typer.ml 51.2 KB
Newer Older
1
(* TODO:
2
 - rewrite type-checking of operators to propagate constraint
3
4
 - optimize computation of pattern free variables
 - check whether it is worth using recursive hash-consing internally
5
6
*)

7
8
9
open Location
open Ast
open Ident
10

11
12
let debug_schema = false

13
let warning loc msg =
14
  Format.fprintf !Location.warning_ppf "Warning %a:@\n%a%s@." 
15
16
    Location.print_loc (loc,`Full)
    Location.html_hilight (loc,`Full)
17
18
    msg

19
20
type item =
  | Type of Types.t
21
  | Val of Types.t
22

23
type t = {
24
  ids : item Env.t;
25
26
  ns: Ns.table;
  cu: Types.CompUnit.t Env.t;
27
}
28

29
30
31
32
33
let hash _ = failwith "Typer.hash"
let compare _ _ = failwith "Typer.compare"
let dump ppf _ = failwith "Typer.dump"
let equal _ _ = failwith "Typer.equal"
let check _ = failwith "Typer.check"
34
35

(* TODO: filter out builtin defs ? *)
36
37
38
39
let serialize_item s = function
  | Type t -> Serialize.Put.bits 1 s 0; Types.serialize s t
  | Val t -> Serialize.Put.bits 1 s 1; Types.serialize s t

40
let serialize s env =
41
  Serialize.Put.env Id.serialize serialize_item Env.iter s env.ids;
42
  Ns.serialize_table s env.ns
43

44
45
46
47
48
let deserialize_item s = match Serialize.Get.bits 1 s with
  | 0 -> Type (Types.deserialize s)
  | 1 -> Val (Types.deserialize s)
  | _ -> assert false

49
let deserialize s =
50
51
  let ids = 
    Serialize.Get.env Id.deserialize deserialize_item Env.add Env.empty s in
52
  let ns = Ns.deserialize_table s in
53
  { ids = ids; ns = ns; cu = Env.empty }
54
55


56
57
let empty_env = {
  ids = Env.empty;
58
59
  ns = Ns.empty_table;
  cu = Env.empty;
60
61
}

62
63
let from_comp_unit = ref (fun cu -> assert false)

64
65
66
67
68
69
70
71
72
73
let enter_cu x cu env =
  { env with cu = Env.add (ident x) cu env.cu }

let find_cu loc x env =
  try Env.find x env.cu
  with Not_found -> 
    raise_loc_generic loc 
      ("Unbound compunit prefix " ^ (Ident.to_string x))


74
75
76
77
78
79
80
81
let enter_type id t env =
  { env with ids = Env.add id (Type t) env.ids }
let enter_types l env =
  { env with ids = 
      List.fold_left (fun accu (id,t) -> Env.add id (Type t) accu) env.ids l }
let find_type id env =
  match Env.find id env.ids with
    | Type t -> t
82
    | Val _ -> raise Not_found
83

84
85
let find_type_global loc cu id env =
  let cu = find_cu loc cu env in
86
87
88
  let env = !from_comp_unit cu in
  find_type id env

89
let enter_value id t env = 
90
  { env with ids = Env.add id (Val t) env.ids }
91
92
let enter_values l env =
  { env with ids = 
93
      List.fold_left (fun accu (id,t) -> Env.add id (Val t) accu) env.ids l }
94
95
let find_value id env =
  match Env.find id env.ids with
96
    | Val t -> t
97
    | _ -> raise Not_found
98
99
100
let find_value_global cu id env =
  let env = !from_comp_unit cu in
  find_value id env
101
	
102
103
104
105
106
107
let value_name_ok id env =
  try match Env.find id env.ids with
    | Val t -> true
    | _ -> false
  with Not_found -> true

108
109
110
111
let iter_values env f =
  Env.iter (fun x ->
	      function Val t -> f x t;
		| _ -> ()) env.ids
112

113

114

115
(* Namespaces *)
116

117
let set_ns_table_for_printer env = 
118
  Ns.InternalPrinter.set_table env.ns
119

120
let get_ns_table tenv = tenv.ns
121

122
let enter_ns p ns env =
123
  { env with ns = Ns.add_prefix p ns env.ns }
124

125
126
127
128
129
let protect_error_ns loc f x =
  try f x
  with Ns.UnknownPrefix ns ->
    raise_loc_generic loc 
    ("Undefined namespace prefix " ^ (U.to_string ns))
130

131
let parse_atom env loc t =
132
  let (ns,l) = protect_error_ns loc (Ns.map_tag env.ns) t in
133
134
135
  Atoms.V.mk ns l
 
let parse_ns env loc ns =
136
  protect_error_ns loc (Ns.map_prefix env.ns) ns
137

138
let parse_label env loc t =
139
  let (ns,l) = protect_error_ns loc (Ns.map_attr env.ns) t in
140
  LabelPool.mk (ns,l)
141

142
143
144
145
146
147
148
149
150
151
152
153
154
let parse_record env loc f r =
  let r = List.map (fun (l,x) -> (parse_label env loc l, f x)) r in
  LabelMap.from_list (fun _ _ -> raise_loc_generic loc "Duplicated record field") r

let rec const env loc = function
  | LocatedExpr (loc,e) -> const env loc e
  | Pair (x,y) -> Types.Pair (const env loc x, const env loc y)
  | Xml (x,y) -> Types.Xml (const env loc x, const env loc y)
  | RecordLitt x -> Types.Record (parse_record env loc (const env loc) x)
  | String (i,j,s,c) -> Types.String (i,j,s,const env loc c)
  | Atom t -> Types.Atom (parse_atom env loc t)
  | Integer i -> Types.Integer i
  | Char c -> Types.Char c
155
  | Const c -> c
156
157
158
159
  | _ -> raise_loc_generic loc "This should be a scalar or structured constant"

(* I. Transform the abstract syntax of types and patterns into
      the internal form *)
160

161
exception NonExhaustive of Types.descr
162
exception Constraint of Types.descr * Types.descr
163
exception ShouldHave of Types.descr * string
164
exception ShouldHave2 of Types.descr * string * Types.descr
165
exception WrongLabel of Types.descr * label
166
exception UnboundId of id * bool
167
exception Error of string
168

169
170
let raise_loc loc exn = raise (Location (loc,`Full,exn))
let raise_loc_str loc ofs exn = raise (Location (loc,`Char ofs,exn))
171
let error loc msg = raise_loc loc (Error msg)
172

173
  (* just to remember imported schemas *)
174
let schemas = State.ref "Typer.schemas" (Hashtbl.create 3)
175
let is_registered_schema = Hashtbl.mem !schemas
176
177
178

let schema_types = State.ref "Typer.schema_types" (Hashtbl.create 51)
let schema_elements = State.ref "Typer.schema_elements" (Hashtbl.create 51)
179
let schema_attributes = State.ref "Typer.schema_attributes" (Hashtbl.create 51)
180
181
182
183
let schema_attribute_groups =
  State.ref "Typer.schema_attribute_groups" (Hashtbl.create 51)
let schema_model_groups =
  State.ref "Typer.schema_model_groups" (Hashtbl.create 51)
184

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
  (* raise Not_found *)
let find_schema_descr kind schema name =
  let elt () = Hashtbl.find !schema_elements (schema, name) in
  let typ () = Hashtbl.find !schema_types (schema, name) in
  let att () = Hashtbl.find !schema_attributes (schema, name) in
  let att_group () = Hashtbl.find !schema_attribute_groups (schema, name) in
  let mod_group () = Hashtbl.find !schema_model_groups (schema, name) in
  let rec do_try n = function
    | [] -> raise Not_found
    | f :: rem -> (try f () with Not_found -> do_try n rem)
  in
  match kind with
    | Some `Element -> do_try "element" [ elt ]
    | Some `Type -> do_try "type" [ typ ]
    | Some `Attribute -> do_try "atttribute" [ att ]
    | Some `Attribute_group -> do_try "attribute group" [ att_group ]
    | Some `Model_group -> do_try "model group" [ mod_group ]
    | None ->
        (* policy for unqualified schema component resolution. This order should
         * be consistent with Schema_component.get_component *)
        do_try "component" [ elt; typ; att; att_group; mod_group ]

  (* as above, but raise Error *)
let find_schema_descr' k s n =
  try
    find_schema_descr k s n
  with Not_found ->
212
213
214
215
216
    if is_registered_schema s then
      raise (Error (Printf.sprintf "No %s named '%s' found in schema '%s'"
        (Schema_common.string_of_component_kind k) (U.get_str n) (U.get_str s)))
    else
      raise (Error (Printf.sprintf "%s: no such schema" (U.get_str s)))
217

218
219
220
221
222
223
224
225
(* Eliminate Recursion, propagate Sequence Capture Variables *)

let rec seq_vars accu = function
  | Epsilon | Elem _ -> accu
  | Seq (r1,r2) | Alt (r1,r2) -> seq_vars (seq_vars accu r1) r2
  | Star r | WeakStar r -> seq_vars accu r
  | SeqCapture (v,r) -> seq_vars (IdSet.add v accu) r

226
227
228
229
230
231
232
233
234
235
236
237
238
239
(* We use two intermediate representation from AST types/patterns
   to internal ones:

      AST -(1)-> derecurs -(2)-> slot -(3)-> internal

   (1) eliminate recursion, schema, 
       propagate sequence capture variables, keep regexps

   (2) stratify, detect ill-formed recursion, compile regexps

   (3) check additional constraints on types / patterns;
       deep (recursive) hash-consing
*)     

240
241
242
243
type derecurs_slot = {
  ploc : Location.loc;
  pid  : int;
  mutable ploop : bool;
244
  mutable pdescr : derecurs;
245
} and derecurs =
246
  | PDummy
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
  | PAlias of derecurs_slot
  | PType of Types.descr
  | POr of derecurs * derecurs
  | PAnd of derecurs * derecurs
  | PDiff of derecurs * derecurs
  | PTimes of derecurs * derecurs
  | PXml of derecurs * derecurs
  | PArrow of derecurs * derecurs
  | POptional of derecurs
  | PRecord of bool * derecurs label_map
  | PCapture of id
  | PConstant of id * Types.const
  | PRegexp of derecurs_regexp * derecurs
and derecurs_regexp =
  | PEpsilon
  | PElem of derecurs
  | PSeq of derecurs_regexp * derecurs_regexp
  | PAlt of derecurs_regexp * derecurs_regexp
  | PStar of derecurs_regexp
  | PWeakStar of derecurs_regexp

268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

type descr = 
  | IDummy
  | IType of Types.descr
  | IOr of descr * descr
  | IAnd of descr * descr
  | IDiff of descr * descr
  | ITimes of slot * slot
  | IXml of slot * slot
  | IArrow of slot * slot
  | IOptional of descr
  | IRecord of bool * slot label_map
  | ICapture of id
  | IConstant of id * Types.const
and slot = {
  mutable fv : fv option;
  mutable hash : int option;
  mutable rank1: int; mutable rank2: int;
  mutable gen1 : int; mutable gen2: int;
  mutable d    : descr;
288
}
289
290
291
292
293
294
295
296
297
298
299
300
301
    

let counter = ref 0
let mk_derecurs_slot loc = 
  incr counter; 
  { ploop = false; ploc = loc; pid = !counter; pdescr = PDummy }
	  
let mk_slot () = 
  { d=IDummy; fv=None; hash=None; rank1=0; rank2=0; gen1=0; gen2=0 } 


(* This environment is used in phase (1) to eliminate recursion *)
type penv = {
302
  penv_tenv : t;
303
304
305
306
  penv_derec : derecurs_slot Env.t;
}

let penv tenv = { penv_tenv = tenv; penv_derec = Env.empty }
307

308
let rec hash_derecurs = function
309
  | PDummy -> assert false
310
311
312
  | PAlias s -> 
      s.pid
  | PType t -> 
313
      1 + 17 * (Types.hash t)
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
  | POr (p1,p2) -> 
      2 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PAnd (p1,p2) -> 
      3 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PDiff (p1,p2) -> 
      4 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PTimes (p1,p2) -> 
      5 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PXml (p1,p2) -> 
      6 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PArrow (p1,p2) -> 
      7 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | POptional p -> 
      8 + 17 * (hash_derecurs p)
  | PRecord (o,r) -> 
      (if o then 9 else 10) + 17 * (LabelMap.hash hash_derecurs r)
  | PCapture x -> 
      11 + 17 * (Id.hash x)
  | PConstant (x,c) -> 
333
      12 + 17 * (Id.hash x) + 257 * (Types.Const.hash c)
334
335
  | PRegexp (p,q) -> 
      13 + 17 * (hash_derecurs_regexp p) + 257 * (hash_derecurs q)
336
and hash_derecurs_regexp = function
337
338
339
340
341
342
343
344
345
346
347
348
  | PEpsilon -> 
      1
  | PElem p -> 
      2 + 17 * (hash_derecurs p)
  | PSeq (p1,p2) -> 
      3 + 17 * (hash_derecurs_regexp p1) + 257 * (hash_derecurs_regexp p2)
  | PAlt (p1,p2) -> 
      4 + 17 * (hash_derecurs_regexp p1) + 257 * (hash_derecurs_regexp p2)
  | PStar p -> 
      5 + 17 * (hash_derecurs_regexp p)
  | PWeakStar p -> 
      6 + 17 * (hash_derecurs_regexp p)
349
350

let rec equal_derecurs p1 p2 = (p1 == p2) || match p1,p2 with
351
352
353
  | PAlias s1, PAlias s2 -> 
      s1 == s2
  | PType t1, PType t2 -> 
354
      Types.equal t1 t2
355
356
357
358
359
  | POr (p1,q1), POr (p2,q2)
  | PAnd (p1,q1), PAnd (p2,q2)
  | PDiff (p1,q1), PDiff (p2,q2)
  | PTimes (p1,q1), PTimes (p2,q2)
  | PXml (p1,q1), PXml (p2,q2)
360
361
362
363
364
365
366
367
368
  | PArrow (p1,q1), PArrow (p2,q2) -> 
      (equal_derecurs p1 p2) && (equal_derecurs q1 q2)
  | POptional p1, POptional p2 -> 
      equal_derecurs p1 p2
  | PRecord (o1,r1), PRecord (o2,r2) -> 
      (o1 == o2) && (LabelMap.equal equal_derecurs r1 r2)
  | PCapture x1, PCapture x2 -> 
      Id.equal x1 x2
  | PConstant (x1,c1), PConstant (x2,c2) -> 
369
      (Id.equal x1 x2) && (Types.Const.equal c1 c2)
370
371
  | PRegexp (p1,q1), PRegexp (p2,q2) -> 
      (equal_derecurs_regexp p1 p2) && (equal_derecurs q1 q2)
372
373
  | _ -> false
and equal_derecurs_regexp r1 r2 = match r1,r2 with
374
375
376
377
  | PEpsilon, PEpsilon -> 
      true
  | PElem p1, PElem p2 -> 
      equal_derecurs p1 p2
378
  | PSeq (p1,q1), PSeq (p2,q2) 
379
380
  | PAlt (p1,q1), PAlt (p2,q2) -> 
      (equal_derecurs_regexp p1 p2) && (equal_derecurs_regexp q1 q2)
381
  | PStar p1, PStar p2
382
383
  | PWeakStar p1, PWeakStar p2 -> 
      equal_derecurs_regexp p1 p2
384
  | _ -> false
385

386
387
388
389
390
391
392
393
394
395
396
module DerecursTable = Hashtbl.Make(
  struct 
    type t = derecurs 
    let hash = hash_derecurs
    let equal = equal_derecurs
  end
)

module RE = Hashtbl.Make(
  struct 
    type t = derecurs_regexp * derecurs 
397
398
399
400
    let hash (p,q) = 
      (hash_derecurs_regexp p) + 17 * (hash_derecurs q)
    let equal (p1,q1) (p2,q2) = 
      (equal_derecurs_regexp p1 p2) && (equal_derecurs q1 q2)
401
402
  end
)
403

404
405
406
407
let gen = ref 0
let rank = ref 0
	     
let rec hash_descr = function
408
  | IDummy -> assert false
409
  | IType x -> Types.hash x
410
411
412
413
414
415
416
417
418
  | IOr (d1,d2) -> 1 + 17 * (hash_descr d1) + 257 * (hash_descr d2)
  | IAnd (d1,d2) -> 2 + 17 * (hash_descr d1) + 257 * (hash_descr d2)
  | IDiff (d1,d2) -> 3 + 17 * (hash_descr d1) + 257 * (hash_descr d2)
  | IOptional d -> 4 + 17 * (hash_descr d)
  | ITimes (s1,s2) -> 5 + 17 * (hash_slot s1) + 257 * (hash_slot s2)
  | IXml (s1,s2) -> 6 + 17 * (hash_slot s1) + 257 * (hash_slot s2)
  | IArrow (s1,s2) -> 7 + 17 * (hash_slot s1) + 257 * (hash_slot s2)
  | IRecord (o,r) -> (if o then 8 else 9) + 17 * (LabelMap.hash hash_slot r)
  | ICapture x -> 10 + 17 * (Id.hash x)
419
  | IConstant (x,y) -> 11 + 17 * (Id.hash x) + 257 * (Types.Const.hash y)
420
421
422
423
424
and hash_slot s =
  if s.gen1 = !gen then 13 * s.rank1
  else (
    incr rank;
    s.rank1 <- !rank; s.gen1 <- !gen;
425
    hash_descr s.d
426
427
428
429
  )
    
let rec equal_descr d1 d2 = 
  match (d1,d2) with
430
  | IType x1, IType x2 -> Types.equal x1 x2
431
432
433
434
435
436
437
  | IOr (x1,y1), IOr (x2,y2) 
  | IAnd (x1,y1), IAnd (x2,y2) 
  | IDiff (x1,y1), IDiff (x2,y2) -> (equal_descr x1 x2) && (equal_descr y1 y2)
  | IOptional x1, IOptional x2 -> equal_descr x1 x2
  | ITimes (x1,y1), ITimes (x2,y2) 
  | IXml (x1,y1), IXml (x2,y2) 
  | IArrow (x1,y1), IArrow (x2,y2) -> (equal_slot x1 x2) && (equal_slot y1 y2)
438
439
  | IRecord (o1,r1), IRecord (o2,r2) -> 
      (o1 = o2) && (LabelMap.equal equal_slot r1 r2)
440
  | ICapture x1, ICapture x2 -> Id.equal x1 x2
441
  | IConstant (x1,y1), IConstant (x2,y2) -> 
442
      (Id.equal x1 x2) && (Types.Const.equal y1 y2)
443
444
445
446
447
448
449
450
  | _ -> false
and equal_slot s1 s2 =
  ((s1.gen1 = !gen) && (s2.gen2 = !gen) && (s1.rank1 = s2.rank2))
  ||
  ((s1.gen1 <> !gen) && (s2.gen2 <> !gen) && (
     incr rank;
     s1.rank1 <- !rank; s1.gen1 <- !gen;
     s2.rank2 <- !rank; s2.gen2 <- !gen;
451
     equal_descr s1.d s2.d
452
453
   ))
  
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
module SlotTable = Hashtbl.Make(
  struct
    type t = slot
	
    let hash s =
      match s.hash with
	| Some h -> h
	| None ->
	    incr gen; rank := 0; 
	    let h = hash_slot s in
	    s.hash <- Some h;
	    h
	      
    let equal s1 s2 = 
      (s1 == s2) || 
      (incr gen; rank := 0; 
       let e = equal_slot s1 s2 in
       (*     if e then Printf.eprintf "Recursive hash-consing: Equal\n";  *)
       e)
  end)


let rec derecurs env p = match p.descr with
  | PatVar v ->
478
479
480
481
482
483
484
485
486
487
      (match Ns.split_qname v with
	 | "", v ->
	     let v = ident v in
	     (try PAlias (Env.find v env.penv_derec)
	      with Not_found -> 
		try PType (find_type v env.penv_tenv)
		with Not_found -> PCapture v)
	 | cu, v -> 
	     try 
	       let cu = ident (U.mk cu) in
488
	       PType (find_type_global p.loc cu (ident v) env.penv_tenv)
489
	     with Not_found ->
490
491
	       raise_loc_generic p.loc 
	       ("Unbound external type " ^ cu ^ ":" ^ (U.to_string v)))
492
493
  | SchemaVar (kind, schema_name, component_name) ->
      PType (derecurs_schema env kind schema_name component_name)
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
  | Recurs (p,b) -> derecurs (derecurs_def env b) p
  | Internal t -> PType t
  | NsT ns -> PType (Types.atom (Atoms.any_in_ns (parse_ns env.penv_tenv p.loc ns)))
  | Or (p1,p2) -> POr (derecurs env p1, derecurs env p2)
  | And (p1,p2) -> PAnd (derecurs env p1, derecurs env p2)
  | Diff (p1,p2) -> PDiff (derecurs env p1, derecurs env p2)
  | Prod (p1,p2) -> PTimes (derecurs env p1, derecurs env p2)
  | XmlT (p1,p2) -> PXml (derecurs env p1, derecurs env p2)
  | Arrow (p1,p2) -> PArrow (derecurs env p1, derecurs env p2)
  | Optional p -> POptional (derecurs env p)
  | Record (o,r) -> PRecord (o, parse_record env.penv_tenv p.loc (derecurs env) r)
  | Constant (x,c) -> PConstant (x,const env.penv_tenv p.loc c)
  | Cst c -> PType (Types.constant (const env.penv_tenv p.loc c))
  | Regexp (r,q) -> 
      let constant_nil t v = 
	PAnd (t, PConstant (v, Types.Atom Sequence.nil_atom)) in
      let vars = seq_vars IdSet.empty r in
      let q = IdSet.fold constant_nil (derecurs env q) vars in
      let r = derecurs_regexp (fun p -> p) env r in
      PRegexp (r, q)
and derecurs_regexp vars env = function
  | Epsilon -> 
      PEpsilon
  | Elem p -> 
      PElem (vars (derecurs env p))
  | Seq (p1,p2) -> 
      PSeq (derecurs_regexp vars env p1, derecurs_regexp vars env p2)
  | Alt (p1,p2) -> 
      PAlt (derecurs_regexp vars env p1, derecurs_regexp vars env p2)
  | Star p -> 
      PStar (derecurs_regexp vars env p)
  | WeakStar p -> 
      PWeakStar (derecurs_regexp vars env p)
  | SeqCapture (x,p) -> 
      derecurs_regexp (fun p -> PAnd (vars p, PCapture x)) env p


and derecurs_def env b =
  let b = List.map (fun (v,p) -> (v,p,mk_derecurs_slot p.loc)) b in
  let n = 
    List.fold_left (fun env (v,p,s) -> Env.add v s env) env.penv_derec b in
  let env = { env with penv_derec = n } in
  List.iter (fun (v,p,s) -> s.pdescr <- derecurs env p) b;
  env

539
and derecurs_schema env = find_schema_descr
540
    
541
542
543
544
545
let rec fv_slot s =
  match s.fv with
    | Some x -> x
    | None ->
	if s.gen1 = !gen then IdSet.empty 
546
	else (s.gen1 <- !gen; fv_descr s.d)
547
and fv_descr = function
548
  | IDummy -> assert false
549
  | IType _ -> IdSet.empty
550
551
552
553
554
555
556
  | IOr (d1,d2)
  | IAnd (d1,d2)  
  | IDiff (d1,d2) -> IdSet.cup (fv_descr d1) (fv_descr d2)
  | IOptional d -> fv_descr d
  | ITimes (s1,s2)  
  | IXml (s1,s2)  
  | IArrow (s1,s2) -> IdSet.cup (fv_slot s1) (fv_slot s2)
557
558
  | IRecord (o,r) -> 
      List.fold_left IdSet.cup IdSet.empty (LabelMap.map_to_list fv_slot r)
559
  | ICapture x | IConstant (x,_) -> IdSet.singleton x
560

561
562
563
564
565
566
567
568
let compute_fv s =
  match s.fv with
    | Some x -> ()
    | None ->
	incr gen;
	let x = fv_slot s in
	s.fv <- Some x
	  
569
570
571
let check_no_capture loc s =
  match IdSet.pick s with
    | Some x ->  
572
	raise_loc_generic loc ("Capture variable not allowed: " ^ (Ident.to_string x))
573
    | None -> ()
574
    
575
576
577
let compile_slot_hash = DerecursTable.create 67
let compile_hash = DerecursTable.create 67

578
579
let todo_defs = ref []
let todo_fv = ref []
580
581
582
583
584
585
586
587

let rec compile p =
  try DerecursTable.find compile_hash p
  with Not_found ->
    let c = real_compile p in
    DerecursTable.replace compile_hash p c;
    c
and real_compile = function
588
  | PDummy -> assert false
589
590
591
592
  | PAlias v ->
      if v.ploop then
	raise_loc_generic v.ploc ("Unguarded recursion on type/pattern");
      v.ploop <- true;
593
      let r = compile v.pdescr in
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
      v.ploop <- false;
      r
  | PType t -> IType t
  | POr (t1,t2) -> IOr (compile t1, compile t2)
  | PAnd (t1,t2) -> IAnd (compile t1, compile t2)
  | PDiff (t1,t2) -> IDiff (compile t1, compile t2)
  | PTimes (t1,t2) -> ITimes (compile_slot t1, compile_slot t2)
  | PXml (t1,t2) -> IXml (compile_slot t1, compile_slot t2)
  | PArrow (t1,t2) -> IArrow (compile_slot t1, compile_slot t2)
  | POptional t -> IOptional (compile t)
  | PRecord (o,r) ->  IRecord (o, LabelMap.map compile_slot r)
  | PConstant (x,v) -> IConstant (x,v)
  | PCapture x -> ICapture x
  | PRegexp (r,q) -> compile_regexp r q
and compile_regexp r q =
  let memo = RE.create 17 in
610
611
612
  let add accu i = 
    match accu with None -> Some i | Some j -> Some (IOr (j,i)) in
  let get = function Some x -> x | None -> assert false in
613
  let rec queue accu = function
614
615
616
    | PRegexp (r,q) -> aux accu r q 
    | _ -> add accu (compile q)
  and aux accu r q =
617
618
619
620
    if RE.mem memo (r,q) then accu
    else (
      RE.add memo (r,q) ();
      match r with
621
	| PEpsilon -> queue accu q
622
623
624
625
626
627
628
629
630
631
632
	| PElem p ->
(* Be careful not to create pairs with same second component *)
	    let rec extract = function
	      | PConstant (x,v) -> `Const (x,v)
	      | POr (x,y) ->
		  (match extract x, extract y with
		    | `Pat x, `Pat y -> `Pat (POr (x,y))
		    | x, y -> `Or (x,y))
	      | p -> `Pat p
	    in
	    let rec mk accu = function
633
634
635
636
	      | `Const (x,v) -> 
		  (match queue None q with 
		    | Some q -> add accu (IAnd (IConstant (x,v), q))
		    | None -> accu)
637
	      | `Or (x,y) -> mk (mk accu x) y
638
639
	      | `Pat p -> 
		  add accu (ITimes (compile_slot p, compile_slot q))
640
641
	    in
	    mk accu (extract p)
642
643
644
645
646
647
	| PSeq (r1,r2) -> aux accu r1 (PRegexp (r2,q))
	| PAlt (r1,r2) -> aux (aux accu r1 q) r2 q
	| PStar r1 -> aux (aux accu r1 (PRegexp (r,q))) PEpsilon q
	| PWeakStar r1 -> aux (aux accu PEpsilon q) r1 (PRegexp (r,q))
    )
  in
648
  get (aux None r q)
649
650
and compile_slot p =
  try DerecursTable.find compile_slot_hash p
651
  with Not_found ->
652
653
654
    let s = mk_slot () in
    todo_defs := (s,p) :: !todo_defs;
    todo_fv := s :: !todo_fv;
655
    DerecursTable.add compile_slot_hash p s;
656
    s
657

658
      
659
let timer_fv = Stats.Timer.create "Typer.fv"
660
let rec flush_defs () = 
661
662
663
664
  match !todo_defs with
    | [] -> 
	Stats.Timer.start timer_fv;
	List.iter compute_fv !todo_fv;
665
666
	todo_fv := [];
	Stats.Timer.stop timer_fv ()
667
668
669
670
    | (s,p)::t -> 
	todo_defs := t; 
	s.d <- compile p; 
	flush_defs ()
671
672
673
674
675
676
677
678
679
680
681
682
683
684
	
let typ_nodes = SlotTable.create 67
let pat_nodes = SlotTable.create 67
		  
let rec typ = function
  | IType t -> t
  | IOr (s1,s2) -> Types.cup (typ s1) (typ s2)
  | IAnd (s1,s2) ->  Types.cap (typ s1) (typ s2)
  | IDiff (s1,s2) -> Types.diff (typ s1) (typ s2)
  | ITimes (s1,s2) -> Types.times (typ_node s1) (typ_node s2)
  | IXml (s1,s2) -> Types.xml (typ_node s1) (typ_node s2)
  | IArrow (s1,s2) -> Types.arrow (typ_node s1) (typ_node s2)
  | IOptional s -> Types.Record.or_absent (typ s)
  | IRecord (o,r) -> Types.record' (o, LabelMap.map typ_node r)
685
  | IDummy | ICapture _ | IConstant (_,_) -> assert false
686
      
687
and typ_node s : Types.Node.t =
688
689
690
691
  try SlotTable.find typ_nodes s
  with Not_found ->
    let x = Types.make () in
    SlotTable.add typ_nodes s x;
692
    Types.define x (typ s.d);
693
694
695
696
697
698
699
700
    x
      
let rec pat d : Patterns.descr =
  if IdSet.is_empty (fv_descr d)
  then Patterns.constr (typ d)
  else pat_aux d
    
and pat_aux = function
701
  | IDummy -> assert false
702
703
704
705
706
707
  | IOr (s1,s2) -> Patterns.cup (pat s1) (pat s2)
  | IAnd (s1,s2) -> Patterns.cap (pat s1) (pat s2)
  | IDiff (s1,s2) when IdSet.is_empty (fv_descr s2) ->
      let s2 = Types.neg (typ s2) in
      Patterns.cap (pat s1) (Patterns.constr s2)
  | IDiff _ ->
708
      raise (Patterns.Error "Differences are not allowed in patterns")
709
710
711
  | ITimes (s1,s2) -> Patterns.times (pat_node s1) (pat_node s2)
  | IXml (s1,s2) -> Patterns.xml (pat_node s1) (pat_node s2)
  | IOptional _ -> 
712
      raise (Patterns.Error "Optional fields are not allowed in record patterns")
713
714
715
716
717
718
719
720
721
722
723
724
725
726
  | IRecord (o,r) ->
      let pats = ref [] in
      let aux l s = 
	if IdSet.is_empty (fv_slot s) then typ_node s
	else
	  ( pats := Patterns.record l (pat_node s) :: !pats;
	    Types.any_node )
      in
      let constr = Types.record' (o,LabelMap.mapi aux r) in
      List.fold_left Patterns.cap (Patterns.constr constr) !pats
	(* TODO: can avoid constr when o=true, and all fields have fv *)
  | ICapture x -> Patterns.capture x
  | IConstant (x,c) -> Patterns.constant x c
  | IArrow _ ->
727
      raise (Patterns.Error "Arrows are not allowed in patterns")
728
729
730
731
732
733
  | IType _ -> assert false
      
and pat_node s : Patterns.node =
  try SlotTable.find pat_nodes s
  with Not_found ->
    let x = Patterns.make (fv_slot s) in
734
735
    try
      SlotTable.add pat_nodes s x;
736
      Patterns.define x (pat s.d);
737
738
739
      x
    with exn -> SlotTable.remove pat_nodes s; raise exn
      (* For the toplevel ... *)
740

741

742
let type_defs env b =
743
744
  List.iter 
    (fun (v,p) ->
745
746
       if Env.mem v env.ids
       then raise_loc_generic p.loc ("Identifier " ^ (Ident.to_string v) ^ " is already bound")
747
    ) b;
748
749
  let penv = derecurs_def (penv env) b in
  let b = List.map (fun (v,p) -> (v,p,compile (derecurs penv p))) b in
750
751
752
753
  flush_defs ();
  let b = 
    List.map 
      (fun (v,p,s) -> 
754
	 check_no_capture p.loc (fv_descr s);
755
756
757
	 let t = typ s in
	 if (p.loc <> noloc) && (Types.is_empty t) then
	   warning p.loc 
758
	     ("This definition yields an empty type for " ^ (Ident.to_string v));
759
	 (v,t)) b in
760
  List.iter (fun (v,t) -> Types.Print.register_global (Id.value v) t) b;
761
  b
762
763


764
765
766
767
768
let dump_types ppf env =
  Env.iter (fun v -> 
	      function 
		  (Type _) -> Format.fprintf ppf " %a" Ident.print v
		| _ -> ()) env.ids
769
770
let dump_type ppf env name =
  try
771
    (match Env.find (Ident.ident name) env.ids with
772
773
    | Type t -> Types.Print.print ppf t
    | _ -> raise Not_found)
774
775
  with Not_found ->
    raise (Error (Printf.sprintf "Type %s not found" (U.get_str name)))
776
777
778
779

let dump_schema_type ppf (k, s, n) =
  let descr = find_schema_descr' k s n in
  Types.Print.print ppf descr
780

781
let dump_ns ppf env =
782
  Ns.dump_table ppf env.ns
783

784

785
786
let do_typ loc r = 
  let s = compile_slot r in
787
  flush_defs ();
788
789
  check_no_capture loc (fv_slot s);
  typ_node s
790
   
791
792
let typ env p =
  do_typ p.loc (derecurs (penv env) p)
793
    
794
795
let pat env p = 
  let s = compile_slot (derecurs (penv env) p) in
796
797
798
  flush_defs ();
  try pat_node s
  with Patterns.Error e -> raise_loc_generic p.loc e
799
    | Location (loc,_,exn) when loc = noloc -> raise (Location (p.loc, `Full, exn))
800
801


802
803
(* II. Build skeleton *)

804

805
806
807
808
809
type type_fun = Types.t -> bool -> Types.t
let mk_unary_op = ref (fun _ _ -> assert false)
let typ_unary_op = ref (fun _ _ _ -> assert false)
let mk_binary_op = ref (fun _ _ -> assert false)
let typ_binary_op = ref (fun _ _ _ _ -> assert false)
810
811


812
module Fv = IdSet
813

814
815
816
type branch = Branch of Typed.branch * branch list

let cur_branch : branch list ref = ref []
817

818
let exp loc fv e =
819
820
  fv,
  { Typed.exp_loc = loc;
821
    Typed.exp_typ = Types.empty;
822
    Typed.exp_descr = e;
823
  }
824
825


826
827
let rec expr env loc = function
  | LocatedExpr (loc,e) -> expr env loc e
828
  | Forget (e,t) ->
829
      let (fv,e) = expr env loc e and t = typ env t in
830
831
      exp loc fv (Typed.Forget (e,t))
  | Var s -> 
832
833
834
835
      (match Ns.split_qname s with
	| "", id -> let id = ident id in
	  exp loc (Fv.singleton id) (Typed.Var id)
	| cu, id -> 
836
	    let cu = find_cu loc (ident (U.mk cu)) env in
837
	    exp loc Fv.empty (Typed.ExtVar (cu, ident id)))
838
  | Apply (e1,e2) -> 
839
      let (fv1,e1) = expr env loc e1 and (fv2,e2) = expr env loc e2 in
840
841
      exp loc (Fv.cup fv1 fv2) (Typed.Apply (e1,e2))
  | Abstraction a ->
842
      let iface = List.map (fun (t1,t2) -> (typ env t1, typ env t2)) 
843
844
845
846
847
848
849
		    a.fun_iface in
      let t = List.fold_left 
		(fun accu (t1,t2) -> Types.cap accu (Types.arrow t1 t2)) 
		Types.any iface in
      let iface = List.map 
		    (fun (t1,t2) -> (Types.descr t1, Types.descr t2)) 
		    iface in
850
      let (fv0,body) = branches env a.fun_body in
851
852
853
854
855
856
857
858
859
860
861
      let fv = match a.fun_name with
	| None -> fv0
	| Some f -> Fv.remove f fv0 in
      let e = Typed.Abstraction 
		{ Typed.fun_name = a.fun_name;
		  Typed.fun_iface = iface;
		  Typed.fun_body = body;
		  Typed.fun_typ = t;
		  Typed.fun_fv = fv
		} in
      exp loc fv e
862
  | (Integer _ | Char _ | Atom _ | Const _) as c -> 
863
      exp loc Fv.empty (Typed.Cst (const env loc c))
864
  | Pair (e1,e2) ->
865
      let (fv1,e1) = expr env loc e1 and (fv2,e2) = expr env loc e2 in
866
867
      exp loc (Fv.cup fv1 fv2) (Typed.Pair (e1,e2))
  | Xml (e1,e2) ->
868
      let (fv1,e1) = expr env loc e1 and (fv2,e2) = expr env loc e2 in
869
870
      exp loc (Fv.cup fv1 fv2) (Typed.Xml (e1,e2))
  | Dot (e,l) ->
871
872
      let (fv,e) = expr env loc e in
      exp loc fv (Typed.Dot (e,parse_label env loc l))
873
  | RemoveField (e,l) ->
874
875
      let (fv,e) = expr env loc e in
      exp loc fv (Typed.RemoveField (e,parse_label env loc l))
876
877
  | RecordLitt r -> 
      let fv = ref Fv.empty in
878
      let r = parse_record env loc
879
		(fun e -> 
880
		   let (fv2,e) = expr env loc e 
881
882
883
		   in fv := Fv.cup !fv fv2; e)
		r in
      exp loc !fv (Typed.RecordLitt r)
884
  | String (i,j,s,e) ->
885
      let (fv,e) = expr env loc e in
886
      exp loc fv (Typed.String (i,j,s,e))
887
  | Op (op,le) ->
888
      let (fvs,ltes) = List.split (List.map (expr env loc) le) in
889
      let fv = List.fold_left Fv.cup Fv.empty fvs in
890
      (try
891
892
893
	 (match ltes with
	    | [e] -> exp loc fv (Typed.UnaryOp (!mk_unary_op op env, e))
	    | [e1;e2] -> exp loc fv (Typed.BinaryOp (!mk_binary_op op env, e1,e2))
894
895
896
	    | _ -> assert false)
       with Not_found -> assert false)

897
  | Match (e,b) -> 
898
899
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
900
      exp loc (Fv.cup fv1 fv2) (Typed.Match (e, b))
901
  | Map (e,b) ->
902
903
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
904
905
      exp loc (Fv.cup fv1 fv2) (Typed.Map (e, b))
  | Transform (e,b) ->
906
907
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
908
      exp loc (Fv.cup fv1 fv2) (Typed.Transform (e, b))
909
  | Xtrans (e,b) ->
910
911
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
912
      exp loc (Fv.cup fv1 fv2) (Typed.Xtrans (e, b))
913
  | Validate (e,kind,schema,elt) ->
914
      let (fv,e) = expr env loc e in
915
      exp loc fv (Typed.Validate (e, kind, schema, elt))
916
  | Try (e,b) ->
917
918
      let (fv1,e) = expr env loc e
      and (fv2,b) = branches env b in
919
      exp loc (Fv.cup fv1 fv2) (Typed.Try (e, b))
920
  | NamespaceIn (pr,ns,e) ->
921
922
      let env = enter_ns pr ns env in
      expr env loc e
923
  | Ref (e,t) ->
924
      let (fv,e) = expr env loc e and t = typ env t in
925
      exp loc fv (Typed.Ref (e,t))
926
	      
927
  and branches env b = 
928
    let fv = ref Fv.empty in
929
    let accept = ref Types.empty in
930
    let branch (p,e) = 
931
932
      let cur_br = !cur_branch in
      cur_branch := [];
933
      let (fv2,e) = expr env noloc e in
934
      let br_loc = merge_loc p.loc e.Typed.exp_loc in
935
      let p = pat env p in
936
937
938
939
940
941
      (match Fv.pick (Fv.diff (Patterns.fv p) fv2) with
	| None -> ()
	| Some x ->
	    let x = U.to_string (Id.value x) in
	    warning br_loc 
	      ("The capture variable " ^ x ^ 
942
	       " is declared in the pattern but not used in the body of this branch. It might be a misspelled or undeclared type or name (if it isn't, use _ instead)."));
943
944
945
946
947
948
949
950
951
      let fv2 = Fv.diff fv2 (Patterns.fv p) in
      fv := Fv.cup !fv fv2;
      accept := Types.cup !accept (Types.descr (Patterns.accept p));
      let br = 
	{ 
	  Typed.br_loc = br_loc;
	  Typed.br_used = br_loc = noloc;
	  Typed.br_pat = p;
	  Typed.br_body = e } in
952
      cur_branch := Branch (br, !cur_branch) :: cur_br;
953
954
      br in
    let b = List.map branch b in
955
956
957
958
    (!fv, 
     { 
       Typed.br_typ = Types.empty; 
       Typed.br_branches = b; 
959
960
       Typed.br_accept = !accept;
       Typed.br_compiled = None;
961
962
     } 
    )
963

964
let expr env e = snd (expr env noloc e)
965

966
967
let let_decl env p e =
  { Typed.let_pat = pat env p;
968
    Typed.let_body = expr env e;
969
970
    Typed.let_compiled = None }

971
972
973

(* Hide global "typing/parsing" environment *)

974

975
976
(* III. Type-checks *)

977
978
open Typed

979
980
let require loc t s = 
  if not (Types.subtype t s) then raise_loc loc (Constraint (t, s))
981

982