boolVar.ml 13.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
let (<) : int -> int -> bool = (<)
let (>) : int -> int -> bool = (>)
let (=) : int -> int -> bool = (=)


module type E =
sig
  type elem
  include Custom.T

  val empty : t
  val full  : t
  val cup   : t -> t -> t
  val cap   : t -> t -> t
  val diff  : t -> t -> t
  val atom  : elem -> t

end

module type S =
sig
  type elem
  include Custom.T

  val get: t -> (elem list * elem list) list
  val get': t -> (elem list * (elem list) list) list

  val empty : t
  val full  : t
Pietro Abate's avatar
Pietro Abate committed
30 31 32
  (* same as full, but we keep it for the moment to avoid chaging 
   * the code everywhere *)
  val any  : t
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
  val cup   : t -> t -> t
  val cap   : t -> t -> t
  val diff  : t -> t -> t
  val atom  : elem -> t

  val iter: (elem-> unit) -> t -> unit

  val compute: empty:'b -> full:'b -> cup:('b -> 'b -> 'b) 
    -> cap:('b -> 'b -> 'b) -> diff:('b -> 'b -> 'b) ->
    atom:(elem -> 'b) -> t -> 'b

  val is_empty : t -> bool

  val splitvars : t -> t * t

  val print: string -> t -> (Format.formatter -> unit) list

  val trivially_disjoint: t -> t -> bool
end

(* ternary BDD
 * where the nodes are Atm of X.t | Var of String.t
 * Variables are always before Values
 * All the leaves are then base types 
 *
 * we add a third case when two leaves of the bdd are of the same
 * kind, that's it Val of t1 , Val of t2
 *
 * This representation can be used for all kinds.
 * Intervals, Atoms and Chars can be always merged (for union and intersection)
 * Products can be merged for intersections
 * Arrows can be never merged
 *
 * extract_var : copy the orginal tree and on one copy put to zero all 
 * leaves that have an Atm on the other all leaves that have a Var
 *
 * *)

Pietro Abate's avatar
Pietro Abate committed
71
(* module type MAKE = functor (T : E) -> S with type elem = T.t Custom.pairvar *)
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248

module Make(T : E) =
struct
  (* ternary decision trees . cf section 11.3.3 Frish PhD *)
  (* plus variables *)
  (* Custom.Atm are containers (Atoms, Chars, Intervals, Pairs ... )
   * Custom.Var are String
   *)
  module X = Custom.Var(T)
  type elem = T.t Custom.pairvar
  type t =
    | True
    | False
    | Split of int * elem * t * t * t

  let rec equal a b =
    (a == b) ||
    match (a,b) with
      | Split (h1,x1,p1,i1,n1), Split (h2,x2,p2,i2,n2) ->
	  (h1 == h2) &&
	  (equal p1 p2) && (equal i1 i2) &&
	  (equal n1 n2) && (X.equal x1 x2)
      | _ -> false

(* Idea: add a mutable "unique" identifier and set it to
   the minimum of the two when egality ... *)

  let rec compare a b =
    if (a == b) then 0 
    else match (a,b) with
      | Split (h1,x1, p1,i1,n1), Split (h2,x2, p2,i2,n2) ->
	  if h1 < h2 then -1 else if h1 > h2 then 1 
	  else let c = X.compare x1 x2 in if c <> 0 then c
	  else let c = compare p1 p2 in if c <> 0 then c
	  else let c = compare i1 i2 in if c <> 0 then c 
	  else compare n1 n2
      | True,_  -> -1
      | _, True -> 1
      | False,_ -> -1
      | _,False -> 1

  let rec hash = function
    | True -> 1
    | False -> 0
    | Split(h, _,_,_,_) -> h

  let compute_hash x p i n = 
	(X.hash x) + 17 * (hash p) + 257 * (hash i) + 16637 * (hash n)

  let rec check = function
    | True | False -> ()
    | Split (h,x,p,i,n) ->
	assert (h = compute_hash x p i n);
	(match p with Split (_,y,_,_,_) -> assert (X.compare x y < 0) | _ -> ());
	(match i with Split (_,y,_,_,_) -> assert (X.compare x y < 0) | _ -> ());
	(match n with Split (_,y,_,_,_) -> assert (X.compare x y < 0) | _ -> ());
	X.check x; check p; check i; check n

  let atom x =
    let h = X.hash x + 17 in (* partial evaluation of compute_hash... *)
    Split (h, x,True,False,False)
 
  let neg_atom x =
    let h = X.hash x + 16637 in (* partial evaluation of compute_hash... *)
    Split (h, x,False,False,True)

  let rec iter f = function
    | Split (_, x, p,i,n) -> f x; iter f p; iter f i; iter f n
    | _ -> ()

  let rec dump ppf = function
    | True -> Format.fprintf ppf "+"
    | False -> Format.fprintf ppf "-"
    | Split (_,x, p,i,n) -> 
	Format.fprintf ppf "%i(@[%a,%a,%a@])" 
	(* X.dump x *) (X.hash x) dump p dump i dump n

  let rec print f ppf = function
    | True -> Format.fprintf ppf "Any"
    | False -> Format.fprintf ppf "Empty"
    | Split (_, x, p,i, n) ->
	let flag = ref false in
	let b () = if !flag then Format.fprintf ppf " | " else flag := true in
	(match p with 
	   | True -> b(); Format.fprintf ppf "%a" f x
	   | False -> ()
	   | _ -> b (); Format.fprintf ppf "%a & @[(%a)@]" f x (print f) p );
	(match i with 
	   | True -> assert false;
	   | False -> ()
	   | _ -> b(); print f ppf i);
	(match n with 
	   | True -> b (); Format.fprintf ppf "@[~%a@]" f x
	   | False -> ()
	   | _ -> b (); Format.fprintf ppf "@[~%a@] & @[(%a)@]" f x (print f) n)
	
  let print a = function
    | True -> [ fun ppf -> Format.fprintf ppf "%s" a ]
    | False -> []
    | c -> [ fun ppf -> print X.dump ppf c ]

  (* XXX : since every path contains 1 Atm, I should be able to
   * descend on the first path and get a sample from the leaf *)    
  let rec sample = function
    | Split (_,Custom.Var _, p,i,n) ->
        begin match sample p with
        |Some x -> Some x
        |None ->
            begin match sample i with
            |Some x -> Some x
            |None ->
                begin match sample n with
                |Some x -> Some x
                |None -> None
                end
            end
        end
    | Split (_,Custom.Atm x, _,_,_) -> Some x
    | _ -> None

  let rec contains y x =
    match x,y with
    |True,_ |False,_ -> false
    |Split (_,Custom.Var a, p,i,n),Custom.Var b ->
        (a == b) || (contains y p) || (contains y i) || (contains y n)
    |Split (_,Custom.Atm a, p,i,n),Custom.Atm b ->
        ((T.cap a b) == T.empty) || (contains y p) || (contains y i) || (contains y n)
    |Split (_,_, p,i,n),_ ->
        (contains y p) || (contains y i) || (contains y n)

  let rec get accu pos neg = function
    | True -> (pos,neg) :: accu
    | False -> accu
    | Split (_,x, p,i,n) ->
	(*OPT: can avoid creating this list cell when pos or neg =False *)
	let accu = get accu (x::pos) neg p in
	let accu = get accu pos (x::neg) n in
	let accu = get accu pos neg i in
	accu
	  
  let get x = get [] [] [] x

  let rec get' accu pos neg = function
    | True -> (pos,neg) :: accu
    | False -> accu
    | Split (_,x,p,i,n) ->
	let accu = get' accu (x::pos) neg p in
	let rec aux l = function
	  | Split (_,x,False,i,n') when equal n n' ->
	      aux (x :: l) i
	  | i ->
	      let accu = get' accu pos (l :: neg) n in
	      get' accu pos neg i
	in
	aux [x] i

  let get' x = get' [] [] [] x

  let compute ~empty ~full ~cup ~cap ~diff ~atom b =
    let rec aux = function
      | True -> full
      | False -> empty
      | Split(_,x, p,i,n) ->
	  let p = cap (atom x) (aux p)
	  and i = aux i
	  and n = diff (aux n) (atom x) in
	  cup (cup p i) n
    in
    aux b
      
(* Invariant: correct hash value *)

  let split0 x pos ign neg =
    Split (compute_hash x pos ign neg, x, pos, ign, neg)

  let empty = False
  let full = True
Pietro Abate's avatar
Pietro Abate committed
249
  let any = True
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266

  let is_empty t = (t == empty)

(* Invariants:
     Split (x, pos,ign,neg) ==>  (ign <> True), (pos <> neg)
*)

  let rec has_true = function
    | [] -> false
    | True :: _ -> true
    | _ :: l -> has_true l

  let rec has_same a = function
    | [] -> false
    | b :: l -> (equal a b) || (has_same a l)

  let rec split x p i n =
Pietro Abate's avatar
Pietro Abate committed
267
    if X.equal x (Custom.Atm T.empty) then False 
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
    else if i == True then True 
    else if equal p n then p ++ i
    else let p = simplify p [i] and n = simplify n [i] in
    if equal p n then p ++ i
    else split0 x p i n

  and simplify a l =
    match a with
      | False -> False
      | True -> if has_true l then False else True
      | Split (_,Custom.Atm x, False,False,True) -> split (Custom.Atm(T.diff T.full x)) True False False
      | Split (_,x,p,i,n) ->
	  if (has_true l) || (has_same a l) then False
	  else s_aux2 a x p i n [] [] [] l
  and s_aux2 a x p i n ap ai an = function
    | [] -> 
	let p = simplify p ap 
	and n = simplify n an
	and i = simplify i ai in
	if equal p n then p ++ i else split0 x p i n
    | b :: l -> s_aux3 a x p i n ap ai an l b 
  and s_aux3 a x p i n ap ai an l = function
    | False -> s_aux2 a x p i n ap ai an l
    | True -> assert false
    | Split (_,x2,p2,i2,n2) as b ->
	if equal a b then False 
	else let c = X.compare x2 x in
	if c < 0 then s_aux3 a x p i n ap ai an l i2
	else if c > 0 then s_aux2 a x p i n (b :: ap) (b :: ai) (b :: an) l
	else s_aux2 a x p i n (p2 :: i2 :: ap) (i2 :: ai) (n2 :: i2 :: an) l

  (* Inv : all leafs are of type Val are always merged *)
  (* union *)
  and ( ++ ) a b = if a == b then a
  else match (a,b) with
    | True, _ | _, True -> True
    | False, a | a, False -> a
    
    | Split (_,Custom.Atm x1, True,False,False), Split (_,Custom.Atm x2, True,False,False) ->
        split (Custom.Atm (T.cup x1 x2)) True False False

    | Split (_,Custom.Atm x1, False,False,True), Split (_,Custom.Atm x2, False,False,True) ->
        split (Custom.Atm (T.cup (T.diff T.full x1) (T.diff T.full x2))) True False False

    | Split (_,Custom.Atm x1, True,False,False), Split (_,Custom.Atm x2, False,False,True) ->
        split (Custom.Atm (T.cup x1 (T.diff T.full x2))) True False False

    | Split (_,Custom.Atm x1, False,False,True), Split (_,Custom.Atm x2, True,False,False) ->
        split (Custom.Atm (T.cup (T.diff T.full x1) x2)) True False False

    | Split (_,x1, p1,i1,n1), Split (_,x2, p2,i2,n2) ->
	let c = X.compare x1 x2 in
	if c = 0 then split x1 (p1 ++ p2) (i1 ++ i2) (n1 ++ n2)
	else if c < 0 then split x1 p1 (i1 ++ b) n1
	else split x2 p2 (i2 ++ a) n2

(* seems better not to make ++ and this split mutually recursive;
   is the invariant still inforced ? *)

  (* intersection *)
  let rec ( ** ) a b = if a == b then a else match (a,b) with
    | True, a | a, True -> a
    | False, _ | _, False -> False

    | Split (_,Custom.Atm x1, True,False,False), Split (_,Custom.Atm x2, True,False,False) ->
        split (Custom.Atm(T.cap x1 x2)) True False False

    | Split (_,Custom.Atm x1, False,False,True), Split (_,Custom.Atm x2, False,False,True) ->
        split (Custom.Atm(T.cap (T.diff T.full x1) (T.diff T.full x2))) True False False

    | Split (_,Custom.Atm x1, True,False,False), Split (_,Custom.Atm x2, False,False,True) ->
        split (Custom.Atm(T.cap x1 (T.diff T.full x2))) True False False

    | Split (_,Custom.Atm x1, False,False,True), Split (_,Custom.Atm x2, True,False,False) ->
        split (Custom.Atm(T.cap (T.diff T.full x1) x2)) True False False

    | Split (_,x1, p1,i1,n1), Split (_,x2, p2,i2,n2) ->
	let c = X.compare x1 x2 in
	if c = 0 then
	  split x1 
	    (p1 ** (p2 ++ i2) ++ (p2 ** i1))
	    (i1 ** i2)
	    (n1 ** (n2 ++ i2) ++ (n2 ** i1))  
	else if c < 0 then split x1 (p1 ** b) (i1 ** b) (n1 ** b)
	else split x2 (p2 ** a) (i2 ** a) (n2 ** a)

  let rec trivially_disjoint a b =
    if a == b then a == False
    else match (a,b) with
      | True, a | a, True -> a == False
      | False, _ | _, False -> true
      | Split (_,x1, p1,i1,n1), Split (_,x2, p2,i2,n2) ->
	  let c = X.compare x1 x2 in
	  if c = 0 then
(* try expanding -> p1 p2; p1 i2; i1 p2; i1 i2 ... *)
	    trivially_disjoint (p1 ++ i1) (p2 ++ i2) &&
	    trivially_disjoint (n1 ++ i1) (n2 ++ i2)
	  else if c < 0 then
	    trivially_disjoint p1 b &&
	    trivially_disjoint i1 b &&
	    trivially_disjoint n1 b
	  else
	    trivially_disjoint p2 a &&
	    trivially_disjoint i2 a &&
	    trivially_disjoint n2 a

  let rec neg = function
    | True -> False
    | False -> True
    | Split (_,Custom.Atm x, True,False,False) -> split (Custom.Atm(T.diff T.full x)) True False False
    | Split (_,Custom.Atm x, False,False,True) -> split (Custom.Atm(T.diff T.full x)) True False False
    | Split (_,x, p,i,False) -> split x False (neg (i ++ p)) (neg i)
    | Split (_,x, False,i,n) -> split x (neg i) (neg (i ++ n)) False 
    | Split (_,x, p,False,n) -> split x (neg p) (neg (p ++ n)) (neg n)  
    | Split (_,x, p,i,n) -> split x (neg (i ++ p)) False (neg (i ++ n))
	      
  let rec ( // ) a b =
    let negatm = T.diff T.full in
    if a == b then False 
    else match (a,b) with
      | False,_ | _, True -> False
      | a, False -> a
      | True, b -> neg b

      | Split (_,Custom.Atm x1, True,False,False), Split (_,Custom.Atm x2, True,False,False) ->
          split (Custom.Atm(T.diff x1 x2)) True False False

      | Split (_,Custom.Atm x1, False,False,True), Split (_,Custom.Atm x2, False,False,True) ->
          split (Custom.Atm(T.diff (negatm x1) (negatm x2))) True False False

      | Split (_,Custom.Atm x1, True,False,False), Split (_,Custom.Atm x2, False,False,True) ->
          split (Custom.Atm(T.diff x1 (negatm x2))) True False False

      | Split (_,Custom.Atm x1, False,False,True), Split (_,Custom.Atm x2, True,False,False) ->
          split (Custom.Atm(T.diff (negatm x1) x2)) True False False

      | Split (_,x1, p1,i1,n1), Split (_,x2, p2,i2,n2) ->
	  let c = X.compare x1 x2 in
	  if c = 0 then
	    if (i2 == False) && (n2 == False) 
	    then split x1 (p1 // p2) (i1 // p2) (n1 ++ i1)
	    else 
	      split x1 ((p1++i1) // (p2 ++ i2)) False ((n1++i1) // (n2 ++ i2))
	  else if c < 0 then
	    split x1 (p1 // b) (i1 // b) (n1 // b) 
	  else
	    split x2 (a // (i2 ++ p2)) False (a // (i2 ++ n2))
	      
  let cup = ( ++ )
  let cap = ( ** )
  let diff = ( // )

  (* return a couple of trees (v,a), the second where all variables
   * v = only variables as leaves
   * a = only atoms as leaves
   *)
  let rec splitvars = function
Pietro Abate's avatar
Pietro Abate committed
425 426
    (* True or False can only be under a variable *)
    | True -> True,False
427
    | False -> False,False
Pietro Abate's avatar
Pietro Abate committed
428 429 430 431 432 433 434 435
    | Split (_,Custom.Atm _, True,False,False) as x -> False, x
    | Split (_,Custom.Atm _, _,_,_) -> assert false
    | Split (_,((Custom.Var _) as x),p,i,n) ->
        let p1,p2 = splitvars p in
        let i1,i2 = splitvars i in
        let n1,n2 = splitvars n in 
        split x p1 i1 n1, split x p2 i2 n2

436
end