false in
	let b () = if !flag then Format.fprintf ppf " | " else flag := true in
	(match p with 
	   | True -> b(); Format.fprintf ppf "%a" f x
	   | False -> ()
	   | _ -> b (); Format.fprintf ppf "%a & @[(%a)@]" f x (print f) p );
	(match i with 
	   | True -> assert false;
	   | False -> ()
	   | _ -> b(); print f ppf i);
	(match n with 
	   | True -> b (); Format.fprintf ppf "@[~%a@]" f x
	   | False -> ()
	   | _ -> b (); Format.fprintf ppf "@[~%a@] & @[(%a)@]" f x (print f) n)
	
  let print a f = function
    | True -> [ fun ppf -> Format.fprintf ppf "%s" a ]
    | False -> []
    | c -> [ fun ppf -> print f ppf c ]
	
	
  let rec get accu pos neg = function
    | True -> (pos,neg) :: accu
    | False -> accu
    | Split (_,x, p,i,n) ->
	let accu = get accu (x::pos) neg p in
	let accu = get accu pos (x::neg) n in
	let accu = get accu pos neg i in
	accu
	  
  let get x = get [] [] [] x
		
  let compute ~empty ~full ~cup ~cap ~diff ~atom b =
    let rec aux = function
      | True -> full
      | False -> empty
      | Split(_,x, p,i,n) ->
	  let p = cap (atom x) (aux p)
	  and i = aux i
	  and n = diff (aux p) (atom x) in
	  cup (cup p i) n
    in
    aux b
      
(* Invariant: correct hash value *)

  let split x pos ign neg =
    Split (compute_hash x pos ign neg, x, pos, ign, neg)

  let empty = False
  let full = True
162 163 164 165 166 167

(* Invariants:
     Split (x, pos,ign,neg) ==>  (ign <> True);   
     (pos <> False or neg <> False)
*)

168 169 170 171
  let split x pos ign neg =
    if ign = True then True 
    else if (pos = False) && (neg = False) then ign
    else split x pos ign neg
172 173


174 175
(* Invariant:
   - no ``subsumption'
176
*)
177 178 179 180

  let rec simplify a l =
    if (a = False) then False else simpl_aux1 a [] l
  and simpl_aux1 a accu = function
181 182
    | [] -> 
	if accu = [] then a else
183 184 185 186
	  (match a with
	     | True -> True
	     | False -> assert false
	     | Split (_,x,p,i,n) -> simpl_aux2 x p i n [] [] [] accu)
187 188 189
    | False :: l -> simpl_aux1 a accu l
    | True :: l -> False
    | b :: l -> if a == b then False else simpl_aux1 a (b::accu) l
190 191 192 193 194 195 196 197
  and simpl_aux2 x p i n ap ai an = function
    | [] -> split x (simplify p ap) (simplify i ai) (simplify n an)
    | (Split (_,x2,p2,i2,n2) as b) :: l ->
	let c = X.compare x2 x in
	if c < 0 then 
	  simpl_aux3 x p i n ap ai an l i2
	else if c > 0 then 
	  simpl_aux2 x p i n (b :: ap) (b :: ai) (b :: an) l
198
	else
199 200 201 202 203 204 205 206 207 208 209
	  simpl_aux2 x p i n (p2 :: i2 :: ap) (i2 :: ai) (n2 :: i2 :: an) l
    | _ -> assert false
  and simpl_aux3 x p i n ap ai an l = function
    | False -> simpl_aux2 x p i n ap ai an l
    | True -> assert false
    | Split (_,x2,p2,i2,n2) as b ->
	let c = X.compare x2 x in
	if c < 0 then 
	  simpl_aux3 x p i n ap ai an l i2
	else if c > 0 then 
	  simpl_aux2 x p i n (b :: ap) (b :: ai) (b :: an) l
210
	else
211 212 213 214 215 216
	  simpl_aux2 x p i n (p2 :: i2 :: ap) (i2 :: ai) (n2 :: i2 :: an) l
	    
  let split x p i n = 
    split x (simplify p [i]) i (simplify n [i])

  let rec ( ++ ) a b =
217 218
(*    if equal a b then a *)
    if a == b then a  
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
    else match (a,b) with
      | True, _ | _, True -> True
      | False, a | a, False -> a
      | Split (_,x1, p1,i1,n1), Split (_,x2, p2,i2,n2) ->
	  let c = X.compare x1 x2 in
	  if c = 0 then
	    split x1 (p1 ++ p2) (i1 ++ i2) (n1 ++ n2)
	  else if c < 0 then
	    split x1 p1 (i1 ++ b) n1
	  else
	    split x2 p2 (i2 ++ a) n2

(* Pseudo-Invariant:
   - pos <> neg
*)

  let split x pos ign neg =
    if equal pos neg then (neg ++ ign) else split x pos ign neg

(* seems better not to make ++ and this split mutually recursive;
   is the invariant still inforced ? *)

  let rec ( ** ) a b =
242 243
(*    if equal a b then a *)
    if a == b then a 
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
    else match (a,b) with
      | True, a | a, True -> a
      | False, _ | _, False -> False
      | Split (_,x1, p1,i1,n1), Split (_,x2, p2,i2,n2) ->
	  let c = X.compare x1 x2 in
	  if c = 0 then
(*	    split x1 
	      (p1 ** (p2 ++ i2) ++ (p2 ** i1))
	      (i1 ** i2)
	      (n1 ** (n2 ++ i2) ++ (n2 ** i1))
*)
	    split x1 
	      ((p1 ++ i1) ** (p2 ++ i2))
	      False
	      ((n1 ++ i1) ** (n2 ++ i2))
	  else if c < 0 then
	    split x1 (p1 ** b) (i1 ** b) (n1 ** b)
	  else
	    split x2 (p2 ** a) (i2 ** a) (n2 ** a)

  let rec neg = function
    | True -> False
    | False -> True
(*    | Split (_,x, p,i,False) -> split x False (neg (i ++ p)) (neg i)
    | Split (_,x, False,i,n) -> split x (neg i) (neg (i ++ n)) False 
    | Split (_,x, p,False,n) -> split x (neg p) (neg (p ++ n)) (neg n)  *)
    | Split (_,x, p,i,n) -> split x (neg (i ++ p)) False (neg (i ++ n))
	      
  let rec ( // ) a b =  
273
(*    if equal a b then False *)
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
    if a == b then False
    else match (a,b) with
      | False,_ | _, True -> False
      | a, False -> a
      | True, b -> neg b
      | Split (_,x1, p1,i1,n1), Split (_,x2, p2,i2,n2) ->
	  let c = X.compare x1 x2 in
	  if c = 0 then
	    split x1
	      ((p1 ++ i1) // (p2 ++ i2))
	      False
	      ((n1 ++ i1) // (n2 ++ i2))
	  else if c < 0 then
	    split x1 (p1 // b) (i1 // b) (n1 // b)
(*	    split x1 ((p1 ++ i1)// b) False ((n1 ++i1) // b)  *)
	  else
	    split x2 (a // (i2 ++ p2)) False (a // (i2 ++ n2))
	      

  let cup = ( ++ )
  let cap = ( ** )
  let diff = ( // )

  let diff x y =
(*    let d = diff x y in
    Format.fprintf Format.std_formatter "X = %a@\nY = %a@\nX\\Z = %a@\n"
      dump x dump y dump d;  *)
    diff x y
end