types.ml 17.7 KB
Newer Older
1
2
open Recursive
open Printf
3

4

5

6
7
type label = int
type atom  = int
8

9
type const = Integer of int | Atom of atom | String of string
10

11
12
module I = struct
  type 'a t = {
13
    ints  : Intervals.t;
14
15
16
17
18
    atoms : atom Atoms.t;
    times : ('a * 'a) Boolean.t;
    arrow : ('a * 'a) Boolean.t;
    record: (label * bool * 'a) Boolean.t;
    strs  : Strings.t;
19
  }
20
		
21
  let empty = { 
22
23
24
    times = Boolean.empty; 
    arrow = Boolean.empty; 
    record= Boolean.empty;
25
26
    ints  = Intervals.empty;
    atoms = Atoms.empty;
27
    strs  = Strings.empty;
28
  }
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
  let any =  {
    times = Boolean.full; 
    arrow = Boolean.full; 
    record= Boolean.full; 
    ints  = Intervals.full;
    atoms = Atoms.full;
    strs  = Strings.any;
  }
	       
  let interval i j = { empty with ints = Intervals.atom (i,j) }
  let times x y = { empty with times = Boolean.atom (x,y) }
  let arrow x y = { empty with arrow = Boolean.atom (x,y) }
  let record label opt t = { empty with record = Boolean.atom (label,opt,t) }
  let atom a = { empty with atoms = Atoms.atom a }
  let string r = { empty with strs = Strings.Regexp.compile r }
  let constant = function
    | Integer i -> interval i i
    | Atom a -> atom a
    | String s -> string (Strings.Regexp.str s)

		   
  let any_record = { empty with record = any.record }

  let cup x y = { 
    times = Boolean.cup x.times y.times;
    arrow = Boolean.cup x.arrow y.arrow;
    record= Boolean.cup x.record y.record;
56
57
    ints  = Intervals.cup x.ints  y.ints;
    atoms = Atoms.cup x.atoms y.atoms;
58
    strs  = Strings.cup x.strs y.strs;
59
  }
60
61
62
63
  let cap x y = { 
    times = Boolean.cap x.times y.times;
    record= Boolean.cap x.record y.record;
    arrow = Boolean.cap x.arrow y.arrow;
64
65
    ints  = Intervals.cap x.ints  y.ints;
    atoms = Atoms.cap x.atoms y.atoms;
66
    strs  = Strings.cap x.strs y.strs;
67
  }
68
69
70
71
  let diff x y = { 
    times = Boolean.diff x.times y.times;
    arrow = Boolean.diff x.arrow y.arrow;
    record= Boolean.diff x.record y.record;
72
73
    ints  = Intervals.diff x.ints  y.ints;
    atoms = Atoms.diff x.atoms y.atoms;
74
    strs  = Strings.diff x.strs y.strs;
75
  }
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
  let neg x = diff any x
		   
  let equal e a b =
    if a.ints <> b.ints then raise NotEqual;
    if a.atoms <> b.atoms then raise NotEqual;
    if a.strs <> b.strs then raise NotEqual;
    Boolean.equal (fun (x1,x2) (y1,y2) -> e x1 y1; e x2 y2) a.times b.times;
    Boolean.equal (fun (x1,x2) (y1,y2) -> e x1 y1; e x2 y2) a.arrow b.arrow;
    Boolean.equal (fun (l1,o1,x1) (l2,o2,x2) -> 
		     if (l1 <> l2) || (o1 <> o2) then raise NotEqual;
		     e x1 x2) a.record b.record
      
  let map f a =
    { times = Boolean.map (fun (x1,x2) -> (f x1, f x2)) a.times;
      arrow = Boolean.map (fun (x1,x2) -> (f x1, f x2)) a.arrow;
      record= Boolean.map (fun (l,o,x) -> (l,o, f x)) a.record;
      ints  = a.ints;
      atoms = a.atoms;
      strs  = a.strs;
    }
96
    
97
98
99
100
101
102
103
104
  let hash h a =
    Hashtbl.hash (map h a)
      
  let iter f a =
    ignore (map f a)
      
  let deep = 4
end
105

106
107
108
109
	     
module Algebra = Recursive.Make(I)
include I
include Algebra
110

111
112
113
114
115
let check d =
  Boolean.check d.times;
  Boolean.check d.arrow;
  Boolean.check d.record;
  ()
116

117
118
119
(*
let define n d = check d; define n d
*)
120

121
122
123
124
let cons d =
  let n = make () in
  define n d;
  internalize n
125

126

127
128
129
130
module Positive =
struct
  type rhs = [ `Type of descr | `Cup of v list | `Times of v * v ]
  and v = { mutable def : rhs; mutable node : node option }
131
132


133
134
135
136
137
138
139
140
141
  let rec make_descr seen v =
    if List.memq v seen then empty
    else
      let seen = v :: seen in
      match v.def with
	| `Type d -> d
	| `Cup vl -> 
	    List.fold_left (fun acc v -> cup acc (make_descr seen v)) empty vl
	| `Times (v1,v2) -> times (make_node v1) (make_node v2)
142

143
144
145
146
147
148
149
150
151
  and make_node v =
    match v.node with
      | Some n -> n
      | None ->
	  let n = make () in
	  v.node <- Some n;
	  let d = make_descr [] v in
	  define n d;
	  n
152

153
154
155
156
157
158
159
  let forward () = { def = `Cup []; node = None }
  let def v d = v.def <- d
  let cons d = let v = forward () in def v d; v
  let ty d = cons (`Type d)
  let cup vl = cons (`Cup vl)
  let times d1 d2 = cons (`Times (d1,d2))
  let define v1 v2 = def v1 (`Cup [v2]) 
160

161
162
  let solve v = internalize (make_node v)
end
163

164

165
let get_record r =
166
  let add = SortedMap.add (fun (o1,t1) (o2,t2) -> (o1&&o2, cap t1 t2)) in
167
  let line (p,n) =
168
169
170
171
172
173
174
175
176
177
    let accu = List.fold_left 
		 (fun accu (l,o,t) -> add l (o,descr t) accu) [] p in
    List.fold_left 
      (fun accu (l,o,t) -> add l (not o,neg (descr t)) accu) accu n in
  List.map line r
    

let counter_label = ref 0
let label_table = Hashtbl.create 63
let label_names = Hashtbl.create 63
178

179
180
181
182
183
184
185
let label s =
  try Hashtbl.find label_table s
  with Not_found ->
    incr counter_label;
    Hashtbl.add label_table s !counter_label;
    Hashtbl.add label_names !counter_label s;
    !counter_label
186

187
188
let label_name l =
  Hashtbl.find label_names l
189

190
191
192
let mk_atom = label

let atom_name = label_name
193
194
195
196
197

(* Subtyping algorithm *)

let diff_t d t = diff d (descr t)
let cap_t d t = cap d (descr t)
198
let cap_product l = 
199
200
  List.fold_left 
    (fun (d1,d2) (t1,t2) -> (cap_t d1 t1, cap_t d2 t2))
201
    (any,any)
202
    l
203

204

205
module Assumptions = Set.Make(struct type t = descr let compare = compare end)
206

207
208
let memo = ref Assumptions.empty
let cache_false = ref Assumptions.empty
209

210
exception NotEmpty
211

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
let rec empty_rec d =
  if Assumptions.mem d !cache_false then false 
  else if Assumptions.mem d !memo then true
  else if not (Intervals.is_empty d.ints) then false
  else if not (Atoms.is_empty d.atoms) then false
  else if not (Strings.is_empty d.strs) then false
  else (
    let backup = !memo in
    memo := Assumptions.add d backup;
    if 
      (empty_rec_times d.times) &&
      (empty_rec_arrow d.arrow) &&
      (empty_rec_record d.record) 
    then true
    else (
      memo := backup;
      cache_false := Assumptions.add d !cache_false;
      false
    )
  )

and empty_rec_times c =
  List.for_all empty_rec_times_aux c

and empty_rec_times_aux (left,right) =
  let rec aux accu1 accu2 = function
    | (t1,t2)::right ->
        let accu1' = diff_t accu1 t1 in
        if not (empty_rec accu1') then aux accu1' accu2 right;
        let accu2' = diff_t accu2 t2 in
        if not (empty_rec accu2') then aux accu1 accu2' right
    | [] -> raise NotEmpty
244
  in
245
246
247
248
249
250
  let (accu1,accu2) = cap_product left in
  (empty_rec accu1) || (empty_rec accu2) ||
  (try aux accu1 accu2 right; true with NotEmpty -> false)

and empty_rec_arrow c =
  List.for_all empty_rec_arrow_aux c
251

252
253
254
and empty_rec_arrow_aux (left,right) =
  let single_right (s1,s2) =
    let rec aux accu1 accu2 = function
255
      | (t1,t2)::left ->
256
257
258
259
260
          let accu1' = diff_t accu1 t1 in
          if not (empty_rec accu1') then aux accu1 accu2 left;
          let accu2' = cap_t accu2 t2 in
          if not (empty_rec accu2') then aux accu1 accu2 left
      | [] -> raise NotEmpty
261
262
    in
    let accu1 = descr s1 in
263
264
    (empty_rec accu1) ||
    (try aux accu1 (diff any (descr s2)) left; true with NotEmpty -> false)
265
  in
266
  List.exists single_right right
267

268
269
270
and empty_rec_record c =
  let aux = List.exists (fun (_,(opt,t)) -> (not opt) && (empty_rec t)) in
  List.for_all aux (get_record c)
271

272
let is_empty d =
273
274
275
276
  let r = empty_rec d in
  memo := Assumptions.empty;
  cache_false := Assumptions.empty;
  r
277

278
279
280
let non_empty d = 
  not (is_empty d)

281
let subtype d1 d2 =
282
  is_empty (diff d1 d2)
283

284
285
286
(* Sample value *)
module Sample =
struct
287

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
let rec find f = function
  | [] -> raise Not_found
  | x::r -> try f x with Not_found -> find f r

type t =
  | Int of int
  | Atom of atom
  | String of string
  | Pair of t * t
  | Record of (label * t) list
  | Fun of (node * node) list

let rec gen_atom i l =
  if SortedList.mem l i then gen_atom (succ i) l  else i

let rec sample_rec memo d =
  if (Assumptions.mem d memo) || (is_empty d) then raise Not_found 
  else 
    try Int (Intervals.sample d.ints) with Not_found ->
    try Atom (Atoms.sample (gen_atom 0) d.atoms) with Not_found ->
    try String (Strings.sample d.strs) with Not_found ->
    try sample_rec_arrow d.arrow with Not_found ->

    let memo = Assumptions.add d memo in
    try sample_rec_times memo d.times with Not_found ->
    try sample_rec_record memo d.record with Not_found -> 
    raise Not_found


and sample_rec_times memo c = 
  find (sample_rec_times_aux memo) c

and sample_rec_times_aux memo (left,right) =
  let rec aux accu1 accu2 = function
    | (t1,t2)::right ->
        let accu1' = diff_t accu1 t1 in
        if non_empty accu1' then aux accu1' accu2 right else
          let accu2' = diff_t accu2 t2 in
          if non_empty accu2' then aux accu1 accu2' right else
	    raise Not_found
    | [] -> Pair (sample_rec memo accu1, sample_rec memo accu2)
  in
  let (accu1,accu2) = cap_product left in
  if (is_empty accu1) || (is_empty accu2) then raise Not_found;
  aux accu1 accu2 right
333

334
335
and sample_rec_arrow c =
  find sample_rec_arrow_aux c
336

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
and sample_rec_arrow_aux (left,right) =
  let single_right (s1,s2) =
    let rec aux accu1 accu2 = function
      | (t1,t2)::left ->
          let accu1' = diff_t accu1 t1 in
          if non_empty accu1' then aux accu1 accu2 left;
          let accu2' = cap_t accu2 t2 in
          if non_empty accu2' then aux accu1 accu2 left
      | [] -> raise NotEmpty
    in
    let accu1 = descr s1 in
    (is_empty accu1) ||
    (try aux accu1 (diff any (descr s2)) left; true with NotEmpty -> false)
  in
  if List.exists single_right right then raise Not_found
  else Fun left


and sample_rec_record memo c =
  Record (find (sample_rec_record_aux memo) (get_record c))
357

358
359
360
361
362
and sample_rec_record_aux memo fields =
  let aux acc (l,(o,t)) = if o then acc else (l, sample_rec memo t) :: acc in
  List.fold_left aux [] fields

let get x = sample_rec Assumptions.empty x
363
364
end

365

366
367
368
369
module Product =
struct
  type t = (descr * descr) list

370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
  let get d =
    let line accu (left,right) =
      let rec aux accu d1 d2 = function
	| (t1,t2)::right ->
	    let accu = 
	      let d1 = diff_t d1 t1 in
              if is_empty d1 then accu else aux accu d1 d2 right in
	    let accu =
              let d2 = diff_t d2 t2 in
              if is_empty d2 then accu else aux accu d1 d2 right in
	    accu
	| [] ->  (d1,d2) :: accu
      in
      let (d1,d2) = cap_product left in
      if (is_empty d1) || (is_empty d2) then accu else aux accu d1 d2 right
    in
    List.fold_left line [] d.times
387

388
389
  let pi1 = List.fold_left (fun acc (t1,_) -> cup acc t1) empty
  let pi2 = List.fold_left (fun acc (_,t2) -> cup acc t2) empty
390

391
392
393
394
395
396
  let restrict_1 rects pi1 =
    let aux accu (t1,t2) = 
      let t1 = cap t1 pi1 in if is_empty t1 then accu else (t1,t2)::accu in
    List.fold_left aux [] rects
  
  type normal = t
397

398
  let normal d =
399
400
401
402
403
404
405
    let res = ref [] in

    let add (t1,t2) =
      let rec loop t1 t2 = function
	| [] -> res := (ref (t1,t2)) :: !res
	| ({contents = (d1,d2)} as r)::l ->
	    (*OPT*) 
406
	    if d1 = t1 then r := (d1,cup d2 t2) else
407
408
409
410
411
412
413
414
415
416
417
418
419
420
	      
	      let i = cap t1 d1 in
	      if is_empty i then loop t1 t2 l
	      else (
		r := (i, cup t2 d2);
		let k = diff d1 t1 in 
		if non_empty k then res := (ref (k,d2)) :: !res;
		
		let j = diff t1 d1 in 
		if non_empty j then loop j t2 l
	      )
      in
      loop t1 t2 !res
    in
421
    List.iter add (get d);
422
423
    List.map (!) !res

424
  let any = { empty with times = any.times }
425
end
426

427

428
module Record = 
429
struct
430
  type t = (label, (bool * descr)) SortedMap.t list
431
432

  let get d =
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
    let line r = List.for_all (fun (l,(o,d)) -> o || non_empty d) r in
    List.filter line (get_record d.record)


  let restrict_label_present t l =
    let aux = SortedMap.change l (fun (_,d) -> (false,d)) (false,any) in
    List.map aux t

  let restrict_label_absent t l =
    let restr = function (true, _) -> (true,empty) | _ -> raise Exit in
    let aux accu r =  
      try SortedMap.change l restr (true,empty) r :: accu
      with Exit -> accu in
    List.fold_left aux [] t

  let restrict_field t l d =
    let restr (_,d1) = 
      let d1 = cap d d1 in 
      if is_empty d1 then raise Exit else (false,d1) in
    let aux accu r = 
      try SortedMap.change l restr (false,d) r :: accu 
      with Exit -> accu in
    List.fold_left aux [] t

  let project_field t l =
    let aux accu x =
      match List.assoc l x with
	| (false,t) -> cup accu t
	| _ -> raise Not_found
462
    in
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
    List.fold_left aux empty t

  type normal = 
      [ `Success
      | `Fail
      | `Label of label * (descr * normal) list * normal ]

  let rec merge_record n r =
    match (n, r) with
      | (`Success, _) | (_, []) -> `Success
      | (`Fail, r) ->
	  let aux (l,(o,t)) n = `Label (l, [t,n], if o then n else `Fail) in
	  List.fold_right aux r `Success
      | (`Label (l1,present,absent), (l2,(o,t2))::r') ->
	  if (l1 < l2) then
	    let pr =  List.map (fun (t,x) -> (t, merge_record x r)) present in
	    `Label (l1,pr,merge_record absent r)
	  else if (l2 < l1) then
	    let n' = merge_record n r' in
	    `Label (l2, [t2, n'], if o then n' else n)
	  else
	    let res = ref [] in
	    let aux a (t,x) = 
	      (let t = diff t t2 in 
	       if non_empty t then res := (t,x) :: !res);
	      (let t = cap t t2 in
	       if non_empty t then res := (t, merge_record x r') :: !res);
	      diff a t 
	    in
	    let t2 = List.fold_left aux t2 present in
	    let () = 
	      if non_empty t2 then 
	      res := (t2, merge_record `Fail r') :: !res in
	    let abs = if o then merge_record absent r' else absent in
	    `Label (l1, !res, abs)


  let normal d =
    List.fold_left merge_record `Fail (get d)
502

503
504
505
506
507
  let project d l =
    let aux accu x =
      match List.assoc l x with
	| (false,t) -> cup accu t
	| _ -> raise Not_found
508
    in
509
    List.fold_left aux empty (get_record d.record)
510

511
512
  let any = { empty with record = any.record }
  let is_empty d = d = []
513
514
end

515

516
module MapDescr = Map.Make(struct type t = descr let compare = compare end)
517

518
let memo_normalize = ref MapDescr.empty
519

520
521
let map_sort f l =
  SortedList.from_list (List.map f l)
522
523

let rec rec_normalize d =
524
  try MapDescr.find d !memo_normalize
525
526
  with Not_found ->
    let n = make () in
527
    memo_normalize := MapDescr.add d n !memo_normalize;
528
    let times = 
529
530
531
      map_sort
	(fun (d1,d2) -> [(rec_normalize d1, rec_normalize d2)],[])
	(Product.normal d)
532
    in
533
534
535
536
    let record = 
      map_sort
	(fun f -> map_sort (fun (l,(o,d)) -> (l,o,rec_normalize d)) f, [])
	(Record.get d)
537
    in
538
    define n { d with times = times; record = record };
539
540
541
    n

let normalize n =
542
  internalize (rec_normalize (descr n))
543
544
545
546


let apply t1 t2 = 
  failwith "apply: not yet implemented"
547
  
548

549
module Print =
550
struct
551
552
553
554
555
556
  let marks = Hashtbl.create 63
  let wh = ref []
  let count_name = ref 0
  let name () =
    incr count_name;
    "'a" ^ (string_of_int !count_name)
557

558
559
  let bool_iter f b =
    List.iter (fun (p,n) -> List.iter f p; List.iter f n) b
560

561
  let trivial b = b = Boolean.empty || b = Boolean.full
562

563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
  let worth_abbrev d = 
    not (trivial d.times && trivial d.arrow && trivial d.record) 

  let rec mark n =
    let i = id n and d = descr n in
    try 
      let r = Hashtbl.find marks i in
      if (!r = None) && (worth_abbrev d) then 
	(let na = name () in 
	 r := Some na;
	 wh := (na,d) :: !wh
	)
    with Not_found -> 
      Hashtbl.add marks i (ref None);
      mark_descr d
  and mark_descr d = 
    bool_iter (fun (n1,n2) -> mark n1; mark n2) d.times;
    bool_iter (fun (n1,n2) -> mark n1; mark n2) d.arrow;
    bool_iter (fun (l,o,n) -> mark n) d.record
582

583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
    
  let rec print_union ppf = function
    | [] -> Format.fprintf ppf "Empty"
    | [h] -> h ppf
    | h::t -> Format.fprintf ppf "@[%t |@ %a@]" h print_union t

  let print_atom ppf a = Format.fprintf ppf "`%s" (atom_name a)

  let rec print ppf n =
(*    Format.fprintf ppf "[%i]" (id n); *)
    match !(Hashtbl.find marks (id n)) with
      | Some n -> Format.fprintf ppf "%s" n
      | None -> print_descr ppf (descr n)
  and print_descr ppf d = 
    if d = any then Format.fprintf ppf "Any" else
    print_union ppf 
      (Intervals.print d.ints @
       Strings.print d.strs @
       Atoms.print "AnyAtom" print_atom d.atoms @
       Boolean.print "(Any,Any)" print_times d.times @
       Boolean.print "(Empty -> Any)" print_arrow d.arrow @
       Boolean.print "{ }" print_record d.record
605
      )
606
607
608
609
610
611
612
  and print_times ppf (t1,t2) =
    Format.fprintf ppf "@[(%a,%a)@]" print t1 print t2
  and print_arrow ppf (t1,t2) =
    Format.fprintf ppf "@[(%a -> %a)@]" print t1 print t2
  and print_record ppf (l,o,t) =
    Format.fprintf ppf "@[{ %s =%s %a }@]" 
      (label_name l) (if o then "?" else "") print t
613

614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
	  
  let end_print ppf =
    (match List.rev !wh with
       | [] -> ()
       | (na,d)::t ->
	   Format.fprintf ppf " where@ @[%s = %a" na print_descr d;
	   List.iter 
	     (fun (na,d) -> Format.fprintf ppf " and@ %s = %a" na print_descr d)
	     t;
	   Format.fprintf ppf "@]"
    );
    Format.fprintf ppf "@]";
    count_name := 0;
    wh := [];
    Hashtbl.clear marks

  let print ppf n =
    mark n;
    Format.fprintf ppf "@[%a" print n;
    end_print ppf

  let print_descr ppf d =
    mark_descr d;
    Format.fprintf ppf "@[%a" print_descr d;
    end_print ppf
 
640
641
end

642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
(*
let rec print_normal_record ppf = function
  | Success -> Format.fprintf ppf "Yes"
  | Fail -> Format.fprintf ppf "No"
  | FirstLabel (l,present,absent) ->
      Format.fprintf ppf "%s?@[<v>@\n" (label_name l);
      List.iter
        (fun (t,n) ->
	   Format.fprintf ppf "(%a)=>@[%a@]@\n" 
	     Print.print_descr t
	     print_normal_record n
	) present;
      if absent <> Fail then
	Format.fprintf ppf "(absent)=>@[%a@]@\n" print_normal_record absent;
      Format.fprintf ppf "@]" 
*)
658

659

660
661
(* 
let pr s = Types.Print.print Format.std_formatter (Syntax.make_type (Syntax.parse s));;
662

663
664
let pr' s = Types.Print.print Format.std_formatter 
   (Types.normalize (Syntax.make_type (Syntax.parse s)));;
665

666
667
668
BUG:
pr "'a | 'b where 'a = ('a , 'a) and 'b= ('b , 'b)";;
*)
669

670

671
672
673
674
675
676
(*
  let nr s =
    let t = Types.descr (Syntax.make_type (Syntax.parse s)) in
    let n = Types.normal_record' t.Types.record in
    Types.print_normal_record Format.std_formatter n;;
*)