mlstub.ml 14.5 KB
Newer Older
1
2
3
4
#load "q_MLast.cmo";;

(* TODO:
   - optimizations: generate labels and atoms only once.
5
   - MD5 checksum
6
   - translate record to open record on positive occurence
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
*)


open Mltypes
open Ident

module IntMap = 
  Map.Make(struct type t = int let compare : t -> t -> int = compare end)

module IntHash =
  Hashtbl.Make(struct type t = int let hash i = i let equal i j = i == j end)

(* Compute CDuce type *)

let memo_typ = IntHash.create 13

let atom lab = Types.atom (Atoms.atom (Atoms.V.mk_ascii lab))
let label lab = LabelPool.mk (Ns.empty, U.mk lab)
let bigcup f l = List.fold_left (fun accu x -> Types.cup accu (f x)) Types.empty l

let rec typ t =
  try IntHash.find memo_typ t.uid
  with Not_found ->
    let node = Types.make () in
    IntHash.add memo_typ t.uid node;
    Types.define node (typ_descr t.def);
    node

and typ_descr = function
  | Link t -> typ_descr t.def
  | Arrow (t,s) -> Types.arrow (typ t) (typ s)
  | Tuple tl -> Types.tuple (List.map typ tl)
  | PVariant l -> bigcup pvariant l
  | Variant (l,_) -> bigcup variant l
  | Record (l,_) ->
      let l = List.map (fun (lab,t) -> label lab, typ t) l in
      Types.record' (false,(LabelMap.from_list_disj l))
  | Abstract "int" -> Builtin_defs.caml_int
  | Abstract "char" -> Builtin_defs.char_latin1
  | Abstract "string" -> Builtin_defs.string_latin1
47
  | Abstract s -> Types.abstract (Types.Abstract.atom s)
48
  | Builtin ("list", [t]) -> Types.descr (Sequence.star_node (typ t))
49
  | Builtin ("Pervasives.ref", [t]) -> Builtin_defs.ref_type (typ t)
50
51
  | Builtin ("CDuce_all.Value.t", []) -> Types.any
  | Builtin ("unit", []) -> Sequence.nil_type
52
53
54
55
56
57
58
59
60
61
62
63
64
  | _ -> assert false
	   
and pvariant = function
  | (lab, None) -> atom lab
  | (lab, Some t) -> Types.times (Types.cons (atom lab)) (typ t)

and variant = function
  | (lab, []) -> atom lab
  | (lab, c) -> Types.tuple (Types.cons (atom lab) :: List.map typ c)


(* Syntactic tools *)

65
66
67
68
let var_counter = ref 0
let mk_var _ =
  incr var_counter;
  Printf.sprintf "x%i" !var_counter
69

70
let mk_vars = List.map mk_var
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

let loc = (-1,-1)

let let_in p e body =
  <:expr< let $list:[ p, e ]$ in $body$ >>

let atom_ascii lab =
  <:expr< Value.atom_ascii $str: String.escaped lab$ >>

let label_ascii lab =
  <:expr< Value.label_ascii $str: String.escaped lab$ >>

let pair e1 e2 = <:expr< Value.Pair ($e1$,$e2$) >>

let pmatch e l = 
  let l = List.map (fun (p,e) -> p,None,e) l in
  <:expr< match $e$ with [ $list:l$ ] >>

let rec matches ine oute = function
  | [v1;v2] ->
      let_in <:patt<($lid:v1$,$lid:v2$)>> <:expr< Value.get_pair $ine$ >> oute
  | v::vl ->
93
94
95
      let r = mk_var () in
      let oute = matches <:expr< $lid:r$ >> oute vl in
      let_in <:patt<($lid:v$,$lid:r$)>> <:expr< Value.get_pair $ine$ >> oute
96
97
98
99
100
  | [] -> assert false

let list_lit el =
  List.fold_right (fun a e -> <:expr< [$a$ :: $e$] >>) el <:expr< [] >>

101
102
103
104
105
106
107
108
let protect e f =
  match e with
    | <:expr< $lid:x$ >> -> f e
    | e ->
	let x = mk_var () in
	let r = f <:expr< $lid:x$ >> in
	<:expr< let $lid:x$ = $e$ in $r$ >> 

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
(* Registered types *)

module HashTypes = Hashtbl.Make(Types)
let registered_types = HashTypes.create 13
let nb_registered_types = ref 0

let register_type t =
  let n =
    try HashTypes.find registered_types t
    with Not_found ->
      let i = !nb_registered_types in
      HashTypes.add registered_types t i;
      incr nb_registered_types;
      i 
  in
  <:expr< types.($int:string_of_int n$) >>

let get_registered_types () =
  let a = Array.make !nb_registered_types Types.empty in
  HashTypes.iter (fun t i -> a.(i) <- t) registered_types;
  a

131
132
(* OCaml -> CDuce conversions *)

133

134
135
136
137
138
139
140
141
142
let to_cd_gen = ref []

let to_cd_fun_name t = 
  Printf.sprintf "to_cd_%i" t.uid

let to_cd_fun t =
  to_cd_gen := t :: !to_cd_gen;
  to_cd_fun_name t

143
144
145
146
147
148
149
150
151
let to_ml_gen = ref []

let to_ml_fun_name t =
  Printf.sprintf "to_ml_%i" t.uid

let to_ml_fun t =
  to_ml_gen := t :: !to_ml_gen;
  to_ml_fun_name t

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
let rec tuple = function
  | [v] -> v
  | v::l -> <:expr< Value.Pair ($v$, $tuple l$) >> 
  | [] -> assert false

let pat_tuple vars = 
  let pl = List.map (fun id -> <:patt< $lid:id$ >>) vars in
  <:patt< ($list:pl$) >>


let rec to_cd e t =
(*  Format.fprintf Format.std_formatter "to_cd %a [uid=%i; recurs=%i]@."
    Mltypes.print t t.uid t.recurs; *)
  if t.recurs > 0 then <:expr< $lid:to_cd_fun t$ $e$ >>
  else to_cd_descr e t.def

and to_cd_descr e = function
  | Link t -> to_cd e t
170
  | Arrow (t,s) -> 
171
      (* let y = <...> in Value.Abstraction ([t,s], fun x -> s(y (t(x))) *)
172
173
174
175
176
177
178
179
180
181
      protect e 
      (fun y ->
	 let x = mk_var () in
	 let arg = to_ml <:expr< $lid:x$ >> t in
	 let res = to_cd <:expr< $y$ $arg$ >> s in
	 let abs = <:expr< fun $lid:x$ -> $res$ >> in
	 let tt = register_type (Types.descr (typ t)) in
	 let ss = register_type (Types.descr (typ s)) in
	 <:expr< Value.Abstraction ([($tt$,$ss$)],$abs$) >>
      )
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
  | Tuple tl -> 
      (* let (x1,...,xn) = ... in Value.Pair (t1(x1), Value.Pair(...,tn(xn))) *)
      let vars = mk_vars tl in
      let_in (pat_tuple vars) e (tuple (tuple_to_cd tl vars))
  | PVariant l ->
      (* match <...> with 
	 | `A -> Value.atom_ascii "A" 
	 | `B x -> Value.Pair (Value.atom_ascii "B",t(x))
      *)
      let cases = 
	List.map
	  (function 
	     | (lab,None) -> <:patt< `$lid:lab$ >>, atom_ascii lab
	     | (lab,Some t) -> 
		 <:patt< `$lid:lab$ x >>, 
		 pair (atom_ascii lab) (to_cd <:expr< x >> t)
	  ) l in
      pmatch e cases
  | Variant (l,_) ->
      (* match <...> with 
	 | A -> Value.atom_ascii "A" 
	 | B (x1,x2,..) -> Value.Pair (Value.atom_ascii "B",...,Value.Pair(tn(x)))
      *)
      let cases = 
	List.map
	  (function 
	     | (lab,[]) -> <:patt< $uid:lab$ >>, atom_ascii lab
	     | (lab,tl) -> 
		 let vars = mk_vars tl in
		 <:patt< $uid:lab$ $pat_tuple vars$ >>,
		 tuple (atom_ascii lab :: tuple_to_cd tl vars)
	  ) l in
      pmatch e cases
  | Record (l,_) ->
      (* let x = <...> in Value.record [ l1,t1(x.l1); ...; ln,x.ln ] *)
217
218
219
220
221
222
223
224
225
226
      protect e
      (fun x ->
	 let l = 
	   List.map
	     (fun (lab,t) ->
		let e = to_cd <:expr<$x$.$lid:lab$>> t in
		<:expr< ($label_ascii lab$, $e$) >>)
	     l
	 in
	 <:expr< Value.record $list_lit l$ >>)
227
      
228
229
230
  | Abstract "int" -> <:expr< Value.ocaml2cduce_int $e$ >>
  | Abstract "char" -> <:expr< Value.ocaml2cduce_char $e$ >>
  | Abstract "string" -> <:expr< Value.ocaml2cduce_string $e$ >>
231
  | Abstract s -> <:expr< Value.abstract $str:String.escaped s$ $e$ >>
232
233
234
  | Builtin ("list",[t]) ->
      (* Value.sequence_rev (List.rev_map fun_t <...>) *)
      <:expr< Value.sequence_rev (List.rev_map $lid:to_cd_fun t$ $e$) >>
235
  | Builtin ("Pervasives.ref",[t]) ->
236
237
238
239
240
241
242
243
244
245
246
247
248
      (* let x = <...> in 
         Value.mk_ext_ref t (fun () -> t(!x)) (fun y -> x := t'(y)) *)
      protect e 
      (fun e ->
	 let y = mk_var () in
	 let tt = register_type (Types.descr (typ t)) in
	 let get_x = <:expr< $e$.val >> in
	 let get = <:expr< fun () -> $to_cd get_x t$ >> in
	 let tr_y = to_ml <:expr< $lid:y$ >> t in
	 let set = <:expr< fun $lid:y$ -> $e$.val := $tr_y$ >> in
	 <:expr< Value.mk_ext_ref $tt$ $get$ $set$ >>
      )

249
250
  | Builtin ("CDuce_all.Value.t", []) -> e
  | Builtin ("unit", []) -> <:expr< do { $e$; Value.nil } >>
251
252
253
254
255
256
257
258
  | _ -> assert false

and tuple_to_cd tl vars = List.map2 (fun t id -> to_cd <:expr< $lid:id$ >> t) tl vars

(* CDuce -> OCaml conversions *)



259
and to_ml e t =
260
261
262
263
264
265
266
267
(*  Format.fprintf Format.std_formatter "to_ml %a@."
    Mltypes.print t; *)
  if t.recurs > 0 then <:expr< $lid:to_ml_fun t$ $e$ >>
  else to_ml_descr e t.def

and to_ml_descr e = function
  | Link t -> to_ml e t
  | Arrow (t,s) -> 
268
      (* let y = <...> in fun x -> s(Eval.eval_apply y (t(x))) *)
269
270
271
272
273
274
275
      protect e 
      (fun y ->
	 let x = mk_var () in
	 let arg = to_cd <:expr< $lid:x$ >> t in
	 let res = to_ml <:expr< Eval.eval_apply $y$ $arg$ >> s in
	 <:expr< fun $lid:x$ -> $res$ >>
      )
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

  | Tuple tl -> 
      (* let (x1,r) = Value.get_pair <...> in
         let (x2,r) = Value.get_pair r in
         ...
         let (xn-1,xn) = Value.get_pair r in
	 (t1(x1),...,tn(xn)) *)

      let vars = mk_vars tl in
      let el = tuple_to_ml tl vars in
      matches e <:expr< ($list:el$) >> vars
  | PVariant l ->
      (* match Value.get_variant <...> with 
	 | "A",None -> `A 
	 | "B",Some x -> `B (t(x))
291
	 | _ -> assert false
292
      *)
293
      let x = mk_var () in
294
295
296
297
298
299
300
      let cases = 
	List.map 
	  (function 
	     | (lab,None) -> 
		 <:patt< ($str: String.escaped lab$, None) >>,
		 <:expr< `$lid:lab$ >>
	     | (lab,Some t) ->
301
302
303
304
		 let x = mk_var () in
		 let ex = <:expr< $lid:x$ >> in
		 <:patt< ($str: String.escaped lab$, Some $lid:x$) >>,
		 <:expr< `$lid:lab$ $to_ml ex t$ >>
305
	  ) l in
306
      let cases = cases @ [ <:patt< _ >>, <:expr< assert false >> ] in
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
      pmatch <:expr< Value.get_variant $e$ >> cases
  | Variant (l,false) ->
      failwith "Private Sum type"
  | Variant (l,true) ->
      (* match Value.get_variant <...> with 
	 | "A",None -> A 
	 | "B",Some x -> let (x1,r) = x in ... 
      *)
      let cases = 
	List.map 
	  (function 
	     | (lab,[]) -> 
		 <:patt< ($str: String.escaped lab$, None) >>,
		 (match lab with (* Stupid Camlp4 *)
		    | "true" -> <:expr< True >>
		    | "false" -> <:expr< False >>
		    | lab -> <:expr< $lid:lab$ >>)
	     | (lab,[t]) ->
325
326
327
328
		 let x = mk_var () in
		 let ex = <:expr< $lid:x$ >> in
		 <:patt< ($str: String.escaped lab$, Some $lid:x$) >>,
		 <:expr< $lid:lab$ $to_ml ex t$ >>
329
330
331
	     | (lab,tl) ->
		 let vars = mk_vars tl in
		 let el = tuple_to_ml tl vars in
332
333
334
335
		 let x = mk_var () in
		 <:patt< ($str: String.escaped lab$, Some $lid:x$) >>,
		 matches <:expr< $lid:x$ >> 
		         <:expr< $lid:lab$ ($list:el$) >> vars
336
	  ) l in
337
      let cases = cases @ [ <:patt< _ >>, <:expr< assert False >> ] in
338
339
340
341
342
343
      pmatch <:expr< Value.get_variant $e$ >> cases
  | Record (l,false) ->
      failwith "Private Record type"
  | Record (l,true) ->
      (* let x = <...> in
	 { l1 = t1(Value.get_field x "l1"); ... } *)
344
345
346
347
348
349
350
351
352
      protect e 
      (fun x ->
	 let l = 
	   List.map
	     (fun (lab,t) ->
		(<:patt< $uid:lab$>>,
		 to_ml 
		 <:expr< Value.get_field $x$ $label_ascii lab$ >> t)) l in
	 <:expr< {$list:l$} >>)
353

354
355
356
  | Abstract "int" -> <:expr< Value.cduce2ocaml_int $e$ >>
  | Abstract "char" -> <:expr< Value.cduce2ocaml_char $e$ >>
  | Abstract "string" -> <:expr< Value.cduce2ocaml_string $e$ >>
357
  | Abstract s -> <:expr< Value.get_abstract $e$ >>
358
359
360
  | Builtin ("list",[t]) ->
      (* List.rev_map fun_t (Value.get_sequence_rev <...> *)
      <:expr< List.rev_map $lid:to_ml_fun t$ (Value.get_sequence_rev $e$) >>
361
362
363
364
365
  | Builtin ("Pervasives.ref",[t]) ->
      (* ref t(Eval.eval_apply (Value.get_field <...> "get") Value.nil)  *)
      let e = <:expr< Value.get_field $e$ $label_ascii "get"$ >> in
      let e = <:expr< Eval.eval_apply $e$ Value.nil >> in
      <:expr< Pervasives.ref $to_ml e t$ >>
366
367
  | Builtin ("CDuce_all.Value.t", []) -> e
  | Builtin ("unit", []) -> <:expr< ignore $e$ >>
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
  | _ -> assert false

and tuple_to_ml tl vars = List.map2 (fun t id -> to_ml <:expr< $lid:id$ >> t) tl vars


let to_ml_done = IntHash.create 13
let to_cd_done = IntHash.create 13

let global_transl () = 
  let defs = ref [] in
  let rec aux hd tl gen don fun_name to_descr =
    gen := tl;
    if not (IntHash.mem don hd.uid) then (
      IntHash.add don hd.uid ();
      let p = <:patt< $lid:fun_name hd$ >> in
      let e = <:expr< fun x -> $to_descr <:expr< x >> hd.def$ >> in
      defs := (p,e) :: !defs
    );
    loop ()
  and loop () = match !to_cd_gen,!to_ml_gen with
    | hd::tl,_ -> aux hd tl to_cd_gen to_cd_done to_cd_fun_name to_cd_descr
    | _,hd::tl -> aux hd tl to_ml_gen to_ml_done to_ml_fun_name to_ml_descr
    | [],[] -> ()
  in
  loop ();
  !defs

(* Check type constraints and generate stub code *)

397
398
let err_ppf = Format.err_formatter

399
400
let exts = ref []

401
let check_value ty_env c_env (s,caml_t,t) =
402
403
404
405
406
  (* Find the type for the value in the CDuce module *)
  let id = Id.mk (U.mk s) in
  let vt = 
    try Typer.find_value id ty_env
    with Not_found ->
407
408
      Format.fprintf err_ppf
      "The interface exports a value %s which is not available in the module@." s;
409
410
411
412
413
414
415
416
417
418
      exit 1
  in

  (* Compute expected CDuce type *)
  let et = Types.descr (typ t) in

  (* Check subtyping *)
  if not (Types.subtype vt et) then
    (
      Format.fprintf
419
420
421
422
423
       err_ppf
       "The type for the value %s is invalid@\n\
        Expected Caml type:@[%a@]@\n\
        Expected CDuce type:@[%a@]@\n\
        Inferred type:@[%a@]@."
424
       s
425
       print_ocaml caml_t
426
427
428
429
430
431
432
       Types.Print.print et
       Types.Print.print vt;
      exit 1
    );
   
  (* Generate stub code *)
  (* let x = t(Eval.get_slot cu slot) *)
433
  let x = mk_var () in
434
435
  let slot = Compile.find_slot id c_env in
  let e = to_ml <:expr< Eval.get_slot cu $int:string_of_int slot$ >> t in
436
  <:patt< $uid:s$ >>, <:expr< C.$uid:x$ >>, (<:patt< $uid:x$ >>, e)
437

438
let stub name ty_env c_env values =
439
  let items = List.map (check_value ty_env c_env) values in
440
441
442
443
444
445
446
447
  let exts = 
    List.map 
      (fun (s,i,t) ->
	 let c = to_cd <:expr< $lid:s$ >> t in
	 <:str_item< Eval.set_slot cu $int:string_of_int i$ $c$ >>
      ) !exts in


448
449
  let g = global_transl () in

450
451
452
453
454
455
456
457
458
459
460
  (* 
     let (v1,v2,...,vn) = 
     let module C = struct
      let cu = ...
      open CDuce_all
      let types = ...
      let rec <global translation functions>
      <fills external slots>
      <run the unit>
      let <stubs for values>
     end in (C.x1,...,C.xn)
461
462
  *)

463
464
465
466
467
  let items_def = List.map (fun (_,_,d) -> d) items in
  let items_expr = List.map (fun (_,e,_) -> e)  items in
  let items_pat = List.map (fun (p,_,_) -> p) items in

  let m = 
468
    [ <:str_item< open CDuce_all >>;
469
470
471
472
473
474
475
476
477
478
479
480
      <:str_item< value types = Librarian.registered_types cu >> ] @
    (if g = [] then [] else [ <:str_item< value rec $list:g$ >> ]) @
    [ <:str_item< declare $list:exts$ end >>;
    <:str_item< Librarian.run cu >> ] @
    (if items = [] then [] else [ <:str_item< value $list:items_def$ >> ]) in

  let items_expr = 
    match items_expr with 
      | [] -> <:expr< () >> 
      | l -> <:expr< ($list:l$) >> in

  <:patt< ($list:items_pat$) >>, m, items_expr
481
482


483
let () =
484
485
486
487
  Librarian.stub_ml := 
  (fun cu ty_env c_env ->
     try
       let name = String.capitalize cu in
488
489
490
491
492
       let (prolog, values) = 
	 try Mltypes.read_cmi name
	 with Not_found ->  
	   Printf.eprintf "Warning: no caml interface\n";
	   ("",[]) in
493
494
495
       let code = stub cu ty_env c_env values in
       Some (Obj.magic (prolog,code)),
       get_registered_types ()
496
     with Mltypes.Error s -> raise (Location.Generic s)
497
498
499
500
501
502
503
504
505
506
507
508
509
  );

  Externals.register_external :=
  (fun s i ->
     let t = 
       try Mltypes.find_value s 
       with Not_found ->
	 Printf.eprintf "Cannot resolve the external symbol %s\n" s;
	 exit 1
     in
     exts := (s, i, t) :: !exts;
     fun () -> Types.descr (typ t)
  )