patterns.ml 46.2 KB
Newer Older
1
exception Error of string
2
open Ident
3

4
5
6
(*
To be sure not to use generic comparison ...
*)
7
8
9
10
11
12
let (=) : int -> int -> bool = (==)
let (<) : int -> int -> bool = (<)
let (<=) : int -> int -> bool = (<=)
let (<>) : int -> int -> bool = (<>)
let compare = 1

13

14
(* Syntactic algebra *)
15
(* Constraint: any node except Constr has fv<>[] ... *)
16
type d =
17
  | Constr of Types.t
18
  | Cup of descr * descr
19
  | Cap of descr * descr
20
  | Times of node * node
21
  | Xml of node * node
22
  | Record of label * node
23
24
  | Capture of id
  | Constant of id * Types.const
25
  | Dummy
26
27
and node = {
  id : int;
28
  mutable descr : descr;
29
  accept : Types.Node.t;
30
  fv : fv
31
32
33
} and descr = Types.t * fv * d


34

35
let id x = x.id
36
let descr x = x.descr
37
38
let fv x = x.fv
let accept x = Types.internalize x.accept
39
40
41

let printed = ref []
let to_print = ref []
42
let rec print ppf (a,_,d) = 
43
  match d with
44
    | Constr t -> Types.Print.print ppf t
45
46
47
48
49
50
51
52
53
    | Cup (p1,p2) -> Format.fprintf ppf "(%a | %a)" print p1 print p2
    | Cap (p1,p2) -> Format.fprintf ppf "(%a & %a)" print p1 print p2
    | Times (n1,n2) -> 
	Format.fprintf ppf "(P%i,P%i)" n1.id n2.id;
	to_print := n1 :: n2 :: !to_print
    | Xml (n1,n2) -> 
	Format.fprintf ppf "XML(P%i,P%i)" n1.id n2.id;
	to_print := n1 :: n2 :: !to_print
    | Record (l,n) -> 
54
	Format.fprintf ppf "{ %a =  P%i }" Label.print (LabelPool.value l) n.id;
55
56
	to_print := n :: !to_print
    | Capture x ->
57
	Format.fprintf ppf "%a" U.print (Id.value x)
58
    | Constant (x,c) ->
59
	Format.fprintf ppf "(%a := %a)" U.print (Id.value x) 
60
	  Types.Print.print_const c
61
62
    | Dummy ->
	Format.fprintf ppf "*DUMMY*"
63

64
let dump_print ppf =
65
  while !to_print != [] do
66
67
68
69
70
71
72
73
74
75
76
    let p = List.hd !to_print in
    to_print := List.tl !to_print;
    if not (List.mem p.id !printed) then
      ( printed := p.id :: !printed;
	Format.fprintf ppf "P%i:=%a\n" p.id print (descr p)
      )
  done

let print ppf d =
  Format.fprintf ppf "%a@\n" print d;
  dump_print ppf
77

78
79
80
81
82
let print_node ppf n =
  Format.fprintf ppf "P%i" n.id;
  to_print := n :: !to_print;
  dump_print ppf

83

84
85
let counter = State.ref "Patterns.counter" 0

86
let dummy = (Types.empty,IdSet.empty,Dummy)
87
88
let make fv =
  incr counter;
89
  { id = !counter; descr = dummy; accept = Types.make (); fv = fv }
90
91

let define x ((accept,fv,_) as d) =
92
  (* assert (x.fv = fv); *)
93
  Types.define x.accept accept;
94
  x.descr <- d
95

96
let constr x = (x,IdSet.empty,Constr x)
97
let cup ((acc1,fv1,_) as x1) ((acc2,fv2,_) as x2) = 
98
99
100
101
102
  if not (IdSet.equal fv1 fv2) then (
    let x = match IdSet.pick (IdSet.diff fv1 fv2) with
      | Some x -> x
      | None -> match IdSet.pick (IdSet.diff fv2 fv1) with Some x -> x 
	  | None -> assert false
103
104
105
    in
    raise 
      (Error 
106
	 ("The capture variable " ^ (U.to_string (Id.value x)) ^ 
107
108
	  " should appear on both side of this | pattern"))
  );
109
  (Types.cup acc1 acc2, IdSet.cup fv1 fv2, Cup (x1,x2))
110
let cap ((acc1,fv1,_) as x1) ((acc2,fv2,_) as x2) = 
111
112
113
  if not (IdSet.disjoint fv1 fv2) then (
    match IdSet.pick (IdSet.cap fv1 fv2) with
      | Some x -> 
114
115
	  raise 
	  (Error 
116
	     ("The capture variable " ^ (U.to_string (Id.value x)) ^ 
117
	      " cannot appear on both side of this & pattern"))
118
      | None -> assert false
119
  );
120
  (Types.cap acc1 acc2, IdSet.cup fv1 fv2, Cap (x1,x2))
121
let times x y =
122
  (Types.times x.accept y.accept, IdSet.cup x.fv y.fv, Times (x,y))
123
let xml x y =
124
  (Types.xml x.accept y.accept, IdSet.cup x.fv y.fv, Xml (x,y))
125
let record l x = 
126
  (Types.record l x.accept, x.fv, Record (l,x))
127
128
let capture x = (Types.any, IdSet.singleton x, Capture x)
let constant x c = (Types.any, IdSet.singleton x, Constant (x,c))
129

130

131
132
133
134
135
136
module Node = struct
  type t = node
  let compare n1 n2 = n1.id - n2.id
  let equal n1 n2 = n1.id == n2.id
  let hash n = n.id

137
  let check n = ()
138
  let dump = print_node
139

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

  module SMemo = Set.Make(Custom.Int)
  let memo = Serialize.Put.mk_property (fun t -> ref SMemo.empty)
  let rec serialize t n = 
    let l = Serialize.Put.get_property memo t in
    Serialize.Put.int t n.id;
    if not (SMemo.mem n.id !l) then (
      l := SMemo.add n.id !l;
      Types.Node.serialize t n.accept;
      IdSet.serialize t n.fv;
      serialize_descr t n.descr
    )
  and serialize_descr s (_,_,d) =
    serialize_d s d
  and serialize_d s = function
    | Constr t ->
	Serialize.Put.bits 3 s 0;
	Types.serialize s t
    | Cup (p1,p2) ->
	Serialize.Put.bits 3 s 1;
	serialize_descr s p1; 
	serialize_descr s p2
    | Cap (p1,p2) ->
	Serialize.Put.bits 3 s 2;
	serialize_descr s p1; 
	serialize_descr s p2
    | Times (p1,p2) ->
	Serialize.Put.bits 3 s 3;
	serialize s p1;
	serialize s p2
    | Xml (p1,p2) ->
	Serialize.Put.bits 3 s 4;
	serialize s p1;
	serialize s p2
    | Record (l,p) ->
	Serialize.Put.bits 3 s 5;
	LabelPool.serialize s l;
	serialize s p
    | Capture x ->
	Serialize.Put.bits 3 s 6;
	Id.serialize s x
    | Constant (x,c) ->
	Serialize.Put.bits 3 s 7;
	Id.serialize s x;
	Types.Const.serialize s c
    | Dummy -> assert false

  module DMemo = Map.Make(Custom.Int)
  let memo = Serialize.Get.mk_property (fun t -> ref DMemo.empty)
  let rec deserialize t = 
    let l = Serialize.Get.get_property memo t in
    let id = Serialize.Get.int t in
    try DMemo.find id !l
    with Not_found ->
      let accept = Types.Node.deserialize t in
      let fv = IdSet.deserialize t in
      incr counter;
197
      let n = { id = !counter; descr = dummy; accept = accept; fv = fv } in
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
      l := DMemo.add id n !l;
      n.descr <- deserialize_descr t;
      n
  and deserialize_descr s =
    match Serialize.Get.bits 3 s with
      | 0 -> constr (Types.deserialize s)
      | 1 ->
	  (* Avoid unnecessary tests *)
	  let (acc1,fv1,_) as x1 = deserialize_descr s in
	  let (acc2,fv2,_) as x2 = deserialize_descr s in
	  (Types.cup acc1 acc2, IdSet.cup fv1 fv2, Cup (x1,x2))
      | 2 ->
	  let (acc1,fv1,_) as x1 = deserialize_descr s in
	  let (acc2,fv2,_) as x2 = deserialize_descr s in
	  (Types.cap acc1 acc2, IdSet.cup fv1 fv2, Cap (x1,x2))
      | 3 ->
	  let x = deserialize s in
	  let y = deserialize s in
	  times x y
      | 4 ->
	  let x = deserialize s in
	  let y = deserialize s in
	  xml x y
      | 5 ->
	  let l = LabelPool.deserialize s in
	  let x = deserialize s in
	  record l x
      | 6 -> capture (Id.deserialize s)
      | 7 ->
	  let x = Id.deserialize s in
	  let c = Types.Const.deserialize s in
	  constant x c
      | _ -> assert false


end
234

235
236
(* Pretty-print *)

237
module Pat = struct
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
  type t = descr
  let rec compare (t1,fv1,d1) (t2,fv2,d2) = if d1 == d2 then 0 else
    match (d1,d2) with
      | Constr t1, Constr t2 -> Types.compare t1 t2
      | Constr _, _ -> -1 | _, Constr _ -> 1

      | Cup (x1,y1), Cup (x2,y2) | Cap (x1,y1), Cap (x2,y2) ->
	  let c = compare x1 x2 in if c <> 0 then c 
	  else compare y1 y2
      | Cup _, _ -> -1 | _, Cup _ -> 1
      | Cap _, _ -> -1 | _, Cap _ -> 1

      | Times (x1,y1), Times (x2,y2) | Xml (x1,y1), Xml (x2,y2) ->
	  let c = Node.compare x1 x2 in if c <> 0 then c
	  else Node.compare y1 y2
      | Times _, _ -> -1 | _, Times _ -> 1
      | Xml _, _ -> -1 | _, Xml _ -> 1

      | Record (x1,y1), Record (x2,y2) ->
	  let c = LabelPool.compare x1 x2 in if c <> 0 then c
	  else Node.compare y1 y2
      | Record _, _ -> -1 | _, Record _ -> 1

      | Capture x1, Capture x2 ->
	  Id.compare x1 x2
      | Capture _, _ -> -1 | _, Capture _ -> 1

      | Constant (x1,y1), Constant (x2,y2) ->
	  let c = Id.compare x1 x2 in if c <> 0 then c
	  else Types.Const.compare y1 y2
      | Constant _, _ -> -1 | _, Constant _ -> 1

      | Dummy, Dummy -> assert false
end

module Print = struct
274
275
  module M = Map.Make(Pat)
  module S = Set.Make(Pat)
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341

  let names = ref M.empty
  let printed = ref S.empty
  let toprint = Queue.create ()
  let id = ref 0

  let rec mark seen ((_,_,d) as p) =
    if (M.mem p !names) then ()
    else if (S.mem p seen) then
      (incr id;
       names := M.add p !id !names;
       Queue.add p toprint)
    else 
      let seen = S.add p seen in
      match d with
	| Cup (p1,p2) | Cap (p1,p2) -> mark seen p1; mark seen p2
	| Times (q1,q2) | Xml (q1,q2) -> mark seen q1.descr; mark seen q2.descr
	| Record (_,q) -> mark seen q.descr
	| _ -> ()

  let rec print ppf p =
    try 
      let i = M.find p !names in
      Format.fprintf ppf "P%i" i
    with Not_found ->
      real_print ppf p
  and real_print ppf (_,_,d) =  match d with
    | Constr t ->
	Types.Print.print ppf t
    | Cup (p1,p2) ->
	Format.fprintf ppf "(%a | %a)" print p1 print p2
    | Cap (p1,p2) ->
	Format.fprintf ppf "(%a & %a)" print p1 print p2
    | Times (q1,q2) ->
	Format.fprintf ppf "(%a,%a)" print q1.descr print q2.descr
    | Xml (q1,{ descr = (_,_,Times(q2,q3)) }) ->
	Format.fprintf ppf "<(%a) (%a)>(%a)" print q1.descr print q2.descr print q2.descr
    | Xml _ -> assert false
    | Record (l,q) ->
	Format.fprintf ppf "{%a=%a}" Label.print (LabelPool.value l) print q.descr
    | Capture x ->
	Format.fprintf ppf "%a" Ident.print x
    | Constant (x,c) ->
	Format.fprintf ppf "(%a:=%a)" Ident.print x Types.Print.print_const c
    | Dummy -> assert false
      
  let print ppf p =
    mark S.empty p;
    print ppf p;
    let first = ref true in
    (try while true do
       let p = Queue.pop toprint in
       if not (S.mem p !printed) then 
	 ( printed := S.add p !printed;
	   Format.fprintf ppf " %s@ @[%a=%a@]"
	     (if !first then (first := false; "where") else "and")
	     print p
	     real_print p
	);
     done with Queue.Empty -> ());
    id := 0;
    names := M.empty;
    printed := S.empty
end


342
343
344
345

(* Static semantics *)

let cup_res v1 v2 = Types.Positive.cup [v1;v2]
346
let empty_res fv = IdMap.constant (Types.Positive.ty Types.empty) fv
347
348
let times_res v1 v2 = Types.Positive.times v1 v2

349
(* Try with a hash-table *)
350
module MemoFilter = Map.Make 
351
  (struct 
352
     type t = Types.t * node 
353
354
     let compare (t1,n1) (t2,n2) = 
       if n1.id < n2.id then -1 else if n1.id > n2.id then 1 else
355
       Types.compare t1 t2
356
   end)
357
358
359

let memo_filter = ref MemoFilter.empty

360
let rec filter_descr t (_,fv,d) : Types.Positive.v id_map =
361
(* TODO: avoid is_empty t when t is not changing (Cap) *)
362
363
364
365
  if Types.is_empty t 
  then empty_res fv
  else
    match d with
366
      | Constr _ -> IdMap.empty
367
      | Cup ((a,_,_) as d1,d2) ->
368
	  IdMap.merge cup_res
369
370
	    (filter_descr (Types.cap t a) d1)
	    (filter_descr (Types.diff t a) d2)
371
      | Cap (d1,d2) ->
372
	  IdMap.merge cup_res (filter_descr t d1) (filter_descr t d2)
373
374
      | Times (p1,p2) -> filter_prod fv p1 p2 t
      | Xml (p1,p2) -> filter_prod ~kind:`XML fv p1 p2 t
375
376
377
      | Record (l,p) ->
	  filter_node (Types.Record.project t l) p
      | Capture c ->
378
	  IdMap.singleton c (Types.Positive.ty t)
379
      | Constant (c, cst) ->
380
	  IdMap.singleton c (Types.Positive.ty (Types.constant cst))
381
      | Dummy -> assert false
382

383
384
385
386
and filter_prod ?kind fv p1 p2 t =
  List.fold_left 
    (fun accu (d1,d2) ->
       let term = 
387
	 IdMap.merge times_res (filter_node d1 p1) (filter_node d2 p2)
388
       in
389
       IdMap.merge cup_res accu term
390
391
392
393
394
    )
    (empty_res fv)
    (Types.Product.normal ?kind t)


395
and filter_node t p : Types.Positive.v id_map =
396
397
  try MemoFilter.find (t,p) !memo_filter
  with Not_found ->
398
    let (_,fv,_) as d = descr p in
399
    let res = IdMap.map_from_slist (fun _ -> Types.Positive.forward ()) fv in
400
401
    memo_filter := MemoFilter.add (t,p) res !memo_filter;
    let r = filter_descr t (descr p) in
402
    IdMap.collide Types.Positive.define res r;
403
404
405
406
407
    r

let filter t p =
  let r = filter_node t p in
  memo_filter :=  MemoFilter.empty;
408
  IdMap.get (IdMap.map Types.Positive.solve r)
409
410


411
(* Normal forms for patterns and compilation *)
412

413
414
let min (a:int) (b:int) = if a < b then a else b

415
416
417
let any_basic = Types.Record.or_absent Types.non_constructed


418
module Normal = struct
419

420
  type source = 
421
422
    | SCatch | SConst of Types.const 
    | SLeft | SRight | SRecompose 
423
  type result = source id_map
424

425
426
427
428
429
430
431
  let compare_source s1 s2 =
    if s1 == s2 then 0 
    else match (s1,s2) with
      | SCatch, _ -> -1 | _, SCatch -> 1
      | SLeft, _ -> -1 | _, SLeft -> 1
      | SRight, _ -> -1 | _, SRight -> 1
      | SRecompose, _ -> -1 | _, SRecompose -> 1
432
      | SConst c1, SConst c2 -> Types.Const.compare c1 c2
433
434
435
436
437
438

  let hash_source = function
    | SCatch -> 1
    | SLeft -> 2
    | SRight -> 3
    | SRecompose -> 4
439
    | SConst c -> Types.Const.hash c
440
441
442
443
444
445
446
447
    
  let compare_result r1 r2 =
    IdMap.compare compare_source r1 r2

  let hash_result r =
    IdMap.hash hash_source r


448
449
450
451
452
  let print_result ppf r = Format.fprintf ppf "<result>"
  let print_result_option ppf = function
    | Some x -> Format.fprintf ppf "Some(%a)" print_result x
    | None -> Format.fprintf ppf "None"

453
  module NodeSet = 
454
455
    SortedList.Make(Node)

456

457
  type nnf = NodeSet.t * Types.t (* pl,t;   t <= \accept{pl} *)
458

459
460
461
462
463
464
465
466
  let check_nnf (pl,t) =
    List.iter (fun p -> assert(Types.subtype t (Types.descr p.accept)))
      (NodeSet.get pl)

  let print_nnf ppf (pl,t) =
    Format.fprintf ppf "@[(pl=%a;t=%a)@]" NodeSet.dump pl Types.Print.print t
			    

467
468
  let compare_nnf (l1,t1) (l2,t2) =
    let c = NodeSet.compare l1 l2 in if c <> 0 then c
469
    else Types.compare t1 t2
470
471

  let hash_nnf (l,t) =
472
    (NodeSet.hash l) + 17 * (Types.hash t)
473
474
475
476

  module NLineBasic = 
    SortedList.Make(
      struct
477
	include Custom.Dummy
478
	let serialize s _ = failwith "Patterns.NLineBasic.serialize"
479
	type t = result * Types.t
480
481
	let compare (r1,t1) (r2,t2) =
	  let c = compare_result r1 r2 in if c <> 0 then c
482
	  else Types.compare t1 t2
483
	let equal x y = compare x y == 0
484
	let hash (r,t) = hash_result r + 17 * Types.hash t
485
486
487
488
489
490
      end
    )

  module NLineProd = 
    SortedList.Make(
      struct
491
(*	include Custom.Dummy*)
492
	let serialize s _ = failwith "Patterns.NLineProd.serialize"
493
494
495
496
497
498
499
	let deserialize s = failwith "Patterns.NLineProd.deserialize"
	let check x = ()
	let dump ppf (r,x,y) =
	  Format.fprintf ppf "@[(result=%a;x=%a;y=%a)@]" 
	    print_result r
	    print_nnf x
	    print_nnf y
500
	type t = result * nnf * nnf
501
502
503
504
	let compare (r1,x1,y1) (r2,x2,y2) =
	  let c = compare_result r1 r2 in if c <> 0 then c
	  else let c = compare_nnf x1 x2 in if c <> 0 then c
	  else compare_nnf y1 y2
505
	let equal x y = compare x y == 0
506
507
508
509
510
	let hash (r,x,y) =
	  hash_result r + 17 * (hash_nnf x) + 267 * (hash_nnf y)
      end
    )

511
  type record =
512
    | RecNolabel of result option * result option
513
    | RecLabel of label * NLineProd.t
514
  type t = {
515
    nfv    : fv;
516
    ncatchv: fv;
517
518
519
520
    na     : Types.t;
    nbasic : NLineBasic.t;
    nprod  : NLineProd.t;
    nxml   : NLineProd.t;
521
    nrecord: record
522
  }
523

524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
  let print_record ppf = function
    | RecLabel (lab,l) ->
	Format.fprintf ppf "RecLabel(@[%a@],@ @[%a@])"
	  Label.print (LabelPool.value lab)
	  NLineProd.dump l
    | RecNolabel (a,b) -> 
	Format.fprintf ppf "RecNolabel(@[%a@],@[%a@])" 
	  print_result_option a
	  print_result_option b
  let print ppf nf =
    Format.fprintf ppf "@[NF{na=%a;@[nrecord=@ @[%a@]@]}@]" 
      Types.Print.print nf.na
      print_record nf.nrecord
      

539
540
541
542
543
544
  let compare_nf t1 t2 =
    if t1 == t2 then 0
    else
      (* TODO: reorder; remove comparison of nfv ? *)
      let c = IdSet.compare t1.nfv t2.nfv in if c <> 0 then c 
      else let c = IdSet.compare t1.ncatchv t2.ncatchv in if c <> 0 then c
545
      else let c = Types.compare t1.na t2.na in if c <> 0 then c
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
      else let c = NLineBasic.compare t1.nbasic t2.nbasic in if c <> 0 then c
      else let c = NLineProd.compare t1.nprod t2.nprod in if c <> 0 then c
      else let c = NLineProd.compare t1.nxml t2.nxml in if c <> 0 then c
      else match t1.nrecord, t2.nrecord with
	| RecNolabel (s1,n1), RecNolabel (s2,n2) ->
	    let c = match (s1,s2) with
	      | None,None -> 0
	      | Some r1, Some r2 -> compare_result r1 r2
	      | None, _ -> -1
	      | _, None -> 1 in
	    if c <> 0 then c 
	    else (match (n1,n2) with
	      | None,None -> 0
	      | Some r1, Some r2 -> compare_result r1 r2
	      | None, _ -> -1
	      | _, None -> 1)
	| RecNolabel (_,_), _ -> -1
	| _, RecNolabel (_,_) -> 1
	| RecLabel (l1,p1), RecLabel (l2,p2) ->
	    let c = LabelPool.compare l1 l2 in if c <> 0 then c
	    else NLineProd.compare p1 p2
567

568
  let fus = IdMap.union_disj
569

570
571
572
  let nempty lab = 
    { nfv = IdSet.empty; ncatchv = IdSet.empty; 
      na = Types.empty;
573
574
575
      nbasic = NLineBasic.empty; 
      nprod = NLineProd.empty; 
      nxml = NLineProd.empty;
576
      nrecord = (match lab with 
577
		   | Some l -> RecLabel (l,NLineProd.empty)
578
		   | None -> RecNolabel (None,None))
579
    }
580
  let dummy = nempty None
581
582
583
584
585
586


  let ncup nf1 nf2 = 
    (* assert (Types.is_empty (Types.cap nf1.na nf2.na)); *)
    (* assert (nf1.nfv = nf2.nfv); *)
    { nfv = nf1.nfv;
587
      ncatchv = IdSet.cap nf1.ncatchv nf2.ncatchv;
588
      na      = Types.cup nf1.na nf2.na;
589
590
591
      nbasic  = NLineBasic.cup nf1.nbasic nf2.nbasic;
      nprod   = NLineProd.cup nf1.nprod nf2.nprod;
      nxml    = NLineProd.cup nf1.nxml nf2.nxml;
592
      nrecord = (match (nf1.nrecord,nf2.nrecord) with
593
		   | RecLabel (l1,r1), RecLabel (l2,r2) -> 
594
		       (* assert (l1 = l2); *) RecLabel (l1, NLineProd.cup r1 r2)
595
		   | RecNolabel (x1,y1), RecNolabel (x2,y2) -> 
596
597
		       RecNolabel((if x1 == None then x2 else x1),
				(if y1 == None then y2 else y1))
598
		   | _ -> assert false)
599
600
601
    }

  let double_fold f l1 l2 =
602
603
604
605
606
607
    List.fold_left 
      (fun accu x1 -> List.fold_left (fun accu x2 -> f accu x1 x2) accu l2)
      [] l1

  let double_fold_prod f l1 l2 =
    double_fold f (NLineProd.get l1) (NLineProd.get l2)
608
609
	 
  let ncap nf1 nf2 =
610
    let prod accu (res1,(pl1,t1),(ql1,s1)) (res2,(pl2,t2),(ql2,s2)) =
611
612
613
614
      let t = Types.cap t1 t2 in
      if Types.is_empty t then accu else
	let s = Types.cap s1 s2  in
	if Types.is_empty s then accu else
615
616
	  (fus res1 res2, (NodeSet.cup pl1 pl2,t),(NodeSet.cup ql1 ql2,s)) 
	  :: accu
617
618
619
620
621
622
    in
    let basic accu (res1,t1) (res2,t2) =
      let t = Types.cap t1 t2 in
      if Types.is_empty t then accu else
	(fus res1 res2, t) :: accu
    in
623
    let record r1 r2 = match r1,r2 with
624
      | RecLabel (l1,r1), RecLabel (l2,r2) ->
625
	  (* assert (l1 = l2); *)
626
	  RecLabel(l1, NLineProd.from_list (double_fold_prod prod r1 r2))
627
      | RecNolabel (x1,y1), RecNolabel (x2,y2) ->
628
629
630
631
632
633
	  let x = match x1,x2 with 
	    | Some res1, Some res2 -> Some (fus res1 res2) 
	    | _ -> None
	  and y = match y1,y2 with
	    | Some res1, Some res2 -> Some (fus res1 res2)
	    | _ -> None in
634
	  RecNolabel (x,y)
635
      | _ -> assert false
636
    in
637
638
    { nfv = IdSet.cup nf1.nfv nf2.nfv;
      ncatchv = IdSet.cup nf1.ncatchv nf2.ncatchv;
639
      na = Types.cap nf1.na nf2.na;
640
641
642
643
644
645
      nbasic = NLineBasic.from_list (double_fold basic 
				       (NLineBasic.get nf1.nbasic) 
				       (NLineBasic.get nf2.nbasic));
      nprod = NLineProd.from_list (double_fold_prod prod nf1.nprod nf2.nprod);
      nxml = NLineProd.from_list (double_fold_prod prod nf1.nxml nf2.nxml);
      nrecord = record nf1.nrecord nf2.nrecord;
646
647
    }

648
649
650
651
  let nnode p = NodeSet.singleton p, Types.descr p.accept
  let nc t = NodeSet.empty, t
  let ncany = nc Types.any

652
  let empty_res = IdMap.empty
653

654
  let ntimes lab acc p q = 
655
656
657
    let src_p = IdMap.constant SLeft p.fv
    and src_q = IdMap.constant SRight q.fv in
    let src = IdMap.merge_elem SRecompose src_p src_q in 
658
    { nempty lab with 
659
	nfv = IdSet.cup p.fv q.fv; 
660
	na = acc;
661
	nprod = NLineProd.singleton (src, nnode p, nnode q);
662
663
    }

664
  let nxml lab acc p q = 
665
666
667
    let src_p = IdMap.constant SLeft p.fv
    and src_q = IdMap.constant SRight q.fv in
    let src = IdMap.merge_elem SRecompose src_p src_q in 
668
    { nempty lab with 
669
	nfv = IdSet.cup p.fv q.fv; 
670
	na = acc;
671
	nxml =  NLineProd.singleton (src, nnode p, nnode q);
672
673
    }
    
674
675
676
677
678
679
680
681
682
683
  let nrecord lab acc l p =
    match lab with
      | None -> assert false
      | Some label ->
	  assert (label <= l);
	  if l == label then
	    let src = IdMap.constant SLeft p.fv in
	    { nempty lab with
		nfv = p.fv;
		na = acc;
684
		nrecord = RecLabel(label, 
685
				 NLineProd.singleton (src,nnode p, ncany))}
686
687
688
689
690
691
692
693
	  else
	    let src = IdMap.constant SRight p.fv in
	    let p' = make p.fv in  (* optimize this ... *)
	      (* cache the results to avoid looping ... *)
	    define p' (record l p);
	    { nempty lab with
		nfv = p.fv;
		na = acc;
694
695
696
697
		nrecord = 
		      RecLabel(label,
		        NLineProd.singleton(src,nc Types.Record.any_or_absent, 
 			 nnode p') )}
698
699
700
	  

  let nconstr lab t =
701
702
    let aux l = NLineProd.from_list
		(List.map (fun (t1,t2) -> empty_res, nc t1,nc t2) l) in
703
704
705
706
    let record = 
      match lab with
	| None ->
	    let (x,y) = Types.Record.empty_cases t in
707
	    RecNolabel ((if x then Some empty_res else None), 
708
709
		      (if y then Some empty_res else None))
	| Some l ->
710
711
712
713
714
715
716
717
718
719
(*
	    let ppf = Format.std_formatter in
	    Format.fprintf ppf "Constr record t=%a l=%a@."
	      Types.Print.print t Label.print (LabelPool.value l);
	    let sp = Types.Record.split_normal t l in
	    List.iter (fun (t1,t2) ->
			 Format.fprintf ppf "t1=%a t2=%a@."
			   Types.Print.print t1
			   Types.Print.print t2) sp;
*)
720
	    RecLabel (l,aux (Types.Record.split_normal t l))
721
722
    in	      
    { nempty lab with
723
	na = t;
724
	nbasic = NLineBasic.singleton (empty_res, Types.cap t any_basic);
725
726
727
	nprod = aux (Types.Product.normal t);
	nxml  = aux (Types.Product.normal ~kind:`XML t);
	nrecord = record
728
729
    }

730
  let nconstant lab x c = 
731
732
733
    let l = IdMap.singleton x (SConst c) in
    { nfv = IdSet.singleton x;
      ncatchv = IdSet.empty;
734
      na = Types.any;
735
736
737
      nbasic = NLineBasic.singleton (l,any_basic); 
      nprod  = NLineProd.singleton (l,ncany,ncany);
      nxml   = NLineProd.singleton (l,ncany,ncany);
738
      nrecord = match lab with
739
	| None -> RecNolabel (Some l, Some l)
740
	| Some lab -> 
741
742
743
	    RecLabel (lab, NLineProd.singleton 
			(l,nc Types.Record.any_or_absent,
				 ncany))
744
745
    }

746
  let ncapture lab x = 
747
748
749
    let l = IdMap.singleton x SCatch in
    { nfv = IdSet.singleton x;
      ncatchv = IdSet.singleton x;
750
      na = Types.any;
751
752
753
      nbasic = NLineBasic.singleton (l,any_basic); 
      nprod  = NLineProd.singleton (l,ncany,ncany);
      nxml   = NLineProd.singleton (l,ncany,ncany);
754
      nrecord = match lab with
755
	| None -> RecNolabel (Some l, Some l)
756
	| Some lab -> 
757
758
759
	    RecLabel (lab, NLineProd.singleton 
			(l,nc Types.Record.any_or_absent,
			         ncany))
760
761
    }

762
  let rec nnormal lab (acc,fv,d) =
763
    if Types.is_empty acc 
764
    then nempty lab
765
    else match d with
766
767
      | Constr t -> nconstr lab t
      | Cap (p,q) -> ncap (nnormal lab p) (nnormal lab q)
768
      | Cup ((acc1,_,_) as p,q) -> 
769
770
771
772
773
774
775
	  ncup (nnormal lab p) (ncap (nnormal lab q) 
				  (nconstr lab (Types.neg acc1)))
      | Times (p,q) -> ntimes lab acc p q
      | Xml (p,q) -> nxml lab acc p q
      | Capture x -> ncapture lab x
      | Constant (x,c) -> nconstant lab x c
      | Record (l,p) -> nrecord lab acc l p
776
      | Dummy -> assert false
777
778
779
780
781
782

(*TODO: when an operand of Cap has its first_label > lab,
  directly shift it*)

  let rec first_label (acc,fv,d) =
    if Types.is_empty acc 
783
    then LabelPool.dummy_max
784
785
786
787
788
789
    else match d with
      | Constr t -> Types.Record.first_label t
      | Cap (p,q) -> min (first_label p) (first_label q)
      | Cup ((acc1,_,_) as p,q) -> min (first_label p) (first_label q)
	    (* should "first_label_type acc1" ? *)
      | Record (l,p) -> l
790
      | _ -> LabelPool.dummy_max
791

792
793
794
   
  let remove_catchv n =
    let ncv = n.ncatchv in
795
796
797
798
    let nlinesbasic l = 
      NLineBasic.map (fun (res,x) -> (IdMap.diff res ncv,x)) l in
    let nlinesprod l  = 
      NLineProd.map (fun (res,x,y) -> (IdMap.diff res ncv,x,y)) l in
799
    { nfv     = IdSet.diff n.nfv ncv;
800
801
      ncatchv = n.ncatchv;
      na      = n.na;
802
803
804
      nbasic  = nlinesbasic n.nbasic;
      nprod   = nlinesprod n.nprod;
      nxml    = nlinesprod n.nxml;
805
      nrecord = (match n.nrecord with
806
		   | RecNolabel (x,y) ->
807
808
809
810
811
812
		       let x = match x with 
			 | Some res -> Some (IdMap.diff res ncv) 
			 | None -> None in
		       let y = match y with 
			 | Some res -> Some (IdMap.diff res ncv) 
			 | None -> None in
813
		       RecNolabel (x,y)
814
		   | RecLabel (lab,l) -> RecLabel (lab, nlinesprod l))
815
816
    }

817
818
819
  let print_node_list ppf pl =
    List.iter (fun p -> Format.fprintf ppf "%a;" Node.dump p) pl

820
  let normal l t pl =
821
    remove_catchv
822
823
824
825
      (List.fold_left 
	 (fun a p -> ncap a (nnormal l (descr p))) 
	 (nconstr l t) 
	 pl)
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843

(*
  let normal l t pl =
    let nf = normal l t pl in
    (match l with Some l ->
      Format.fprintf Format.std_formatter
	"normal(l=%a;t=%a;pl=%a)=%a@." 
	Label.print (LabelPool.value l)
	Types.Print.print t
	print_node_list pl
	print nf
      | None -> Format.fprintf Format.std_formatter
	"normal(t=%a;pl=%a)=%a@." 
	Types.Print.print t
	print_node_list pl
	print nf);
    nf
*)
844
end
845
846


847
848
module Compile = 
struct
849
  type actions =
850
851
    | AIgnore of result
    | AKind of actions_kind
852
  and actions_kind = {
853
    basic: (Types.t * result) list;
854
855
    atoms: result Atoms.map;
    chars: result Chars.map;
856
    prod: result dispatch dispatch;
857
    xml: result dispatch dispatch;
858
859
860
    record: record option;
  }
  and record = 
861
    | RecLabel of label * result dispatch dispatch
862
    | RecNolabel of result option * result option
863
      
864
  and 'a dispatch =
865
866
867
868
    | Dispatch of dispatcher * 'a array
    | TailCall of dispatcher
    | Ignore of 'a
    | Impossible
869
870

  and result = int * source array
871
  and source = 
872
873
    | Catch | Const of Types.const 
    | Left of int | Right of int | Recompose of int * int
874
875
      
  and return_code = 
876
      Types.t * int *   (* accepted type, arity *)
877
      (int * int id_map) list
878
879

  and interface =
880
881
    [ `Result of int
    | `Switch of interface * interface
882
883
884
885
    | `None ]

  and dispatcher = {
    id : int;
886
    t  : Types.t;
887
    pl : Normal.t array;
888
    label : label option;
889
890
    interface : interface;
    codes : return_code array;
891
892
    mutable actions : actions option;
    mutable printed : bool
893
  }
894

895
896
897
898
899
900
901
  let equal_array f a1 a2 =
    let rec aux i = (i < 0) || ((f a1.(i) a2.(i)) && (aux (i - 1))) in
    let l1 = Array.length a1 and l2 = Array.length a2 in
    (l1 == l2) && (aux (l1 - 1))

  let equal_source s1 s2 =
    (s1 == s2) || match (s1,s2) with
902
      | Const x, Const y -> Types.Const.equal x y 
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
      | Left x, Left y -> x == y
      | Right x, Right y -> x == y
      | Recompose (x1,x2), Recompose (y1,y2) -> (x1 == y1) && (x2 == y2)
      | _ -> false

  let equal_result (r1,s1) (r2,s2) =
    (r1 == r2) && (equal_array equal_source s1 s2)

  let equal_result_dispatch d1 d2 =
    (d1 == d2) || match (d1,d2) with
      | Dispatch (d1,a1), Dispatch (d2,a2) -> (d1 == d2) && (equal_array equal_result a1 a2)
      | TailCall d1, TailCall d2 -> d1 == d2
      | Ignore a1, Ignore a2 -> equal_result a1 a2
      | _ -> false


919
920
  let array_for_all f a =
    let rec aux f a i =
921
      if i == Array.length a then true
922
923
924
925
926
927
      else f a.(i) && (aux f a (succ i))
    in
    aux f a 0

  let array_for_all_i f a =
    let rec aux f a i =
928
      if i == Array.length a then true
929
930
931
932
      else f i a.(i) && (aux f a (succ i))
    in
    aux f a 0

933
  let combine_kind basic prod xml record =
934
935
936
937
938
939
940
    try (
      let rs = [] in
      let rs = match basic with
	| [_,r] -> r :: rs
	| [] -> rs
	| _ -> raise Exit in
      let rs = match prod with
941
942
	| Impossible -> rs
	| Ignore (Ignore r) -> r :: rs
943
	| _ -> raise Exit in
944
      let rs = match xml with
945
946
	| Impossible -> rs
	| Ignore (Ignore r) -> r :: rs
947
	| _ -> raise Exit in
948
949
      let rs = match record with
	| None -> rs
950
951
	| Some (RecLabel (_,Ignore (Ignore r))) -> r :: rs
	| Some (RecNolabel (Some r1, Some r2)) -> r1 :: r2 :: rs
952
953
	| _ -> raise Exit in
      match rs with
954
	| ((_, ret) as r) :: rs when 
955
	    List.for_all ( equal_result r ) rs 
956
	    && array_for_all 
957
958
	      (function Catch | Const _ -> true | _ -> false) ret
	    -> AIgnore r
959
960
	| _ -> raise Exit
    )
961
962
963
964
    with Exit -> 
      AKind 
      { basic = basic;
	atoms = 
965
	  Atoms.mk_map (List.map (fun (t,r) -> Types.Atom.get t, r) basic);
966
	chars = 
967
	  Chars.mk_map (List.map (fun (t,r) -> Types.Char.get t, r) basic);
968
969
	prod = prod; 
	xml = xml; 
970
971
	record = record;
      }
972
      
973
974
  let combine f (disp,act) =
    if Array.length act == 0 then Impossible
975
    else
976
977
      if (array_for_all (fun (_,ar,_) -> ar == 0) disp.codes) 
	 && (array_for_all ( f act.(0) ) act) then
978
	   Ignore act.(0)
979
      else
980
	Dispatch (disp, act)
981
982
983


  let detect_right_tail_call = function
984
    | Dispatch (disp,branches) 
985
986
987
	when
	  array_for_all_i
	    (fun i (code,ret) ->
988
	       (i == code) && 
989
990
	       (array_for_all_i 
		  (fun pos -> 
991
		     function Right j when pos == j -> true | _ -> false)
992
993
994
		  ret
	       )
	    ) branches
995
	  -> TailCall disp
996
997
998
    | x -> x

  let detect_left_tail_call = function
999
    | Dispatch (disp,branches)
1000
1001
1002
1003
	when
	  array_for_all_i
	    (fun i -> 
	       function 
1004
		 | Ignore (code,ret) ->
1005
		     (i == code) &&
1006
1007
		     (array_for_all_i 
			(fun pos -> 
1008
			   function Left j when pos == j -> true | _ -> false)
1009
1010
1011
1012
1013
			ret
	       )
		 | _ -> false
	    ) branches
 	  ->
1014
	 TailCall disp