types.ml 37.6 KB
Newer Older
1
2
3
4
open Recursive
open Printf


5
6
let map_sort f l =
  SortedList.from_list (List.map f l)
7

8
9
10
11
12
13
module HashedString = 
struct 
  type t = string 
  let hash = Hashtbl.hash
  let equal = (=)
end
14

15
16
module LabelPool = Pool.Make(HashedString)
module AtomPool  = Pool.Make(HashedString)
17

18
19
type label = LabelPool.t
type atom  = AtomPool.t
20

21
type const = Integer of Big_int.big_int | Atom of atom | Char of Chars.Unichar.t
22

23
24
type pair_kind = [ `Normal | `XML ]

25
26
27
28
29
30
31
32
33
34
35
36
type descr = {
  atoms : atom Atoms.t;
  ints  : Intervals.t;
  chars : Chars.t;
  times : (node * node) Boolean.t;
  xml   : (node * node) Boolean.t;
  arrow : (node * node) Boolean.t;
  record: (bool * (label, (bool * node)) SortedMap.t) Boolean.t;
} and node = {
  id : int;
  mutable descr : descr;
}
37

38
	       
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
let empty = { 
  times = Boolean.empty; 
  xml   = Boolean.empty; 
  arrow = Boolean.empty; 
  record= Boolean.empty;
  ints  = Intervals.empty;
  atoms = Atoms.empty;
  chars = Chars.empty;
}
	      
let any =  {
  times = Boolean.full; 
  xml   = Boolean.full; 
  arrow = Boolean.full; 
  record= Boolean.full; 
  ints  = Intervals.any;
  atoms = Atoms.any;
  chars = Chars.any;
}
	     
	     
let interval i = { empty with ints = i }
let times x y = { empty with times = Boolean.atom (x,y) }
let xml x y = { empty with xml = Boolean.atom (x,y) }
let arrow x y = { empty with arrow = Boolean.atom (x,y) }
let record label opt t = 
  { empty with record = Boolean.atom (true,[label,(opt,t)]) }
let record' x =
  { empty with record = Boolean.atom x }
let atom a = { empty with atoms = a }
let char c = { empty with chars = c }
let constant = function
  | Integer i -> interval (Intervals.atom i)
  | Atom a -> atom (Atoms.atom a)
  | Char c -> char (Chars.atom c)
74
      
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
let cup x y = 
  if x == y then x else {
    times = Boolean.cup x.times y.times;
    xml   = Boolean.cup x.xml y.xml;
    arrow = Boolean.cup x.arrow y.arrow;
    record= Boolean.cup x.record y.record;
    ints  = Intervals.cup x.ints  y.ints;
    atoms = Atoms.cup x.atoms y.atoms;
    chars = Chars.cup x.chars y.chars;
  }
    
let cap x y = 
  if x == y then x else {
    times = Boolean.cap x.times y.times;
    xml   = Boolean.cap x.xml y.xml;
    record= Boolean.cap x.record y.record;
    arrow = Boolean.cap x.arrow y.arrow;
    ints  = Intervals.cap x.ints  y.ints;
    atoms = Atoms.cap x.atoms y.atoms;
    chars = Chars.cap x.chars y.chars;
  }
    
let diff x y = 
  if x == y then empty else {
    times = Boolean.diff x.times y.times;
    xml   = Boolean.diff x.xml y.xml;
    arrow = Boolean.diff x.arrow y.arrow;
    record= Boolean.diff x.record y.record;
    ints  = Intervals.diff x.ints  y.ints;
    atoms = Atoms.diff x.atoms y.atoms;
    chars = Chars.diff x.chars y.chars;
  }
    
let count = ref 0
let make () = incr count; { id = !count; descr = empty }
let define n d = n.descr <- d
let cons d = incr count; { id = !count; descr = d }
let descr n = n.descr
let internalize n = n
let id n = n.id
	     
let rec equal_rec r1 r2 =
  (r1 == r2) ||
  match (r1,r2) with
119
    | (l1,(o1,x1))::r1,(l2,(o2,x2))::r2 ->
120
121
	(l1 = l2) && (o1 = o2) && (x1.id = x2.id) && (equal_rec r1 r2)
    | _ -> false
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
	
let rec equal_rec_list l1 l2  =
  (l1 == l2) ||
  match (l1,l2) with
    | (o1,r1)::l1, (o2,r2)::l2 ->
	(o1 = o2) &&
	(equal_rec r1 r2)
    | _ -> false
	
let rec equal_rec_bool l1 l2 =
  (l1 == l2) ||
  match (l1,l2) with
    | (p1,n1)::l1, (p2,n2)::l2 -> 
	(equal_rec_list p1 p2) &&
	(equal_rec_list n1 n2) &&
        (equal_rec_bool l1 l2)
    | _ -> false
	
let rec equal_times_list l1 l2  =
  (l1 == l2) ||
  match (l1,l2) with
    | (x1,y1)::l1, (x2,y2)::l2 -> 
	(x1.id = x2.id) &&
	(y1.id = y2.id) &&
	(equal_times_list l1 l2)
    | _ -> false
	
let rec equal_times_bool l1 l2 =
  (l1 == l2) ||
  match (l1,l2) with
    | (p1,n1)::l1, (p2,n2)::l2 -> 
	(equal_times_list p1 p2) &&
	(equal_times_list n1 n2) &&
        (equal_times_bool l1 l2)
    | _ -> false
	
let equal_descr a b =
  (a.atoms = b.atoms) &&
  (a.chars = b.chars) &&
  (a.ints  = b.ints) &&
  (equal_times_bool a.times b.times) &&
  (equal_times_bool a.xml b.xml) &&
  (equal_times_bool a.arrow b.arrow) &&
  (equal_rec_bool a.record b.record)
  
let rec hash_times_list accu = function
  | (x,y)::l ->
      hash_times_list (accu * 257 + x.id * 17 + y.id) l
  | [] -> accu + 17
      
let rec hash_times_bool accu = function
  | (p,n)::l -> 
      hash_times_bool (hash_times_list (hash_times_list accu p) n) l
  | [] -> accu + 3
      
let rec hash_rec accu = function
  | (l,(o,x))::rem ->
      hash_rec (257 * accu + 17 * (LabelPool.hash l) + x.id) rem
  | [] -> accu + 5
      
let rec hash_rec_list accu = function
  | (o,r)::l ->
      hash_rec_list (hash_rec accu r) l
  | [] -> accu + 17
      
let rec hash_rec_bool accu = function
  | (p,n)::l -> 
      hash_rec_bool (hash_rec_list (hash_rec_list accu p) n) l
  | [] -> accu + 3
      
      
let hash_descr a =
  let accu = 
    (Hashtbl.hash a.ints) +  17 * (Hashtbl.hash a.atoms) + 
    257 * (Hashtbl.hash a.chars) in
  let accu = hash_times_bool accu a.times in
  let accu = hash_times_bool accu a.xml in
  let accu = hash_times_bool accu a.arrow in
  let accu = hash_rec_bool accu a.record in
  accu
202

203
204
205
206
207
208
209
210
211
module DescrHash = 
  Hashtbl.Make(
    struct 
      type t = descr
      let hash = hash_descr
      let equal = equal_descr
    end
  )

212
213
let print_descr = ref (fun _ _  -> assert false)

214
215
let neg x = diff any x

216
217
let any_node = cons any

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
module LabelSet = Set.Make(LabelPool)

let get_record r =
  let labs accu (_,r) = 
    List.fold_left (fun accu (l,_) -> LabelSet.add l accu) accu r in
  let extend (opts,descrs) labs (o,r) =
    let rec aux i labs r =
      match labs with
	| [] -> ()
	| l1::labs ->
	    match r with
	      | (l2,(o,x))::r when l1 = l2 -> 
		  descrs.(i) <- cap descrs.(i) (descr x);
		  opts.(i) <- opts.(i) && o;
		  aux (i+1) labs r
	      | r ->
		  if not o then descrs.(i) <- empty;
		  aux (i+1) labs r
    in
    aux 0 labs r;
    o
  in
  let line (p,n) =
    let labels = 
      List.fold_left labs (List.fold_left labs LabelSet.empty p) n in
    let labels = LabelSet.elements labels in
    let nlab = List.length labels in
    let mk () = Array.create nlab true, Array.create nlab any in

    let pos = mk () in
    let opos = List.fold_left 
		 (fun accu x -> 
		    (extend pos labels x) && accu)
		 true p in
    let p = (opos, pos) in

    let n = List.map (fun x ->
			let neg = mk () in
			let o = extend neg labels x in
			(o,neg)
		     ) n in
    (labels,p,n)
  in
  List.map line r
   
263

264
module DescrMap = Map.Make(struct type t = descr let compare = compare end)
265
266
267

let check d =
  Boolean.check d.times;
268
  Boolean.check d.xml;
269
270
271
272
  Boolean.check d.arrow;
  Boolean.check d.record;
  ()

273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292


(* Subtyping algorithm *)

let diff_t d t = diff d (descr t)
let cap_t d t = cap d (descr t)
let cup_t d t = cup d (descr t)
let cap_product l =
  List.fold_left 
    (fun (d1,d2) (t1,t2) -> (cap_t d1 t1, cap_t d2 t2))
    (any,any)
    l


let cup_product l = 
  List.fold_left 
    (fun (d1,d2) (t1,t2) -> (cup_t d1 t1, cup_t d2 t2))
    (empty,empty)
    l

293
294
295
let rec exists max f =
  (max > 0) && (f (max - 1) || exists (max - 1) f)

296
297
298
299

module Assumptions = Set.Make(struct type t = descr let compare = compare end)

let memo = ref Assumptions.empty
300
let cache_false = DescrHash.create 33000
301
302
303

exception NotEmpty

304
305
let trivially_empty d = equal_descr d empty
  (* Remove generic equality ... *)
306

307
let rec empty_rec d =
308
  if DescrHash.mem cache_false d then false 
309
310
311
312
313
314
  else if Assumptions.mem d !memo then true
  else if not (Intervals.is_empty d.ints) then false
  else if not (Atoms.is_empty d.atoms) then false
  else if not (Chars.is_empty d.chars) then false
  else (
    let backup = !memo in
315
    memo := Assumptions.add d backup;
316
317
318
319
320
321
322
323
    if 
      (empty_rec_times d.times) &&
      (empty_rec_times d.xml) &&
      (empty_rec_arrow d.arrow) &&
      (empty_rec_record d.record) 
    then true
    else (
      memo := backup;
324
      DescrHash.add cache_false d ();
325
326
327
328
329
330
331
332
333
334
      false
    )
  )

and empty_rec_times c =
  List.for_all empty_rec_times_aux c

and empty_rec_times_aux (left,right) =
  let rec aux accu1 accu2 = function
    | (t1,t2)::right ->
335
336
	if trivially_empty (cap_t accu1 t1) || 
	   trivially_empty (cap_t accu2 t2) then
337
338
339
340
341
	  aux accu1 accu2 right
	else
          let accu1' = diff_t accu1 t1 in
          if not (empty_rec accu1') then aux accu1' accu2 right;
          let accu2' = diff_t accu2 t2 in
342
	  if not (empty_rec accu2') then aux accu1 accu2' right
343
344
345
346
347
    | [] -> raise NotEmpty
  in
  let (accu1,accu2) = cap_product left in
  (empty_rec accu1) || (empty_rec accu2) ||
    (try aux accu1 accu2 right; true with NotEmpty -> false)
348

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

and empty_rec_arrow c =
  List.for_all empty_rec_arrow_aux c

and empty_rec_arrow_aux (left,right) =
  let single_right (s1,s2) =
    let rec aux accu1 accu2 = function
      | (t1,t2)::left ->
          let accu1' = diff_t accu1 t1 in
          if not (empty_rec accu1') then aux accu1 accu2 left;
          let accu2' = cap_t accu2 t2 in
          if not (empty_rec accu2') then aux accu1 accu2 left
      | [] -> raise NotEmpty
    in
    let accu1 = descr s1 in
    (empty_rec accu1) ||
    (try aux accu1 (diff any (descr s2)) left; true with NotEmpty -> false)
  in
  List.exists single_right right

369
370
371
372
373
374
375
376
377
and empty_rec_record_aux (labels,(oleft,(left_opt,left)),rights) =
  let rec aux = function
    | [] -> raise NotEmpty
    | (oright,(right_opt,right))::rights ->
	let next =
	  (oleft && (not oright)) ||
	  exists (Array.length left)
	    (fun i ->
	       (not (left_opt.(i) && right_opt.(i))) &&
378
	       (trivially_empty (cap left.(i) right.(i))))
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
	in
	if next then aux rights 
	else
	  for i = 0 to Array.length left - 1 do
	    let back = left.(i) in
	    let oback = left_opt.(i) in
	    let odi = oback && (not right_opt.(i)) in
	    let di = diff back right.(i) in
	    if odi || not (empty_rec di) then (
	      left.(i) <- diff back right.(i);
	      left_opt.(i) <- odi;
	      aux rights;
	      left.(i) <- back;
	      left_opt.(i) <- oback;
	    )
	  done
  in
  exists (Array.length left) 
    (fun i -> not left_opt.(i) && (empty_rec left.(i))) 
  ||
  (try aux rights; true with NotEmpty -> false)
	    

402
and empty_rec_record c =
403
  List.for_all empty_rec_record_aux (get_record c)
404
405

let is_empty d =
406
  empty_rec d
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452

let non_empty d = 
  not (is_empty d)

let subtype d1 d2 =
  is_empty (diff d1 d2)

module Product =
struct
  type t = (descr * descr) list

  let other ?(kind=`Normal) d = 
    match kind with
      | `Normal -> { d with times = empty.times }
      | `XML -> { d with xml = empty.xml }

  let is_product ?kind d = is_empty (other ?kind d)

  let need_second = function _::_::_ -> true | _ -> false

  let normal_aux d =
    let res = ref [] in

    let add (t1,t2) =
      let rec loop t1 t2 = function
	| [] -> res := (ref (t1,t2)) :: !res
	| ({contents = (d1,d2)} as r)::l ->
	    (*OPT*) 
	    if d1 = t1 then r := (d1,cup d2 t2) else
	      
	      let i = cap t1 d1 in
	      if is_empty i then loop t1 t2 l
	      else (
		r := (i, cup t2 d2);
		let k = diff d1 t1 in 
		if non_empty k then res := (ref (k,d2)) :: !res;
		
		let j = diff t1 d1 in 
		if non_empty j then loop j t2 l
	      )
      in
      loop t1 t2 !res
    in
    List.iter add d;
    List.map (!) !res

453
(*
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
This version explodes when dealing with
   Any - [ t1? t2? t3? ... tn? ]
==> need partitioning 
*)
  let get_aux d =
    let line accu (left,right) =
      let rec aux accu d1 d2 = function
	| (t1,t2)::right ->
	    let accu = 
	      let d1 = diff_t d1 t1 in
              if is_empty d1 then accu else aux accu d1 d2 right in
	    let accu =
              let d2 = diff_t d2 t2 in
              if is_empty d2 then accu else aux accu d1 d2 right in
	    accu
	| [] -> (d1,d2) :: accu
      in
      let (d1,d2) = cap_product left in
      if (is_empty d1) || (is_empty d2) then accu else aux accu d1 d2 right
    in
    List.fold_left line [] d

(* Partitioning:

(t,s) - ((t1,s1) | (t2,s2) | ... | (tn,sn))
=
(t & t1, s - s1) | ... | (t & tn, s - sn) | (t - (t1|...|tn), s)

482
*)
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
  let get_aux d =
    let accu = ref [] in
    let line (left,right) =
      let (d1,d2) = cap_product left in
      if (non_empty d1) && (non_empty d2) then
	let right = List.map (fun (t1,t2) -> descr t1, descr t2) right in
	let right = normal_aux right in
	let resid1 = ref d1 in
	let () = 
	  List.iter
	    (fun (t1,t2) ->
	       let t1 = cap d1 t1 in
	       if (non_empty t1) then
		 let () = resid1 := diff !resid1 t1 in
		 let t2 = diff d2 t2 in
		 if (non_empty t2) then accu := (t1,t2) :: !accu
	    ) right in
	if non_empty !resid1 then accu := (!resid1, d2) :: !accu 
    in
    List.iter line d;
    !accu
504
505
506
(* Maybe, can improve this function with:
     (t,s) \ (t1,s1) = (t&t',s\s') | (t\t',s),
   don't call normal_aux *)
507

508

509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
  let get ?(kind=`Normal) d = 
    match kind with
      | `Normal -> get_aux d.times
      | `XML -> get_aux d.xml

  let pi1 = List.fold_left (fun acc (t1,_) -> cup acc t1) empty
  let pi2 = List.fold_left (fun acc (_,t2) -> cup acc t2) empty

  let restrict_1 rects pi1 =
    let aux accu (t1,t2) = 
      let t1 = cap t1 pi1 in if is_empty t1 then accu else (t1,t2)::accu in
    List.fold_left aux [] rects
  
  type normal = t

  module Memo = Map.Make(struct 
			   type t = (node * node) Boolean.t
			   let compare = compare end)
			   


  let memo = ref Memo.empty
  let normal ?(kind=`Normal) d = 
    let d = match kind with `Normal -> d.times | `XML -> d.xml in
    try Memo.find d !memo 
    with
	Not_found ->
	  let gd = get_aux d in
	  let n = normal_aux gd in
538
539
(* Could optimize this call to normal_aux because one already
   know that each line is normalized ... *)
540
541
	  memo := Memo.add d n !memo;
	  n
542

543
544
545
546
  let any = { empty with times = any.times }
  and any_xml = { empty with xml = any.xml }
  let is_empty d = d = []
end
547

548
549
module Print = 
struct
550
551
552
553
554
  let rec print_union ppf = function
    | [] -> Format.fprintf ppf "Empty"
    | [h] -> h ppf
    | h::t -> Format.fprintf ppf "@[%t |@ %a@]" h print_union t

555
556
  let print_atom ppf a = 
    Format.fprintf ppf "`%s" (AtomPool.value a)
557

558
559
560
561
562
563
564
565
  let print_tag ppf a =
    match Atoms.is_atom a with
      | Some a -> Format.fprintf ppf "%s" (AtomPool.value a)
      | None -> 
	  Format.fprintf ppf "(%a)"
	    print_union
	       (Atoms.print "Atom" print_atom a)

566
567
568
569
570
  let print_const ppf = function
    | Integer i -> Format.fprintf ppf "%s" (Big_int.string_of_big_int i)
    | Atom a -> print_atom ppf a
    | Char c -> Chars.Unichar.print ppf c

571
572
573
  let named = State.ref "Types.Printf.named" DescrMap.empty
  let register_global name d = 
    named := DescrMap.add d name !named
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

  let marks = DescrHash.create 63
  let wh = ref []
  let count_name = ref 0
  let name () =
    incr count_name;
    "X" ^ (string_of_int !count_name)
(* TODO: 
   check that these generated names does not conflict with declared types *)

  let bool_iter f b =
    List.iter (fun (p,n) -> List.iter f p; List.iter f n) b

  let trivial b = b = Boolean.empty || b = Boolean.full

  let worth_abbrev d = 
    not (trivial d.times && trivial d.arrow && trivial d.record) 

  let rec mark n = mark_descr (descr n)
  and mark_descr d =
594
    if not (DescrMap.mem d !named) then
595
596
597
598
599
600
601
602
603
      try 
	let r = DescrHash.find marks d in
	if (!r = None) && (worth_abbrev d) then 
	  let na = name () in 
	  r := Some na;
	  wh := (na,d) :: !wh
      with Not_found -> 
	DescrHash.add marks d (ref None);
    	bool_iter (fun (n1,n2) -> mark n1; mark n2) d.times;
604
    	bool_iter 
605
606
	  (fun (n1,n2) -> mark n1; mark n2
(*
607
608
609
	     List.iter
	       (fun (d1,d2) ->
		  mark_descr d2;
610
611
612
    		  bool_iter 
		    (fun (o,l) -> List.iter (fun (l,(o,n)) -> mark n) l) 
		    d1.record
613
		  let l = get_record d1.record in
614
615
616
617
618
		  List.iter (fun labs,(_,(_,p)),ns ->
			       Array.iter mark_descr p;
			       List.iter (fun (_,(_,n)) -> 
					    Array.iter mark_descr n) ns
			    ) l
619
620
	       )
	       (Product.normal (descr n2))
621
*)
622
	  ) d.xml;
623
    	bool_iter (fun (n1,n2) -> mark n1; mark n2) d.arrow;
624
    	bool_iter (fun (o,l) -> List.iter (fun (l,(o,n)) -> mark n) l) d.record
625
626
627
628
629

    
  let rec print ppf n = print_descr ppf (descr n)
  and print_descr ppf d = 
    try 
630
      let name = DescrMap.find d !named in
631
632
633
634
635
636
637
      Format.fprintf ppf "%s" name
    with Not_found ->
      try
      	match !(DescrHash.find marks d) with
      	  | Some n -> Format.fprintf ppf "%s" n
      	  | None -> real_print_descr ppf d
      with
638
	  Not_found -> assert false
639
640
641
642
643
644
645
  and real_print_descr ppf d = 
    if d = any then Format.fprintf ppf "Any" else
      print_union ppf 
	(Intervals.print d.ints @
	 Chars.print d.chars @
	 Atoms.print "Atom" print_atom d.atoms @
	 Boolean.print "Pair" print_times d.times @
646
	 Boolean.print "XML" print_xml d.xml @
647
648
649
650
651
	 Boolean.print "Arrow" print_arrow d.arrow @
	 Boolean.print "Record" print_record d.record
	)
  and print_times ppf (t1,t2) =
    Format.fprintf ppf "@[(%a,%a)@]" print t1 print t2
652
  and print_xml ppf (t1,t2) =
653
654
    Format.fprintf ppf "@[XML(%a,%a)@]" print t1 print t2
(*
655
656
657
658
659
660
661
662
663
    let l = Product.normal (descr t2) in
    let l = List.map
	      (fun (d1,d2) ppf ->
		 Format.fprintf ppf "@[<><%a%a>%a@]" 
		   print_tag (descr t1).atoms
		   print_attribs d1.record 
		   print_descr d2) l
    in
    print_union ppf l
664
*)
665
666
  and print_arrow ppf (t1,t2) =
    Format.fprintf ppf "@[(%a -> %a)@]" print t1 print t2
667
668
669
670
671
  and print_record ppf (o,r) =
    let o = if o then "" else "|" in
    Format.fprintf ppf "@[{%s" o;
    let first = ref true in
    List.iter (fun (l,(o,t)) ->
672
673
		 let sep = if !first then (first := false; "") else ";" in
		 Format.fprintf ppf "%s@ @[%s =%s@] %a" sep
674
675
676
677
		   (LabelPool.value l) (if o then "?" else "") print t
	      ) r;
    Format.fprintf ppf " %s}@]" o
(*
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
  and print_attribs ppf r =
    let l = get_record r in
    if l <> [ [] ] then 
    let l = List.map 
      (fun att ppf ->
	 let first = ref true in
	 Format.fprintf ppf "{" ;
	 List.iter (fun (l,(o,d)) ->
		      Format.fprintf ppf "%s%s=%s%a" 
		        (if !first then "" else " ")
		        (LabelPool.value l) (if o then "?" else "")
		        print_descr d; 
		      first := false
		   ) att;
	   Format.fprintf ppf "}"
      ) l in
    print_union ppf l
695
*)
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722

	  
  let end_print ppf =
    (match List.rev !wh with
       | [] -> ()
       | (na,d)::t ->
	   Format.fprintf ppf " where@ @[%s = %a" na real_print_descr d;
	   List.iter 
	     (fun (na,d) -> 
		Format.fprintf ppf " and@ %s = %a" na real_print_descr d)
	     t;
	   Format.fprintf ppf "@]"
    );
    Format.fprintf ppf "@]";
    count_name := 0;
    wh := [];
    DescrHash.clear marks

  let print_descr ppf d =
    mark_descr d;
    Format.fprintf ppf "@[%a" print_descr d;
    end_print ppf

   let print ppf n = print_descr ppf (descr n)

end

723
let () = print_descr := Print.print_descr
724

725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
module Positive =
struct
  type rhs = [ `Type of descr | `Cup of v list | `Times of v * v ]
  and v = { mutable def : rhs; mutable node : node option }


  let rec make_descr seen v =
    if List.memq v seen then empty
    else
      let seen = v :: seen in
      match v.def with
	| `Type d -> d
	| `Cup vl -> 
	    List.fold_left (fun acc v -> cup acc (make_descr seen v)) empty vl
	| `Times (v1,v2) -> times (make_node v1) (make_node v2)

  and make_node v =
    match v.node with
      | Some n -> n
      | None ->
	  let n = make () in
	  v.node <- Some n;
	  let d = make_descr [] v in
	  define n d;
	  n

  let forward () = { def = `Cup []; node = None }
  let def v d = v.def <- d
  let cons d = let v = forward () in def v d; v
  let ty d = cons (`Type d)
  let cup vl = cons (`Cup vl)
  let times d1 d2 = cons (`Times (d1,d2))
  let define v1 v2 = def v1 (`Cup [v2]) 

  let solve v = internalize (make_node v)
end




(* Sample value *)
module Sample =
struct

769

770
771
772
773
774
let rec find f = function
  | [] -> raise Not_found
  | x::r -> try f x with Not_found -> find f r

type t =
775
  | Int of Big_int.big_int
776
  | Atom of atom
777
  | Char of Chars.Unichar.t
778
779
  | Pair of (t * t)
  | Xml of (t * t)
780
781
  | Record of (label * t) list
  | Fun of (node * node) list
782
  | Other
783
  exception FoundSampleRecord of (label * t) list
784
785
786
787
788

let rec sample_rec memo d =
  if (Assumptions.mem d memo) || (is_empty d) then raise Not_found 
  else 
    try Int (Intervals.sample d.ints) with Not_found ->
789
790
791
    try Atom (Atoms.sample (fun _ -> AtomPool.dummy_min) d.atoms) with 
	Not_found ->
(* Here: could create a fresh atom ... *)
792
    try Char (Chars.sample d.chars) with Not_found ->
793
794
795
    try sample_rec_arrow d.arrow with Not_found ->

    let memo = Assumptions.add d memo in
796
797
    try Pair (sample_rec_times memo d.times) with Not_found ->
    try Xml (sample_rec_times memo d.xml) with Not_found ->
798
799
800
801
802
803
804
805
806
807
    try sample_rec_record memo d.record with Not_found -> 
    raise Not_found


and sample_rec_times memo c = 
  find (sample_rec_times_aux memo) c

and sample_rec_times_aux memo (left,right) =
  let rec aux accu1 accu2 = function
    | (t1,t2)::right ->
808
809
(*TODO: check: is this correct ?  non_empty could return true
  but because of coinduction, the call to aux may raise Not_found, no ? *)
810
811
812
813
814
        let accu1' = diff_t accu1 t1 in
        if non_empty accu1' then aux accu1' accu2 right else
          let accu2' = diff_t accu2 t2 in
          if non_empty accu2' then aux accu1 accu2' right else
	    raise Not_found
815
    | [] -> (sample_rec memo accu1, sample_rec memo accu2)
816
817
818
819
820
821
822
823
  in
  let (accu1,accu2) = cap_product left in
  if (is_empty accu1) || (is_empty accu2) then raise Not_found;
  aux accu1 accu2 right

and sample_rec_arrow c =
  find sample_rec_arrow_aux c

824
825
826
827
828
829
830
831
and check_empty_simple_arrow_line left (s1,s2) = 
  let rec aux accu1 accu2 = function
    | (t1,t2)::left ->
        let accu1' = diff_t accu1 t1 in
        if non_empty accu1' then aux accu1 accu2 left;
        let accu2' = cap_t accu2 t2 in
        if non_empty accu2' then aux accu1 accu2 left
    | [] -> raise NotEmpty
832
  in
833
834
835
836
837
838
839
840
841
  let accu1 = descr s1 in
  (is_empty accu1) ||
  (try aux accu1 (diff any (descr s2)) left; true with NotEmpty -> false)

and check_empty_arrow_line left right = 
  List.exists (check_empty_simple_arrow_line left) right

and sample_rec_arrow_aux (left,right) =
  if (check_empty_arrow_line left right) then raise Not_found
842
843
844
845
846
847
  else Fun left


and sample_rec_record memo c =
  Record (find (sample_rec_record_aux memo) (get_record c))

848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
and sample_rec_record_aux memo (labels,(oleft,(left_opt,left)),rights) =
  let rec aux = function
    | [] -> 
	let l = ref labels and fields = ref [] in
	for i = 0 to Array.length left - 1 do
	  if not left_opt.(i) then
	    fields := (List.hd !l, sample_rec memo left.(i))::!fields;
	  l := List.tl !l
	done;
	raise (FoundSampleRecord (List.rev !fields))
    | (oright,(right_opt,right))::rights ->
	let next = (oleft && (not oright)) in
	if next then aux rights 
	else
	  for i = 0 to Array.length left - 1 do
	    let back = left.(i) in
	    let oback = left_opt.(i) in
	    let odi = oback && (not right_opt.(i)) in
	    let di = diff back right.(i) in
	    if odi || not (is_empty di) then (
	      left.(i) <- diff back right.(i);
	      left_opt.(i) <- odi;
	      aux rights;
	      left.(i) <- back;
	      left_opt.(i) <- oback;
	    )
	  done
  in
  if exists (Array.length left) 
    (fun i -> not left_opt.(i) && (is_empty left.(i))) then raise Not_found;
  try aux rights; raise Not_found
  with FoundSampleRecord r -> r

	    


884

885
let get x = try sample_rec Assumptions.empty x with Not_found -> Other
886

887
888
889
890
891
892
893
894
  let rec print_sep f sep ppf = function
    | [] -> ()
    | [x] -> f ppf x
    | x::rem -> f ppf x; Format.fprintf ppf "%s" sep; print_sep f sep ppf rem


  let rec print ppf = function
    | Int i -> Format.fprintf ppf "%s" (Big_int.string_of_big_int i)
895
896
897
898
899
    | Atom a ->    
	if a = LabelPool.dummy_min then
	  Format.fprintf ppf "(almost any atom)"
	else
	  Format.fprintf ppf "`%s" (AtomPool.value a)
900
901
    | Char c -> Chars.Unichar.print ppf c
    | Pair (x1,x2) -> Format.fprintf ppf "(%a,%a)" print x1 print x2
902
    | Xml (x1,x2) -> Format.fprintf ppf "XML(%a,%a)" print x1 print x2
903
904
905
906
907
    | Record r ->
	Format.fprintf ppf "{ %a }"
	  (print_sep 
	     (fun ppf (l,x) -> 
		Format.fprintf ppf "%s = %a"
908
		(LabelPool.value l)
909
910
911
912
913
914
915
916
917
918
919
920
921
		print x
	     )
	     " ; "
	  ) r
    | Fun iface ->
	Format.fprintf ppf "(fun ( %a ) x -> ...)"
	  (print_sep
	     (fun ppf (t1,t2) ->
		Format.fprintf ppf "%a -> %a; "
		Print.print t1 Print.print t2
	     )
	     " ; "
	  ) iface
922
923
    | Other ->
	Format.fprintf ppf "[cannot determine value]"
924
925
926
927
928
929
end



module Record = 
struct
930
931
932
933
934
  type atom = bool * (label, (bool * node)) SortedMap.t
  type t = atom Boolean.t

  let get d = d.record

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
  module T = struct
    type t = descr
    let any = any
    let cap = cap
    let cup = cup
    let diff = diff
    let empty = is_empty
  end
  module R = struct
    (*Note: Boolean.cap,cup,diff would be ok,
      but we add here the simplification rules:
      { } & r --> r    ; { } | r -> { }
      r \ { } --> Empty *)

    type t = atom Boolean.t
    let any = Boolean.full
    let cap =  Boolean.cap
    let cup = Boolean.cup
    let diff = Boolean.diff
    let empty x = is_empty { empty with record = x }
  end
  module TR = Normal.Make(T)(R)

  let atom = function
    | (true,[]) -> Boolean.full
    | (o,l) -> Boolean.atom (o,l)

962
963
964
965
966
967
  let somefield_possible t =
    not (R.empty (R.diff t (Boolean.atom (false,[]))))

  let nofield_possible t =    
    not (R.empty (R.cap t (Boolean.atom (false,[]))))

968
969
  let restrict_label_absent t l =
    Boolean.compute_bool
970
      (fun ((o,r) as x) ->
971
972
	 try
	   let (lo,_) = List.assoc l r in
973
	   if lo then atom (o,SortedMap.diff r [l])
974
975
976
977
978
979
980
981
982
	   else Boolean.empty
	 with Not_found -> Boolean.atom x
      )
      t

  let restrict_field t l d =
    (* Is it correct ?  Do we need to keep track of "first component"
       (value of l) as in label_present, then filter at the end ... ? *)
    Boolean.compute_bool
983
      (fun ((o,r) as x) ->
984
985
986
	 try
	   let (lo,lt) = List.assoc l r in
	   if (not lo) && (is_empty (cap d (descr lt))) then Boolean.empty
987
	   else atom (o, SortedMap.diff r [l])
988
989
990
991
992
993
994
995
996
997
	 with Not_found -> 
	   if o then Boolean.atom x else Boolean.empty
      )
      t



  let label_present (t:t) l : (descr * t) list =
    let x =
      Boolean.compute_bool
998
	(fun ((o,r) as x) ->
999
1000
	   try
	     let (_,lt) = List.assoc l r in
1001
	     Boolean.atom (descr lt, atom (o, SortedMap.diff r [l]))
1002
1003
1004
1005
1006
1007
1008
1009
	   with Not_found -> 
	     if o then Boolean.atom (any, Boolean.atom x) else Boolean.empty
	)
	t
    in
    TR.boolean x

  let restrict_label_present t l =
1010
    Boolean.compute_bool
1011
      (fun ((o,r) as x) ->
1012
1013
1014
1015
1016
1017
1018
1019
	 try
	   Boolean.atom (o, SortedMap.change_exists l (fun (_,lt) -> (false,lt)) r)
	 with Not_found -> 
	   if o then Boolean.atom 
	     (true, SortedMap.union_disj [l, (false,any_node)] r)
	   else Boolean.empty
      )
      t
1020
1021
1022
1023
1024
1025
1026

  let project_field t l =
    let r = label_present t l in
    List.fold_left (fun accu (d,_) -> cup accu d) empty r

  let project t l =
    let t = get t in
1027
1028
1029
    let r = label_present t l in
    if r = [] then raise Not_found else
      List.fold_left (fun accu (d,_) -> cup accu d) empty r
1030
1031
1032
1033
	   
  type normal = 
      [ `Success
      | `Fail
1034
1035
      | `NoField
      | `SomeField
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
      | `Label of label * (descr * normal) list * normal ]

  let first_label t =
    let min = ref None in
    let lab l = match !min with 
      | Some l' when l >= l' -> () 
      | _ -> min := Some l in
    let aux = function
      | _,[] -> ()
      | _,(l,_)::_ -> lab l in
    Boolean.iter aux t;
    match !min with
      | Some l -> `Label l
      | None -> 
	  let n = 
	    Boolean.compute
	      ~empty:0
	      ~full:3
	      ~cup:(lor)
	      ~cap:(land)
	      ~diff:(fun a b -> a land lnot b)
	      ~atom:(function (true,[]) -> 3 | (false,[]) -> 1 | _ -> assert false)
	      t in
	  match n with
	    | 0 -> `Fail
	    | 1 -> `NoField
	    | 2 -> `SomeField
	    | _ -> `Success


1066
1067
1068
1069
1070
  let normal' t l = 
    let present = label_present t l
    and absent = restrict_label_absent t l in
    List.map (fun (d,t) -> d,t) present, absent

1071
1072
1073
1074
1075
1076
1077
1078
1079
  let rec normal_aux t =
    match first_label t with
      | `Label l ->
	  let present = label_present t l
	  and absent = restrict_label_absent t l in
	  `Label (l, List.map (fun (d,t) -> d, normal_aux t) present,
		  normal_aux absent)
      | `Fail -> `Fail
      | `Success -> `Success
1080
1081
      | `NoField -> `NoField
      | `SomeField -> `SomeField
1082
1083
1084
1085
1086
1087
1088
1089
1090

  let normal t = normal_aux (get t)
    


  let descr x = { empty with record = x }
  let is_empty x = is_empty (descr x)
(*

1091
1092
1093
1094
1095
1096
1097
  type t = (label, (bool * descr)) SortedMap.t list

  let get d =
    let line r = List.for_all (fun (l,(o,d)) -> o || non_empty d) r in
    List.filter line (get_record d.record)

  let restrict_label_present t l =
1098
1099
1100
1101
1102
1103
1104
    let restr = function 
      | (true, d) -> if non_empty d then (false,d) else raise Exit 
      | x -> x in
    let aux accu r =  
      try SortedMap.change l restr (false,any) r :: accu
      with Exit -> accu in
    List.fold_left aux [] t
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129

  let restrict_label_absent t l =
    let restr = function (true, _) -> (true,empty) | _ -> raise Exit in
    let aux accu r =  
      try SortedMap.change l restr (true,empty) r :: accu
      with Exit -> accu in
    List.fold_left aux [] t

  let restrict_field t l d =
    let restr (_,d1) = 
      let d1 = cap d d1 in 
      if is_empty d1 then raise Exit else (false,d1) in
    let aux accu r = 
      try SortedMap.change l restr (false,d) r :: accu 
      with Exit -> accu in
    List.fold_left aux [] t

  let project_field t l =
    let aux accu x =
      match List.assoc l x with
	| (false,t) -> cup accu t
	| _ -> raise Not_found
    in
    List.fold_left aux empty t

1130
1131
1132
  let project d l =
    project_field (get_record d.record) l

1133
1134
1135
1136
1137
1138
1139
1140
1141
  type normal = 
      [ `Success
      | `Fail
      | `Label of label * (descr * normal) list * normal ]

  let rec merge_record n r =
    match (n, r) with
      | (`Success, _) | (_, []) -> `Success
      | (`Fail, r) ->
1142
1143
	  let aux (l,(o,t)) n = 
	    `Label (l, [t,n], if o then n else `Fail) in
1144
1145
1146
1147
	  List.fold_right aux r `Success
      | (`Label (l1,present,absent), (l2,(o,t2))::r') ->
	  if (l1 < l2) then
	    let pr =  List.map (fun (t,x) -> (t, merge_record x r)) present in
1148
1149
1150
1151
	    let t = List.fold_left (fun a (t,_) -> diff a t) any present in
	    let pr = 
	      if non_empty t then (t, merge_record `Fail r) :: pr
	      else pr in
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
	    `Label (l1,pr,merge_record absent r)
	  else if (l2 < l1) then
	    let n' = merge_record n r' in
	    `Label (l2, [t2, n'], if o then n' else n)
	  else
	    let res = ref [] in
	    let aux a (t,x) = 
	      (let t = diff t t2 in 
	       if non_empty t then res := (t,x) :: !res);
	      (let t = cap t t2 in
	       if non_empty t then res := (t, merge_record x r') :: !res);
	      diff a t 
	    in
	    let t2 = List.fold_left aux t2 present in
	    let () = 
	      if non_empty t2 then 
	      res := (t2, merge_record `Fail r') :: !res in
	    let abs = if o then merge_record absent r' else absent in
	    `Label (l1, !res, abs)

1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
  module Unify = Map.Make(struct type t = normal let compare = compare end)

  let repository = ref Unify.empty

  let rec canonize = function
    | `Label (l,pr,ab) as x ->
	(try Unify.find x !repository 
	 with Not_found -> 
	   let pr = List.map (fun (t,n) -> canonize n,t) pr in
	   let pr = SortedMap.from_list cup pr in
	   let pr = List.map (fun (n,t) -> (t,n)) pr in
	   let x = `Label (l, pr, canonize ab) in
	   try Unify.find x !repository
	   with Not_found -> repository := Unify.add x x !repository; x
	)
    | x -> x
1188
1189

  let normal d =
1190
1191
1192
    let r = canonize (List.fold_left merge_record `Fail (get d)) in
    repository := Unify.empty;
    r
1193

1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
  type normal' =
      [ `Success
      | `Label of label * (descr * descr) list * descr option ] option

(* NOTE: this function relies on the fact that generic order
         makes smallest labels appear first *)

  let first_label d =
    let d = d.record in
    let min = ref None in
    let lab (l,o,t) = match !min with 
      | Some l' when l >= l' -> () 
      | _ -> if o && (descr t = any) then () else min := Some l in
    let line (p,n) =
      (match p with f::_ -> lab f | _ -> ());
      (match n with f::_ -> lab f | _ -> ()) in
    List.iter line d;
    match !min with
      | None -> if d = [] then `Empty else `Any
      | Some l -> `Label l

  let normal' (d : descr) l =
    let ab = ref empty in
    let rec extract f = function
      | (l',o,t) :: rem when l = l' -> 
	  f o (descr t); extract f rem
      | x :: rem -> x :: (extract f rem)
      | [] -> [] in
    let line (p,n) =
      let ao = ref true and ad = ref any in
      let p = 
	extract (fun o d -> ao := !ao && o; ad := cap !ad d) p
      and n = 
	extract (fun o d -> ao := !ao && not o; ad := diff !ad d) n
      in
      (* Note: p and n are still sorted *)
      let d = { empty with record = [(p,n)] } in
      if !ao then ab := cup d !ab;
      (!ad, d) in
    let pr = List.map line d.record in
    let pr = Product.normal_aux pr in
    let ab = if is_empty !ab then None else Some !ab in
    (pr, ab)
	    
1238
*)
1239
1240

  let any = { empty with record = any.record }
1241
(*
1242
  let is_empty d = d = []
1243
1244
1245
  let descr l =
    let line l = map_sort (fun (l,(o,d)) -> (l,o,cons d)) l, [] in 
    { empty with record = map_sort line l }
1246
*)
1247
1248
1249
1250
end



1251
let memo_normalize = ref DescrMap.empty
1252
1253
1254


let rec rec_normalize d =
1255
  try DescrMap.find d !memo_normalize
1256
1257
  with Not_found ->
    let n = make () in
1258
    memo_normalize := DescrMap.add d n !memo_normalize;
1259
1260
1261
1262
1263
    let times = 
      map_sort
	(fun (d1,d2) -> [(rec_normalize d1, rec_normalize d2)],[])
	(Product.normal d)
    in
1264
1265
1266
1267
1268
    let xml = 
      map_sort
	(fun (d1,d2) -> [(rec_normalize d1, rec_normalize d2)],[])
	(Product.normal ~kind:`XML d)
    in
1269
1270
    let record = d.record
(*
1271
1272
1273
      map_sort
	(fun f -> map_sort (fun (l,(o,d)) -> (l,o,rec_normalize d)) f, [])
	(Record.get d)
1274
*)
1275
    in
1276
    define n { d with times = times; xml = xml; record = record };
1277
1278
1279
    n

let normalize n =
1280
  descr (internalize (rec_normalize n))
1281

1282
1283
module Arrow =
struct
1284
1285
1286
1287
  let check_simple left s1 s2 =
    let rec aux accu1 accu2 = function
      | (t1,t2)::left ->
          let accu1' = diff_t accu1 t1 in
1288
          if non_empty accu1' then aux accu1 accu2 left;
1289
          let accu2' = cap_t accu2 t2 in
1290
          if non_empty accu2' then aux accu1 accu2 left
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
      | [] -> raise NotEmpty
    in
    let accu1 = descr s1 in
    (is_empty accu1) ||
    (try aux accu1 (diff any (descr s2)) left; true with NotEmpty -> false)
      
  let check_strenghten t s =
    let left = match t.arrow with [ (p,[]) ] -> p | _ -> assert false in
    let rec aux = function
      | [] -> raise Not_found
      | (p,n) :: rem ->
	  if (List.for_all (fun (a,b) -> check_simple left a b) p) &&
	    (List.for_all (fun (a,b) -> not (check_simple left a b)) n) then
	      { empty with arrow = [ (SortedList.cup left p, n) ] }
	  else aux rem
    in
    aux s.arrow

1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
  let check_simple_iface left s1 s2 =
    let rec aux accu1 accu2 = function
      | (t1,t2)::left ->
          let accu1' = diff accu1 t1 in
          if non_empty accu1' then aux accu1 accu2 left;
          let accu2' = cap accu2 t2 in
          if non_empty accu2' then aux accu1 accu2 left
      | [] -> raise NotEmpty
    in
    let accu1 = descr s1 in
    (is_empty accu1) ||
    (try aux accu1 (diff any (descr s2)) left; true with NotEmpty -> false)

  let check_iface iface s =
    let rec aux = function
      | [] -> false
      | (p,n) :: rem ->
	  ((List.for_all (fun (a,b) -> check_simple_iface iface a b) p) &&
	   (List.for_all (fun (a,b) -> not (check_simple_iface iface a b)) n))
	  || (aux rem)
    in
    aux s.arrow

1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
  type t = descr * (descr * descr) list list

  let get t =
    List.fold_left
      (fun ((dom,arr) as accu) (left,right) ->
	 if Sample.check_empty_arrow_line left right 
	 then accu
	 else (
	   let left =
	     List.map 
	       (fun (t,s) -> (descr t, descr s)) left in
	   let d = List.fold_left (fun d (t,_) -> cup d t) empty left in
	   (cap dom d, left :: arr)
	 )
      )
      (any, [])
      t.arrow

  let domain (dom,_) = dom

  let apply_simple t result left = 
    let rec aux result accu1 accu2 = function
      | (t1,s1)::left ->
          let result = 
	    let accu1 = diff accu1 t1 in
            if non_empty accu1 then aux result accu1 accu2 left
            else result in
          let result =
	    let accu2 = cap accu2 s1 in
            aux result accu1 accu2 left in
	  result
      | [] -> 
          if subtype accu2 result 
	  then result
	  else cup result accu2
    in
    aux result t any left
      
  let apply (_,arr) t =
    List.fold_left (apply_simple t) empty arr

1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
  let need_arg (dom, arr) =
    List.exists (function [_] -> false | _ -> true) arr

  let apply_noarg (_,arr) =
    List.fold_left 
      (fun accu -> 
	 function 
	   | [(t,s)] -> cup accu s
	   | _ -> assert false
      )
      empty arr

1385
  let any = { empty with arrow = any.arrow }
1386
  let is_empty (_,arr) = arr = []
1387
1388
1389
end
  

1390
module Int = struct
1391
1392
  let has_int d i = Intervals.contains i d.ints

1393
1394
1395
1396
1397
  let get d = d.ints
  let put i = { empty with ints = i }
  let is_int d = is_empty { d with ints = Intervals.empty }
  let any = { empty with ints = Intervals.any }
end
1398

1399
1400
1401
1402
module Atom = struct
  let has_atom d a = Atoms.contains a d.atoms
end

1403
1404
module Char = struct
  let has_char d c = Chars.contains c d.chars
1405
  let any = { empty with chars = Chars.any }
1406
1407
end

1408
let print_stat ppf =
1409
(*  Format.fprintf ppf "nb_rec = %i@." !nb_rec;
1410
  Format.fprintf ppf "nb_norec = %i@." !nb_norec;
1411
*)
1412
1413
  ()

1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
(*
let rec print_normal_record ppf = function
  | Success -> Format.fprintf ppf "Yes"
  | Fail -> Format.fprintf ppf "No"
  | FirstLabel (l,present,absent) ->
      Format.fprintf ppf "%s?@[<v>@\n" (label_name l);
      List.iter
        (fun (t,n) ->
	   Format.fprintf ppf "(%a)=>@[%a@]@\n" 
	     Print.print_descr t
	     print_normal_record n
	) present;
      if absent <> Fail then
	Format.fprintf ppf "(absent)=>@[%a@]@\n" print_normal_record absent;
      Format.fprintf ppf "@]" 
*)


(* 
let pr s = Types.Print.print Format.std_formatter (Syntax.make_type (Syntax.parse s));;

let pr' s = Types.Print.print Format.std_formatter 
   (Types.normalize (Syntax.make_type (Syntax.parse s)));;

BUG:
pr "'a | 'b where 'a = ('a , 'a) and 'b= ('b , 'b)";;
*)


(*
  let nr s =
    let t = Types.descr (Syntax.make_type (Syntax.parse s)) in
    let n = Types.normal_record' t.Types.record in
    Types.print_normal_record Format.std_formatter n;;
*)