schema_common.ml 13.9 KB
Newer Older
1
2
open Printf

3
open Encodings
4
open Schema_pcre
5
6
open Schema_types

7
8
let xsd = Schema_xml.xsd

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
let no_facets = {
  length = None;
  minLength = None;
  maxLength = None;
(*   pattern = []; *)
  enumeration = None;
  whiteSpace = `Collapse, true;
  maxInclusive = None;
  maxExclusive = None;
  minInclusive = None;
  minExclusive = None;
(*
  totalDigits = None;
  fractionDigits = None;
*)
}

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
(** naive implementation: doesn't follow XML Schema constraints on facets
 * merging. Here all new facets override old ones *)
let merge_facets old_facets new_facets =
  let maxInclusive, maxExclusive =
    match new_facets.maxInclusive, new_facets.maxExclusive with
    | None, None -> old_facets.maxInclusive, old_facets.maxExclusive
    | Some _, Some _ -> assert false
    | v -> v
  in
  let minInclusive, minExclusive =
    match new_facets.minInclusive, new_facets.minExclusive with
    | None, None -> old_facets.minInclusive, old_facets.minExclusive
    | Some _, Some _ -> assert false
    | v -> v
  in
  { old_facets with
      length =
        (match new_facets.length with
        | None -> old_facets.length
        | v -> v);
      minLength =
        (match new_facets.minLength with
        | None -> old_facets.minLength
        | v -> v);
      maxLength =
        (match new_facets.maxLength with
        | None -> old_facets.maxLength
        | v -> v);
      enumeration =
        (match new_facets.enumeration with
        | None -> old_facets.enumeration
        | v -> v);
      whiteSpace = new_facets.whiteSpace;
      maxInclusive = maxInclusive;
      maxExclusive = maxExclusive;
      minInclusive = minInclusive;
      minExclusive = minExclusive;
  }

let rec facets_of_simple_type_definition = function
  | Primitive _ -> no_facets
  | Derived (_, _, facets, _) -> facets

let rec variety_of_simple_type_definition = function
70
  | (Primitive name) as st -> Atomic (lazy (Simple st))
71
72
73
  | Derived (_, variety, _, _) -> variety


74
75
76
let get_simple_type c = match Lazy.force c with
  | Simple c -> c
  | AnyType -> Primitive (xsd,Utf8.mk "anySimpleType")
77
78
79
80
81
82
83
84
  | _ -> assert false

let rec normalize_simple_type = function
  | Derived (name, Restrict, new_facets, base) ->
      (match normalize_simple_type (get_simple_type base) with
	 | Derived (_,variety,old_facets,base) ->
	     Derived (name,variety,merge_facets old_facets new_facets,base)
	 | Primitive _ as st ->
85
	     let b = lazy (Simple st) in
86
	     Derived (name,Atomic b,new_facets,b))
87
  | st -> st
88
	 
89
let name_of_element_declaration elt = elt.elt_name
90
91
92
93
94
let name_of_simple_type_definition = function
  | Primitive name -> name
  | Derived (Some name, _, _, _) -> name
  | _ -> raise (Invalid_argument "anonymous simple type definition")
let name_of_complex_type_definition = function
95
  | { ct_name = Some name } -> name
96
97
  | _ -> raise (Invalid_argument "anonymous complex type definition")
let name_of_type_definition = function
98
  | AnyType -> (xsd, Utf8.mk "anyType")
99
100
  | Simple st -> name_of_simple_type_definition st
  | Complex ct -> name_of_complex_type_definition ct
101
102
103
104
let name_of_attribute_declaration a = a.attr_name
let name_of_attribute_use { attr_decl = { attr_name = name } } = name
let name_of_attribute_group_definition ag = ag.ag_name
let name_of_model_group_definition mg = mg.mg_name
105
let name_of_particle = function
106
  | { part_term = Elt e } ->  name_of_element_declaration e
107
  | _ -> assert false
108
let variety_of_simple_type_definition = function
109
  | (Primitive name) as st -> Atomic (lazy (Simple st))
110
111
112
113
114
115
116
117
118
  | Derived (_, variety, _, _) -> variety
let simple_type_of_type = function
  | Simple s -> s
  | _ -> raise (Invalid_argument "simple_type_of_type")
let complex_type_of_type = function
  | Complex c -> c
  | _ -> raise (Invalid_argument "complex_type_of_type")
let content_type_of_type = function
  | AnyType -> assert false
119
  | Complex { ct_content = ct } -> ct
120
  | Simple st -> CT_simple (lazy (Simple st))
121
122
123
124
125
126
127
128

let iter_types schema f = List.iter f schema.types
let iter_attributes schema f = List.iter f schema.attributes
let iter_elements schema f = List.iter f schema.elements
let iter_attribute_groups schema f = List.iter f schema.attribute_groups
let iter_model_groups schema f = List.iter f schema.model_groups

exception XSD_validation_error of string
129
exception XSI_validation_error of string
130
131

let rec normalize_white_space =
132
133
134
  let ws_RE = pcre_regexp "[\t\r\n]" in
  let spaces_RE = pcre_regexp "[ ]+" in
  let margins_RE = pcre_regexp "^ (.*) $" in
135
136
137
  fun handling s ->
  match handling with
  | `Preserve -> s
138
  | `Replace -> pcre_replace ~rex:ws_RE ~templ:(Utf8.mk " ") s
139
140
  | `Collapse ->
      let s' =
141
        pcre_replace ~rex:spaces_RE ~templ:(Utf8.mk " ")
142
143
          (normalize_white_space `Replace s)
      in
144
      pcre_replace ~rex:margins_RE ~templ:(Utf8.mk "$1") s'
145

146
let anySimpleType = Primitive (xsd, Utf8.mk "anySimpleType")
147
148
let anyType = AnyType

149
150
151
let first_of_particle p = p.part_first
let nullable p = p.part_nullable

152
153
154
155
156
157
158
159
160
161
let first_of_model_group = function
  | All particles | Choice particles ->
      List.concat (List.map first_of_particle particles)
  | Sequence particles ->
      let rec aux = function
        | hd :: tl when nullable hd -> (first_of_particle hd) @ (aux tl)
        | hd :: tl -> first_of_particle hd
        | [] -> []
      in
      aux particles
162
163
164
165
166

let nullable_of_model_group = function
  | All particles | Sequence particles -> List.for_all nullable particles
  | Choice particles -> List.exists nullable particles

167

168
169
170
171
172
173
174
let get_interval facets =
  (* ASSUMPTION:
   *  not (facets.minInclusive = Some _ && facets.minExclusive = Some _)
   *  not (facets.maxInclusive = Some _ && facets.maxExclusive = Some _)
   *  Value.t is an integer! (no other intervals are actually supported
   *  by the CDuce type system)
  *)
175
  let getint f = Value.get_integer (Lazy.force f) in
176
177
  let min =
    match facets.minInclusive, facets.minExclusive with
178
179
    | Some (i, _), None -> Some (getint i)
    | None, Some (i, _) -> Some (Intervals.V.succ (getint i))
180
181
182
183
184
    | None, None -> None
    | _ -> assert false
  in
  let max =
    match facets.maxInclusive, facets.maxExclusive with
185
186
    | Some (i, _), None -> Some (getint i)
    | None, Some (i, _) -> Some (Intervals.V.pred (getint i))
187
188
189
190
191
192
193
194
195
    | None, None -> None
    | _ -> assert false
  in
  match min, max with
  | Some min, Some max -> Intervals.bounded min max
  | Some min, None -> Intervals.right min
  | None, Some max -> Intervals.left max
  | None, None -> Intervals.any

196

197
let print_simple_type fmt = function
198
  | Primitive name -> Format.fprintf fmt "%a" Ns.QName.print name
199
  | Derived (Some name, _, _, _) ->
200
201
      Format.fprintf fmt "%a'" Ns.QName.print name
  | Derived (None, _, _, _) -> Format.fprintf fmt "unnamed"
202
let print_complex_type fmt = function
203
  | { ct_uid = id; ct_name = Some name } ->
204
      Format.fprintf fmt "%d:%a" id Ns.QName.print name
205
206
  | { ct_uid = id } -> 
      Format.fprintf fmt "%d:unnamed'" id
207
208
209
210
let print_type fmt = function
  | AnyType -> Format.fprintf fmt "xsd:anyType"
  | Simple t -> Format.fprintf fmt "S:%a" print_simple_type t
  | Complex t -> Format.fprintf fmt "C:%a" print_complex_type t
211
let print_attribute fmt { attr_name = name; attr_typdef = t } =
212
  Format.fprintf fmt "@@%a:%a" Ns.QName.print name print_simple_type 
213
    (get_simple_type t)
214
let print_element fmt { elt_uid = id; elt_name = name } =
215
  Format.fprintf fmt "E:%d:<%a>" id Ns.QName.print name
216
let print_attributes fmt = List.iter (Format.fprintf fmt "%a" print_attribute)
217
let print_attribute_group fmt ag =
218
  Format.fprintf fmt "{agroup:%a}" Ns.QName.print ag.ag_name
219
let print_model_group_def fmt mg =
220
  Format.fprintf fmt "{mgroup:%a}" Ns.QName.print mg.mg_name
221
222
let print_schema fmt schema =
  let defined_types = (* filter out built-in types *)
223
224
225
    List.filter (fun t -> 
		   let (ns,_) = name_of_type_definition t in
		   not (Ns.equal ns xsd)) schema.types
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
  in
  if defined_types <> [] then begin
    Format.fprintf fmt "Types: ";
    List.iter (fun c -> print_type fmt c; Format.fprintf fmt " ")
      defined_types;
    Format.fprintf fmt "\n"
  end;
  if schema.attributes <> [] then begin
    Format.fprintf fmt "Attributes: ";
    List.iter (fun c -> print_attribute fmt c; Format.fprintf fmt " ")
      schema.attributes;
    Format.fprintf fmt "\n"
  end;
  if schema.elements <> [] then begin
    Format.fprintf fmt "Elements: ";
    List.iter (fun c -> print_element fmt c; Format.fprintf fmt " ")
      schema.elements;
    Format.fprintf fmt "\n"
  end;
  if schema.attribute_groups <> [] then begin
    Format.fprintf fmt "Attribute groups: ";
    List.iter (fun c -> print_attribute_group fmt c; Format.fprintf fmt " ")
      schema.attribute_groups;
    Format.fprintf fmt "\n"
  end;
  if schema.model_groups <> [] then begin
    Format.fprintf fmt "Model groups: ";
253
    List.iter (fun c -> print_model_group_def fmt c; Format.fprintf fmt " ")
254
255
256
257
258
      schema.model_groups;
    Format.fprintf fmt "\n"
  end


259
let get_qual name table get_name =
260
261
  List.find
    (fun x ->
262
      try Ns.QName.equal (get_name x) name
263
      with Invalid_argument _ -> false)
264
265
266
267
268
    table

let get_type name schema = get_qual name schema.types name_of_type_definition 
let get_attribute name schema =
  get_qual name schema.attributes name_of_attribute_declaration
269
let get_element name schema =
270
  get_qual name schema.elements name_of_element_declaration
271
let get_attribute_group name schema =
272
  get_qual name schema.attribute_groups name_of_attribute_group_definition
273
let get_model_group name schema =
274
  get_qual name schema.model_groups name_of_model_group_definition
275
276
277
278
279
280
281
282
283
284
285
286
287

  (* policy for unqualified schema component resolution. The order should
   * be consistent with Typer.find_schema_descr *)
let get_component kind name schema =
  let rec tries = function
    | [] -> raise Not_found
    | hd :: tl -> (try hd () with Not_found -> tries tl)
  in
  let elt () = Element (get_element name schema) in
  let typ () = Type (get_type name schema) in
  let att () = Attribute (get_attribute name schema) in
  let att_group () = Attribute_group (get_attribute_group name schema) in
  let mod_group () = Model_group (get_model_group name schema) in
288
289
290
291
292
293
294
295
  match kind with
  | Some `Element -> elt ()
  | Some `Type -> typ ()
  | Some `Attribute -> att ()
  | Some `Attribute_group -> att_group ()
  | Some `Model_group -> mod_group ()
  | None -> tries [ elt; typ; att; att_group; mod_group ]

296
297
298
299
300
301
302
303
304
let string_of_component_kind (kind: component_kind) =
  match kind with
  | Some `Type -> "type"
  | Some `Element -> "element"
  | Some `Attribute -> "attribute"
  | Some `Attribute_group -> "attribute group"
  | Some `Model_group -> "model group"
  | None -> "component"

305
306
307
308
309
310
311
312
313
314
315
(** Events *)

type to_be_visited =
  | Fully of Value.t  (* xml values still to be visited *)
  | Half of Value.t   (* xml values half visited (i.e. E_start_tag generated) *)
  | Other of Encodings.Utf8.t (* other values *)
  | Backlog of event  (* old events not yet delivered *)

let stream_of_value v =
  let stack = ref [Fully v] in
  let f _ = (* lazy visit of a tree of CDuce XML values, stack keeps track of
316
            what has still to be visited *)
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
    match !stack with
    | (Fully ((Value.Xml (Value.Atom atom, attrs, _)) as v)) :: tl ->
        stack := (Half v) :: tl;
        let children = ref [] in  (* TODO inefficient *)
        let push v s = (s := v :: !s) in
        Value.iter_xml
          (fun pcdata -> push (Other pcdata) children)
          (fun v ->
            match v with
            | (Value.Xml (_, _, _)) as v -> push (Fully v) children
            | v -> raise (Invalid_argument "Schema_events.stream_of_value"))
          v;
        stack := (List.rev !children) @ !stack;
        List.iter (* push attributes as events on the stack *)
          (fun (qname, v) ->
            push (Backlog (E_attribute (qname, fst (Value.get_string_utf8 v))))
              stack)
          (Value.get_fields attrs);
        Some (E_start_tag (Atoms.V.value atom))
    | (Half (Value.Xml (Value.Atom atom, _, _))) :: tl ->
        stack := tl;
        Some (E_end_tag (Atoms.V.value atom))
    | (Fully (Value.Xml (_, _, _)))::_ | (Half (Value.Xml (_, _, _)))::_ ->
        failwith "Schema_xml.pxp_stream_of_value: non-atom-tag xml value"
    | (Backlog ev) :: tl -> (* consume backlog *)
        stack := tl;
        Some ev
    | (Other v) :: tl ->
        stack := tl;
        Some (E_char_data v)
    | [] -> None
348
349
    | _ -> 
	failwith "Non XML element"
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
  in
  Stream.from f

let string_of_event = function
  | E_start_tag qname -> sprintf "<%s>" (Ns.QName.to_string qname)
  | E_end_tag qname -> sprintf "</%s>" (Ns.QName.to_string qname)
  | E_attribute (qname, value) ->
      sprintf "@%s=%s" (Ns.QName.to_string qname) (Utf8.to_string value)
  | E_char_data value -> Utf8.to_string value

(*
let test v =
  let s = stream_of_value v in
  let rec aux () =
    (match Stream.peek s with
    | None -> ()
    | Some (E_start_tag qname) ->
        Ns.QName.print Format.std_formatter qname
    | Some (E_end_tag qname) ->
        Format.fprintf Format.std_formatter "/";
        Ns.QName.print Format.std_formatter qname
    | Some (E_attribute (qname, value)) ->
        Format.fprintf Format.std_formatter "@@";
        Ns.QName.print Format.std_formatter qname;
        Format.fprintf Format.std_formatter " ";
        Encodings.Utf8.print Format.std_formatter value
    | Some (E_char_data value) ->
        Encodings.Utf8.print Format.std_formatter value);
    Format.fprintf Format.std_formatter "\n";
    (match Stream.peek s with
    | None -> ()
    | _ ->
      Stream.junk s;
      aux ())
  in
  aux ()
*)
387

388
389
390
391
392
393
394
395
396

let rec print_model_group ppf = function
  | All pl -> Format.fprintf ppf "All(%a)" print_particle_list pl
  | Choice pl -> Format.fprintf ppf "Choice(%a)" print_particle_list pl
  | Sequence pl -> Format.fprintf ppf "Sequence(%a)" print_particle_list pl
and print_particle_list ppf = function
  | [] -> ()
  | [p] -> print_particle ppf p
  | hd::tl -> Format.fprintf ppf "%a;%a" print_particle hd print_particle_list tl
397
398
and print_particle ppf p =
  print_term ppf p.part_term
399
and print_term ppf = function
400
  | Elt e -> Format.fprintf ppf "E%i" e.elt_uid
401
  | Model m -> print_model_group ppf m