typer.ml 40.9 KB
Newer Older
1
(* TODO:
2
 - rewrite type-checking of operators to propagate constraint
3
4
 - optimize computation of pattern free variables
 - check whether it is worth using recursive hash-consing internally
5
6
*)

7

8
9
let warning loc msg =
  Format.fprintf !Location.warning_ppf "Warning %a:@\n%a%s@\n" 
10
11
    Location.print_loc (loc,`Full)
    Location.html_hilight (loc,`Full)
12
13
    msg

14
15
16
17




18
19
(* I. Transform the abstract syntax of types and patterns into
      the internal form *)
20
21
22

open Location
open Ast
23
open Ident
24

25
module TypeEnv = Map.Make(U)
26

27
exception NonExhaustive of Types.descr
28
exception Constraint of Types.descr * Types.descr
29
exception ShouldHave of Types.descr * string
30
exception ShouldHave2 of Types.descr * string * Types.descr
31
exception WrongLabel of Types.descr * label
32
exception UnboundId of id * bool
33
exception Error of string
34

35
36
let raise_loc loc exn = raise (Location (loc,`Full,exn))
let raise_loc_str loc ofs exn = raise (Location (loc,`Char ofs,exn))
37
let error loc msg = raise_loc loc (Error msg)
38

39
40
41
  (* Schema datastructures *)

module StringSet = Set.Make (String)
42
43
44

  (* just to remember imported schemas *)
let schemas = State.ref "Typer.schemas" StringSet.empty
45
46
47

let schema_types = State.ref "Typer.schema_types" (Hashtbl.create 51)
let schema_elements = State.ref "Typer.schema_elements" (Hashtbl.create 51)
48
let schema_attributes = State.ref "Typer.schema_attributes" (Hashtbl.create 51)
49

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
(* Eliminate Recursion, propagate Sequence Capture Variables *)

let rec seq_vars accu = function
  | Epsilon | Elem _ -> accu
  | Seq (r1,r2) | Alt (r1,r2) -> seq_vars (seq_vars accu r1) r2
  | Star r | WeakStar r -> seq_vars accu r
  | SeqCapture (v,r) -> seq_vars (IdSet.add v accu) r

type derecurs_slot = {
  ploc : Location.loc;
  pid  : int;
  mutable ploop : bool;
  mutable pdescr : derecurs option
} and derecurs =
  | PAlias of derecurs_slot
  | PType of Types.descr
  | POr of derecurs * derecurs
  | PAnd of derecurs * derecurs
  | PDiff of derecurs * derecurs
  | PTimes of derecurs * derecurs
  | PXml of derecurs * derecurs
  | PArrow of derecurs * derecurs
  | POptional of derecurs
  | PRecord of bool * derecurs label_map
  | PCapture of id
  | PConstant of id * Types.const
  | PRegexp of derecurs_regexp * derecurs
and derecurs_regexp =
  | PEpsilon
  | PElem of derecurs
  | PSeq of derecurs_regexp * derecurs_regexp
  | PAlt of derecurs_regexp * derecurs_regexp
  | PStar of derecurs_regexp
  | PWeakStar of derecurs_regexp

85
86
type tenv = {
  tenv_names : derecurs_slot TypeEnv.t;
87
  tenv_nspref: Ns.table;
88
89
  tenv_loc   : Location.loc
}
90
let get_ns_table tenv = tenv.tenv_nspref
91

92
let rec hash_derecurs = function
93
94
95
  | PAlias s -> 
      s.pid
  | PType t -> 
96
      1 + 17 * (Types.hash t)
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
  | POr (p1,p2) -> 
      2 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PAnd (p1,p2) -> 
      3 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PDiff (p1,p2) -> 
      4 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PTimes (p1,p2) -> 
      5 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PXml (p1,p2) -> 
      6 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | PArrow (p1,p2) -> 
      7 + 17 * (hash_derecurs p1) + 257 * (hash_derecurs p2)
  | POptional p -> 
      8 + 17 * (hash_derecurs p)
  | PRecord (o,r) -> 
      (if o then 9 else 10) + 17 * (LabelMap.hash hash_derecurs r)
  | PCapture x -> 
      11 + 17 * (Id.hash x)
  | PConstant (x,c) -> 
      12 + 17 * (Id.hash x) + 257 * (Types.hash_const c)
  | PRegexp (p,q) -> 
      13 + 17 * (hash_derecurs_regexp p) + 257 * (hash_derecurs q)
119
and hash_derecurs_regexp = function
120
121
122
123
124
125
126
127
128
129
130
131
  | PEpsilon -> 
      1
  | PElem p -> 
      2 + 17 * (hash_derecurs p)
  | PSeq (p1,p2) -> 
      3 + 17 * (hash_derecurs_regexp p1) + 257 * (hash_derecurs_regexp p2)
  | PAlt (p1,p2) -> 
      4 + 17 * (hash_derecurs_regexp p1) + 257 * (hash_derecurs_regexp p2)
  | PStar p -> 
      5 + 17 * (hash_derecurs_regexp p)
  | PWeakStar p -> 
      6 + 17 * (hash_derecurs_regexp p)
132
133

let rec equal_derecurs p1 p2 = (p1 == p2) || match p1,p2 with
134
135
136
  | PAlias s1, PAlias s2 -> 
      s1 == s2
  | PType t1, PType t2 -> 
137
      Types.equal t1 t2
138
139
140
141
142
  | POr (p1,q1), POr (p2,q2)
  | PAnd (p1,q1), PAnd (p2,q2)
  | PDiff (p1,q1), PDiff (p2,q2)
  | PTimes (p1,q1), PTimes (p2,q2)
  | PXml (p1,q1), PXml (p2,q2)
143
144
145
146
147
148
149
150
151
152
153
154
  | PArrow (p1,q1), PArrow (p2,q2) -> 
      (equal_derecurs p1 p2) && (equal_derecurs q1 q2)
  | POptional p1, POptional p2 -> 
      equal_derecurs p1 p2
  | PRecord (o1,r1), PRecord (o2,r2) -> 
      (o1 == o2) && (LabelMap.equal equal_derecurs r1 r2)
  | PCapture x1, PCapture x2 -> 
      Id.equal x1 x2
  | PConstant (x1,c1), PConstant (x2,c2) -> 
      (Id.equal x1 x2) && (Types.equal_const c1 c2)
  | PRegexp (p1,q1), PRegexp (p2,q2) -> 
      (equal_derecurs_regexp p1 p2) && (equal_derecurs q1 q2)
155
156
  | _ -> false
and equal_derecurs_regexp r1 r2 = match r1,r2 with
157
158
159
160
  | PEpsilon, PEpsilon -> 
      true
  | PElem p1, PElem p2 -> 
      equal_derecurs p1 p2
161
  | PSeq (p1,q1), PSeq (p2,q2) 
162
163
  | PAlt (p1,q1), PAlt (p2,q2) -> 
      (equal_derecurs_regexp p1 p2) && (equal_derecurs_regexp q1 q2)
164
  | PStar p1, PStar p2
165
166
  | PWeakStar p1, PWeakStar p2 -> 
      equal_derecurs_regexp p1 p2
167
  | _ -> false
168

169
170
171
172
173
174
175
176
177
178
179
module DerecursTable = Hashtbl.Make(
  struct 
    type t = derecurs 
    let hash = hash_derecurs
    let equal = equal_derecurs
  end
)

module RE = Hashtbl.Make(
  struct 
    type t = derecurs_regexp * derecurs 
180
181
182
183
    let hash (p,q) = 
      (hash_derecurs_regexp p) + 17 * (hash_derecurs q)
    let equal (p1,q1) (p2,q2) = 
      (equal_derecurs_regexp p1 p2) && (equal_derecurs q1 q2)
184
185
  end
)
186

187
188
189
190
191
  
let counter = State.ref "Typer.counter - derecurs" 0
let mk_slot loc = 
  incr counter; 
  { ploop = false; ploc = loc; pid = !counter; pdescr = None }
192

193
194
let protect_error_ns loc f x =
  try f x
195
196
197
198
  with Ns.UnknownPrefix ns ->
    raise_loc_generic loc 
    ("Undefined namespace prefix " ^ (U.to_string ns))

199
200
201
  
let parse_atom env loc t =
  let (ns,l) = protect_error_ns loc (Ns.map_tag env.tenv_nspref) t in
202
  Atoms.V.mk ns l
203
 
204
205
let parse_ns env loc ns =
  protect_error_ns loc (Ns.map_prefix env.tenv_nspref) ns
206

207
208
209
210
211
212
213
214
let parse_label env loc t =
  let (ns,l) = protect_error_ns loc (Ns.map_attr env.tenv_nspref) t in
  LabelPool.mk (ns,l)

let parse_record env loc f r =
  let r = List.map (fun (l,x) -> (parse_label env loc l, f x)) r in
  LabelMap.from_list (fun _ _ -> raise_loc_generic loc "Duplicated record field") r

215
216
217
218
219
220
221
222
223
224
225
226

let rec const env loc = function
  | LocatedExpr (loc,e) -> const env loc e
  | Pair (x,y) -> Types.Pair (const env loc x, const env loc y)
  | Xml (x,y) -> Types.Xml (const env loc x, const env loc y)
  | RecordLitt x -> Types.Record (parse_record env loc (const env loc) x)
  | String (i,j,s,c) -> Types.String (i,j,s,const env loc c)
  | Atom t -> Types.Atom (parse_atom env loc t)
  | Integer i -> Types.Integer i
  | Char c -> Types.Char c
  | _ -> raise_loc_generic loc "This should be a scalar or structured constant"

227
228
let rec derecurs env p = match p.descr with
  | PatVar v ->
229
      (try PAlias (TypeEnv.find v env.tenv_names)
230
       with Not_found -> PCapture (ident v))
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
  | SchemaVar (kind, schema, item) ->
      let try_elt () = fst (Hashtbl.find !schema_elements (schema, item)) in
      let try_typ () = Hashtbl.find !schema_types (schema, item) in
      let try_att () = Hashtbl.find !schema_attributes (schema, item) in
      (match kind with
      | `Element ->
          (try
            PType (try_elt ())
          with Not_found ->
            failwith (Printf.sprintf
              "No element named '%s' found in schema '%s'" item schema))
      | `Type ->
          (try
            PType (try_typ ())
          with Not_found ->
            failwith (Printf.sprintf
              "No type named '%s' found in schema '%s'" item schema))
      | `Attribute ->
          (try
            PType (try_att ())
          with Not_found ->
            failwith (Printf.sprintf
              "No attribute named '%s' found in schema '%s'" item schema))
      | `Any ->
          PType
            (try try_elt () with Not_found ->
              (try try_typ () with Not_found ->
                (try try_att () with Not_found ->
                  failwith (Printf.sprintf
                    "No item named '%s' found in schema '%s'" item schema)))))
261
262
  | Recurs (p,b) -> derecurs (derecurs_def env b) p
  | Internal t -> PType t
263
  | NsT ns -> PType (Types.atom (Atoms.any_in_ns (parse_ns env p.loc ns)))
264
265
266
267
268
269
270
  | Or (p1,p2) -> POr (derecurs env p1, derecurs env p2)
  | And (p1,p2) -> PAnd (derecurs env p1, derecurs env p2)
  | Diff (p1,p2) -> PDiff (derecurs env p1, derecurs env p2)
  | Prod (p1,p2) -> PTimes (derecurs env p1, derecurs env p2)
  | XmlT (p1,p2) -> PXml (derecurs env p1, derecurs env p2)
  | Arrow (p1,p2) -> PArrow (derecurs env p1, derecurs env p2)
  | Optional p -> POptional (derecurs env p)
271
  | Record (o,r) -> PRecord (o, parse_record env p.loc (derecurs env) r)
272
  | Constant (x,c) -> PConstant (x,const env p.loc c)
273
  | Cst c -> PType (Types.constant (const env p.loc c))
274
  | Regexp (r,q) -> 
275
276
      let constant_nil t v = 
	PAnd (t, PConstant (v, Types.Atom Sequence.nil_atom)) in
277
278
279
280
281
      let vars = seq_vars IdSet.empty r in
      let q = IdSet.fold constant_nil (derecurs env q) vars in
      let r = derecurs_regexp (fun p -> p) env r in
      PRegexp (r, q)
and derecurs_regexp vars env = function
282
283
284
285
286
287
288
289
290
291
292
293
294
295
  | Epsilon -> 
      PEpsilon
  | Elem p -> 
      PElem (vars (derecurs env p))
  | Seq (p1,p2) -> 
      PSeq (derecurs_regexp vars env p1, derecurs_regexp vars env p2)
  | Alt (p1,p2) -> 
      PAlt (derecurs_regexp vars env p1, derecurs_regexp vars env p2)
  | Star p -> 
      PStar (derecurs_regexp vars env p)
  | WeakStar p -> 
      PWeakStar (derecurs_regexp vars env p)
  | SeqCapture (x,p) -> 
      derecurs_regexp (fun p -> PAnd (vars p, PCapture x)) env p
296
297
298
299


and derecurs_def env b =
  let b = List.map (fun (v,p) -> (v,p,mk_slot p.loc)) b in
300
301
302
  let n = 
    List.fold_left (fun env (v,p,s) -> TypeEnv.add v s env) env.tenv_names b in
  let env = { env with tenv_names = n } in
303
304
  List.iter (fun (v,p,s) -> s.pdescr <- Some (derecurs env p)) b;
  env
305

306
(* Stratification and recursive hash-consing *)
307
308
309
310
311
312
313
314
315

type descr = 
  | IType of Types.descr
  | IOr of descr * descr
  | IAnd of descr * descr
  | IDiff of descr * descr
  | ITimes of slot * slot
  | IXml of slot * slot
  | IArrow of slot * slot
316
  | IOptional of descr
317
318
319
320
321
322
323
324
  | IRecord of bool * slot label_map
  | ICapture of id
  | IConstant of id * Types.const
and slot = {
  mutable fv : fv option;
  mutable hash : int option;
  mutable rank1: int; mutable rank2: int;
  mutable gen1 : int; mutable gen2: int;
325
  mutable d    : descr option
326
327
328
329
330
331
332
333
334
335
336
}
    
let descr s = 
  match s.d with
    | Some d -> d
    | None -> assert false
	
let gen = ref 0
let rank = ref 0
	     
let rec hash_descr = function
337
  | IType x -> Types.hash x
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
  | IOr (d1,d2) -> 1 + 17 * (hash_descr d1) + 257 * (hash_descr d2)
  | IAnd (d1,d2) -> 2 + 17 * (hash_descr d1) + 257 * (hash_descr d2)
  | IDiff (d1,d2) -> 3 + 17 * (hash_descr d1) + 257 * (hash_descr d2)
  | IOptional d -> 4 + 17 * (hash_descr d)
  | ITimes (s1,s2) -> 5 + 17 * (hash_slot s1) + 257 * (hash_slot s2)
  | IXml (s1,s2) -> 6 + 17 * (hash_slot s1) + 257 * (hash_slot s2)
  | IArrow (s1,s2) -> 7 + 17 * (hash_slot s1) + 257 * (hash_slot s2)
  | IRecord (o,r) -> (if o then 8 else 9) + 17 * (LabelMap.hash hash_slot r)
  | ICapture x -> 10 + 17 * (Id.hash x)
  | IConstant (x,y) -> 11 + 17 * (Id.hash x) + 257 * (Types.hash_const y)
and hash_slot s =
  if s.gen1 = !gen then 13 * s.rank1
  else (
    incr rank;
    s.rank1 <- !rank; s.gen1 <- !gen;
    hash_descr (descr s)
  )
    
let rec equal_descr d1 d2 = 
  match (d1,d2) with
358
  | IType x1, IType x2 -> Types.equal x1 x2
359
360
361
362
363
364
365
  | IOr (x1,y1), IOr (x2,y2) 
  | IAnd (x1,y1), IAnd (x2,y2) 
  | IDiff (x1,y1), IDiff (x2,y2) -> (equal_descr x1 x2) && (equal_descr y1 y2)
  | IOptional x1, IOptional x2 -> equal_descr x1 x2
  | ITimes (x1,y1), ITimes (x2,y2) 
  | IXml (x1,y1), IXml (x2,y2) 
  | IArrow (x1,y1), IArrow (x2,y2) -> (equal_slot x1 x2) && (equal_slot y1 y2)
366
367
  | IRecord (o1,r1), IRecord (o2,r2) -> 
      (o1 = o2) && (LabelMap.equal equal_slot r1 r2)
368
  | ICapture x1, ICapture x2 -> Id.equal x1 x2
369
370
  | IConstant (x1,y1), IConstant (x2,y2) -> 
      (Id.equal x1 x2) && (Types.equal_const y1 y2)
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
  | _ -> false
and equal_slot s1 s2 =
  ((s1.gen1 = !gen) && (s2.gen2 = !gen) && (s1.rank1 = s2.rank2))
  ||
  ((s1.gen1 <> !gen) && (s2.gen2 <> !gen) && (
     incr rank;
     s1.rank1 <- !rank; s1.gen1 <- !gen;
     s2.rank2 <- !rank; s2.gen2 <- !gen;
     equal_descr (descr s1) (descr s2)
   ))
  
module Arg = struct
  type t = slot
      
  let hash s =
    match s.hash with
      | Some h -> h
      | None ->
	  incr gen; rank := 0; 
	  let h = hash_slot s in
	  s.hash <- Some h;
	  h
	    
394
395
396
397
  let equal s1 s2 = 
    (s1 == s2) || 
    (incr gen; rank := 0; 
     let e = equal_slot s1 s2 in
398
(*     if e then Printf.eprintf "Recursive hash-consig: Equal\n";  *)
399
     e)
400
end
401
402
403
404
405
406
407
408
409
module SlotTable = Hashtbl.Make(Arg)
  
let rec fv_slot s =
  match s.fv with
    | Some x -> x
    | None ->
	if s.gen1 = !gen then IdSet.empty 
	else (s.gen1 <- !gen; fv_descr (descr s))
and fv_descr = function
410
  | IType _ -> IdSet.empty
411
412
413
414
415
416
417
  | IOr (d1,d2)
  | IAnd (d1,d2)  
  | IDiff (d1,d2) -> IdSet.cup (fv_descr d1) (fv_descr d2)
  | IOptional d -> fv_descr d
  | ITimes (s1,s2)  
  | IXml (s1,s2)  
  | IArrow (s1,s2) -> IdSet.cup (fv_slot s1) (fv_slot s2)
418
419
  | IRecord (o,r) -> 
      List.fold_left IdSet.cup IdSet.empty (LabelMap.map_to_list fv_slot r)
420
  | ICapture x | IConstant (x,_) -> IdSet.singleton x
421

422
423
424
425
426
427
428
429
430
      
let compute_fv s =
  match s.fv with
    | Some x -> ()
    | None ->
	incr gen;
	let x = fv_slot s in
	s.fv <- Some x
	  
431
432

let todo_fv = ref []
433
434
435
436
437
438
439
440
	  
let mk () =   
  let s = 
    { d = None;
      fv = None;
      hash = None;
      rank1 = 0; rank2 = 0;
      gen1 = 0; gen2 = 0 } in
441
  todo_fv := s :: !todo_fv;
442
  s
443
444
445
446

let flush_fv () =
  List.iter compute_fv !todo_fv;
  todo_fv := []
447
448
449
450
451
452
453
454

let check_no_capture loc s =
  match IdSet.pick s with
    | Some x ->  
	raise_loc_generic loc (
	  "Unbound type name " ^ (U.to_string (Id.value x)))
    | None -> ()

455
    
456
457
458
let compile_slot_hash = DerecursTable.create 67
let compile_hash = DerecursTable.create 67

459
let defs = ref []
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493

let rec compile p =
  try DerecursTable.find compile_hash p
  with Not_found ->
    let c = real_compile p in
    DerecursTable.replace compile_hash p c;
    c
and real_compile = function
  | PAlias v ->
      if v.ploop then
	raise_loc_generic v.ploc ("Unguarded recursion on type/pattern");
      v.ploop <- true;
      let r = match v.pdescr with Some x -> compile x | _ -> assert false in
      v.ploop <- false;
      r
  | PType t -> IType t
  | POr (t1,t2) -> IOr (compile t1, compile t2)
  | PAnd (t1,t2) -> IAnd (compile t1, compile t2)
  | PDiff (t1,t2) -> IDiff (compile t1, compile t2)
  | PTimes (t1,t2) -> ITimes (compile_slot t1, compile_slot t2)
  | PXml (t1,t2) -> IXml (compile_slot t1, compile_slot t2)
  | PArrow (t1,t2) -> IArrow (compile_slot t1, compile_slot t2)
  | POptional t -> IOptional (compile t)
  | PRecord (o,r) ->  IRecord (o, LabelMap.map compile_slot r)
  | PConstant (x,v) -> IConstant (x,v)
  | PCapture x -> ICapture x
  | PRegexp (r,q) -> compile_regexp r q
and compile_regexp r q =
  let memo = RE.create 17 in
  let rec aux accu r q =
    if RE.mem memo (r,q) then accu
    else (
      RE.add memo (r,q) ();
      match r with
494
495
496
497
	| PEpsilon -> 
	    (match q with 
	       | PRegexp (r,q) -> aux accu r q 
	       | _ -> (compile q) :: accu)
498
499
500
501
502
503
504
505
506
507
508
509
510
	| PElem p -> ITimes (compile_slot p, compile_slot q) :: accu
	| PSeq (r1,r2) -> aux accu r1 (PRegexp (r2,q))
	| PAlt (r1,r2) -> aux (aux accu r1 q) r2 q
	| PStar r1 -> aux (aux accu r1 (PRegexp (r,q))) PEpsilon q
	| PWeakStar r1 -> aux (aux accu PEpsilon q) r1 (PRegexp (r,q))
    )
  in
  let accu = aux [] r q in
  match accu with
    | [] -> assert false
    | p::l -> List.fold_left (fun acc p -> IOr (p,acc)) p l
and compile_slot p =
  try DerecursTable.find compile_slot_hash p
511
512
  with Not_found ->
    let s = mk () in
513
514
    defs := (s,p) :: !defs;
    DerecursTable.add compile_slot_hash p s;
515
    s
516

517
518
519
520
      
let rec flush_defs () = 
  match !defs with
    | [] -> ()
521
    | (s,p)::t -> defs := t; s.d <- Some (compile p); flush_defs ()
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
	
let typ_nodes = SlotTable.create 67
let pat_nodes = SlotTable.create 67
		  
let rec typ = function
  | IType t -> t
  | IOr (s1,s2) -> Types.cup (typ s1) (typ s2)
  | IAnd (s1,s2) ->  Types.cap (typ s1) (typ s2)
  | IDiff (s1,s2) -> Types.diff (typ s1) (typ s2)
  | ITimes (s1,s2) -> Types.times (typ_node s1) (typ_node s2)
  | IXml (s1,s2) -> Types.xml (typ_node s1) (typ_node s2)
  | IArrow (s1,s2) -> Types.arrow (typ_node s1) (typ_node s2)
  | IOptional s -> Types.Record.or_absent (typ s)
  | IRecord (o,r) -> Types.record' (o, LabelMap.map typ_node r)
  | ICapture x | IConstant (x,_) -> assert false
      
538
and typ_node s : Types.Node.t =
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
  try SlotTable.find typ_nodes s
  with Not_found ->
    let x = Types.make () in
    SlotTable.add typ_nodes s x;
    Types.define x (typ (descr s));
    x
      
let rec pat d : Patterns.descr =
  if IdSet.is_empty (fv_descr d)
  then Patterns.constr (typ d)
  else pat_aux d
    
    
and pat_aux = function
  | IOr (s1,s2) -> Patterns.cup (pat s1) (pat s2)
  | IAnd (s1,s2) -> Patterns.cap (pat s1) (pat s2)
  | IDiff (s1,s2) when IdSet.is_empty (fv_descr s2) ->
      let s2 = Types.neg (typ s2) in
      Patterns.cap (pat s1) (Patterns.constr s2)
  | IDiff _ ->
      raise (Patterns.Error "Difference not allowed in patterns")
  | ITimes (s1,s2) -> Patterns.times (pat_node s1) (pat_node s2)
  | IXml (s1,s2) -> Patterns.xml (pat_node s1) (pat_node s2)
  | IOptional _ -> 
      raise (Patterns.Error "Optional field not allowed in record patterns")
  | IRecord (o,r) ->
      let pats = ref [] in
      let aux l s = 
	if IdSet.is_empty (fv_slot s) then typ_node s
	else
	  ( pats := Patterns.record l (pat_node s) :: !pats;
	    Types.any_node )
      in
      let constr = Types.record' (o,LabelMap.mapi aux r) in
      List.fold_left Patterns.cap (Patterns.constr constr) !pats
	(* TODO: can avoid constr when o=true, and all fields have fv *)
  | ICapture x -> Patterns.capture x
  | IConstant (x,c) -> Patterns.constant x c
  | IArrow _ ->
      raise (Patterns.Error "Arrow not allowed in patterns")
  | IType _ -> assert false
      
and pat_node s : Patterns.node =
  try SlotTable.find pat_nodes s
  with Not_found ->
    let x = Patterns.make (fv_slot s) in
585
586
587
588
589
590
    try
      SlotTable.add pat_nodes s x;
      Patterns.define x (pat (descr s));
      x
    with exn -> SlotTable.remove pat_nodes s; raise exn
      (* For the toplevel ... *)
591

592
let register_types glb b =
593
594
  List.iter 
    (fun (v,p) ->
595
596
       if TypeEnv.mem v glb.tenv_names
       then raise_loc_generic p.loc ("Multiple definition for type " ^ (U.to_string v))
597
    ) b;
598
599
600
601
602
603
604
  let glb = derecurs_def glb b in
  let b = List.map (fun (v,p) -> (v,p,compile (derecurs glb p))) b in
  flush_defs ();
  flush_fv ();
  let b = 
    List.map 
      (fun (v,p,s) -> 
605
	 check_no_capture p.loc (fv_descr s);
606
607
608
609
	 let t = typ s in
	 if (p.loc <> noloc) && (Types.is_empty t) then
	   warning p.loc 
	     ("This definition yields an empty type for " ^ (U.to_string v));
610
611
612
613
614
(*	 let ts = Serialize.Put.run Types.serialize t in
	 let t' = Serialize.Get.run Types.deserialize ts in
	 assert (Types.subtype t t');
	 assert (Types.subtype t' t); *)
(*	 Printf.eprintf "Serialize:%s\n" ts;  *)
615
616
617
618
	 (v,t)) b in
  List.iter (fun (v,t) -> Types.Print.register_global v t) b;
  glb

619
let register_ns glb p ns =
620
  { glb with tenv_nspref = Ns.add_prefix p ns glb.tenv_nspref }
621

622
let dump_types ppf glb =
623
  TypeEnv.iter (fun v _ -> Format.fprintf ppf " %a" U.print v) glb.tenv_names
624

625
626
627
let dump_ns ppf glb =
  Ns.dump_table ppf glb.tenv_nspref

628

629
630
let do_typ loc r = 
  let s = compile_slot r in
631
632
  flush_defs ();
  flush_fv ();
633
634
  check_no_capture loc (fv_slot s);
  typ_node s
635
   
636
637
let typ glb p =
  do_typ p.loc (derecurs glb p)
638
    
639
640
let pat glb p = 
  let s = compile_slot (derecurs glb p) in
641
642
643
644
  flush_defs ();
  flush_fv ();
  try pat_node s
  with Patterns.Error e -> raise_loc_generic p.loc e
645
    | Location (loc,_,exn) when loc = noloc -> raise (Location (p.loc, `Full, exn))
646
647


648
649
(* II. Build skeleton *)

650
651
652
653
654
655
656
657

type op = [ `Unary of tenv -> Typed.unary_op | `Binary of tenv -> Typed.binary_op ]
let op_table : (string,op) Hashtbl.t = Hashtbl.create 31
let register_unary_op s f = Hashtbl.add op_table s (`Unary f)
let register_binary_op s f = Hashtbl.add op_table s (`Binary f)
let find_op s = Hashtbl.find op_table s


658
module Fv = IdSet
659

660
661
662
type branch = Branch of Typed.branch * branch list

let cur_branch : branch list ref = ref []
663

664
let exp loc fv e =
665
666
  fv,
  { Typed.exp_loc = loc;
667
    Typed.exp_typ = Types.empty;
668
    Typed.exp_descr = e;
669
  }
670
671


672
673
let rec expr glb loc = function
  | LocatedExpr (loc,e) -> expr glb loc e
674
  | Forget (e,t) ->
675
      let (fv,e) = expr glb loc e and t = typ glb t in
676
677
678
679
      exp loc fv (Typed.Forget (e,t))
  | Var s -> 
      exp loc (Fv.singleton s) (Typed.Var s)
  | Apply (e1,e2) -> 
680
      let (fv1,e1) = expr glb loc e1 and (fv2,e2) = expr glb loc e2 in
681
682
      exp loc (Fv.cup fv1 fv2) (Typed.Apply (e1,e2))
  | Abstraction a ->
683
      let iface = List.map (fun (t1,t2) -> (typ glb t1, typ glb t2)) 
684
685
686
687
688
689
690
		    a.fun_iface in
      let t = List.fold_left 
		(fun accu (t1,t2) -> Types.cap accu (Types.arrow t1 t2)) 
		Types.any iface in
      let iface = List.map 
		    (fun (t1,t2) -> (Types.descr t1, Types.descr t2)) 
		    iface in
691
      let (fv0,body) = branches glb a.fun_body in
692
693
694
695
696
697
698
699
700
701
702
      let fv = match a.fun_name with
	| None -> fv0
	| Some f -> Fv.remove f fv0 in
      let e = Typed.Abstraction 
		{ Typed.fun_name = a.fun_name;
		  Typed.fun_iface = iface;
		  Typed.fun_body = body;
		  Typed.fun_typ = t;
		  Typed.fun_fv = fv
		} in
      exp loc fv e
703
  | (Integer _ | Char _ | Atom _) as c -> 
704
      exp loc Fv.empty (Typed.Cst (const glb loc c))
705
  | Pair (e1,e2) ->
706
      let (fv1,e1) = expr glb loc e1 and (fv2,e2) = expr glb loc e2 in
707
708
      exp loc (Fv.cup fv1 fv2) (Typed.Pair (e1,e2))
  | Xml (e1,e2) ->
709
      let (fv1,e1) = expr glb loc e1 and (fv2,e2) = expr glb loc e2 in
710
711
      exp loc (Fv.cup fv1 fv2) (Typed.Xml (e1,e2))
  | Dot (e,l) ->
712
      let (fv,e) = expr glb loc e in
713
      exp loc fv (Typed.Dot (e,parse_label glb loc l))
714
  | RemoveField (e,l) ->
715
      let (fv,e) = expr glb loc e in
716
      exp loc fv (Typed.RemoveField (e,parse_label glb loc l))
717
718
  | RecordLitt r -> 
      let fv = ref Fv.empty in
719
      let r = parse_record glb loc
720
		(fun e -> 
721
		   let (fv2,e) = expr glb loc e 
722
723
724
		   in fv := Fv.cup !fv fv2; e)
		r in
      exp loc !fv (Typed.RecordLitt r)
725
  | String (i,j,s,e) ->
726
      let (fv,e) = expr glb loc e in
727
      exp loc fv (Typed.String (i,j,s,e))
728
  | Op (op,le) ->
729
      let (fvs,ltes) = List.split (List.map (expr glb loc) le) in
730
      let fv = List.fold_left Fv.cup Fv.empty fvs in
731
      (try
732
733
734
	 (match (ltes,find_op op) with
	    | [e], `Unary op -> exp loc fv (Typed.UnaryOp (op glb, e))
	    | [e1;e2], `Binary op -> exp loc fv (Typed.BinaryOp (op glb, e1,e2))
735
736
737
	    | _ -> assert false)
       with Not_found -> assert false)

738
  | Match (e,b) -> 
739
740
      let (fv1,e) = expr glb loc e
      and (fv2,b) = branches glb b in
741
      exp loc (Fv.cup fv1 fv2) (Typed.Match (e, b))
742
  | Map (e,b) ->
743
744
      let (fv1,e) = expr glb loc e
      and (fv2,b) = branches glb b in
745
746
      exp loc (Fv.cup fv1 fv2) (Typed.Map (e, b))
  | Transform (e,b) ->
747
748
      let (fv1,e) = expr glb loc e
      and (fv2,b) = branches glb b in
749
      exp loc (Fv.cup fv1 fv2) (Typed.Transform (e, b))
750
  | Xtrans (e,b) ->
751
752
      let (fv1,e) = expr glb loc e
      and (fv2,b) = branches glb b in
753
      exp loc (Fv.cup fv1 fv2) (Typed.Xtrans (e, b))
754
  | Validate (e,schema,elt) ->
755
      let (fv,e) = expr glb loc e in
756
      exp loc fv (Typed.Validate (e, schema, elt))
757
  | Try (e,b) ->
758
759
      let (fv1,e) = expr glb loc e
      and (fv2,b) = branches glb b in
760
      exp loc (Fv.cup fv1 fv2) (Typed.Try (e, b))
761
  | NamespaceIn (pr,ns,e) ->
762
      let glb = register_ns glb pr ns in
763
      expr glb loc e
764
765
766
  | Ref (e,t) ->
      let (fv,e) = expr glb loc e and t = typ glb t in
      exp loc fv (Typed.Ref (e,t))
767
	      
768
  and branches glb b = 
769
    let fv = ref Fv.empty in
770
    let accept = ref Types.empty in
771
    let branch (p,e) = 
772
773
      let cur_br = !cur_branch in
      cur_branch := [];
774
      let (fv2,e) = expr glb noloc e in
775
      let br_loc = merge_loc p.loc e.Typed.exp_loc in
776
      let p = pat glb p in
777
778
779
780
781
782
      (match Fv.pick (Fv.diff (Patterns.fv p) fv2) with
	| None -> ()
	| Some x ->
	    let x = U.to_string (Id.value x) in
	    warning br_loc 
	      ("The capture variable " ^ x ^ 
783
	       " is declared in the pattern but not used in the body of this branch. It might be a misspelled type or name (if not use _ instead)."));
784
785
786
787
788
789
790
791
792
      let fv2 = Fv.diff fv2 (Patterns.fv p) in
      fv := Fv.cup !fv fv2;
      accept := Types.cup !accept (Types.descr (Patterns.accept p));
      let br = 
	{ 
	  Typed.br_loc = br_loc;
	  Typed.br_used = br_loc = noloc;
	  Typed.br_pat = p;
	  Typed.br_body = e } in
793
      cur_branch := Branch (br, !cur_branch) :: cur_br;
794
795
      br in
    let b = List.map branch b in
796
797
798
799
    (!fv, 
     { 
       Typed.br_typ = Types.empty; 
       Typed.br_branches = b; 
800
801
       Typed.br_accept = !accept;
       Typed.br_compiled = None;
802
803
     } 
    )
804

805
let expr glb = expr glb noloc
806

807
808
809
let let_decl glb p e =
  let (_,e) = expr glb e in
  { Typed.let_pat = pat glb p;
810
811
812
    Typed.let_body = e;
    Typed.let_compiled = None }

813
814
815
816
817

(* Hide global "typing/parsing" environment *)

let glb = State.ref "Typer.glb_env" 
	    { tenv_names = TypeEnv.empty;
818
	      tenv_nspref = Ns.empty_table;
819
820
821
822
823
824
825
	      tenv_loc = noloc }

let pat p = pat !glb p
let typ t = typ !glb t
let expr e = expr !glb e
let let_decl p e = let_decl !glb p e

826
827
let register_global_types l = glb := register_types !glb l
let dump_global_types ppf = dump_types ppf !glb
828

829
830
let register_global_ns p ns = glb := register_ns !glb p ns
let dump_global_ns ppf = dump_ns ppf !glb
831

832
833
let set_ns_table_for_printer () = Ns.InternalPrinter.set_table !glb.tenv_nspref

834
835
836
(* III. Type-checks *)

type env = Types.descr Env.t
837
838
839

open Typed

840
841
let require loc t s = 
  if not (Types.subtype t s) then raise_loc loc (Constraint (t, s))
842

843
844
845
let check loc t s = 
  require loc t s; t

846
847
848
849
850
let check_str loc ofs t s = 
  if not (Types.subtype t s) then raise_loc_str loc ofs (Constraint (t, s));
  t

let should_have loc constr s = 
851
852
  raise_loc loc (ShouldHave (constr,s))

853
854
855
let should_have_str loc ofs constr s = 
  raise_loc_str loc ofs (ShouldHave (constr,s))

856
857
858
859
860
861
862
863
864
865
866
let flatten loc arg constr precise =
  let constr' = Sequence.star 
		  (Sequence.approx (Types.cap Sequence.any constr)) in
  let sconstr' = Sequence.star constr' in
  let exact = Types.subtype constr' constr in
  if exact then
    let t = arg sconstr' precise in
    if precise then Sequence.flatten t else constr
  else
    let t = arg sconstr' true in
    Sequence.flatten t
867

868
869
let rec type_check env e constr precise = 
  let d = type_check' e.exp_loc env e.exp_descr constr precise in
870
  let d = if precise then d else constr in
871
872
873
  e.exp_typ <- Types.cup e.exp_typ d;
  d

874
and type_check' loc env e constr precise = match e with
875
876
877
  | Forget (e,t) ->
      let t = Types.descr t in
      ignore (type_check env e t false);
878
879
      check loc t constr

880
  | Abstraction a ->
881
882
883
      let t =
	try Types.Arrow.check_strenghten a.fun_typ constr 
	with Not_found -> 
884
885
	  should_have loc constr
	    "but the interface of the abstraction is not compatible"
886
      in
887
888
889
      let env = match a.fun_name with
	| None -> env
	| Some f -> Env.add f a.fun_typ env in
890
891
      List.iter 
	(fun (t1,t2) ->
892
893
894
	   let acc = a.fun_body.br_accept in 
	   if not (Types.subtype t1 acc) then
	     raise_loc loc (NonExhaustive (Types.diff t1 acc));
895
	   ignore (type_check_branches loc env t1 a.fun_body t2 false)
896
897
	) a.fun_iface;
      t
898

899
900
  | Match (e,b) ->
      let t = type_check env e b.br_accept true in
901
      type_check_branches loc env t b constr precise
902
903
904

  | Try (e,b) ->
      let te = type_check env e constr precise in
905
      let tb = type_check_branches loc env Types.any b constr precise in
906
      Types.cup te tb
907

908
909
  | Pair (e1,e2) ->
      type_check_pair loc env e1 e2 constr precise
910

911
912
  | Xml (e1,e2) ->
      type_check_pair ~kind:`XML loc env e1 e2 constr precise
913

914
  | RecordLitt r ->
915
916
917
918
919
920
921
922
      type_record loc env r constr precise

  | Map (e,b) ->
      type_map loc env false e b constr precise

  | Transform (e,b) ->
      flatten loc (type_map loc env true e b) constr precise

923
924
925
926
  | Apply (e1,e2) ->
      let t1 = type_check env e1 Types.Arrow.any true in
      let t1 = Types.Arrow.get t1 in
      let dom = Types.Arrow.domain t1 in
927
928
929
930
931
932
933
      let res =
	if Types.Arrow.need_arg t1 then
	  let t2 = type_check env e2 dom true in
	  Types.Arrow.apply t1 t2
	else
	  (ignore (type_check env e2 dom false); Types.Arrow.apply_noarg t1)
      in
934
935
936
      check loc res constr

  | UnaryOp (o,e) ->
937
938
      let t = o.un_op_typer loc 
		(type_check env e) constr precise in
939
940
941
      check loc t constr

  | BinaryOp (o,e1,e2) ->
942
943
944
      let t = o.bin_op_typer loc 
		(type_check env e1) 
		(type_check env e2) constr precise in
945
946
947
948
949
      check loc t constr

  | Var s -> 
      let t = 
	try Env.find s env
950
951
952
	with Not_found -> 
	  raise_loc loc 
	    (UnboundId (s, TypeEnv.mem (Id.value s) !glb.tenv_names) ) in
953
954
955
956
957
      check loc t constr
      
  | Cst c -> 
      check loc (Types.constant c) constr

958
959
960
  | String (i,j,s,e) ->
      type_check_string loc env 0 s i j e constr precise

961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
  | Dot (e,l) ->
      let t = type_check env e Types.Record.any true in
      let t = 
        try (Types.Record.project t l) 
        with Not_found -> raise_loc loc (WrongLabel(t,l))
      in
      check loc t constr

  | RemoveField (e,l) ->
      let t = type_check env e Types.Record.any true in
      let t = Types.Record.remove_field t l in
      check loc t constr

  | Xtrans (e,b) ->
      let t = type_check env e Sequence.any true in
      let t = 
	Sequence.map_tree 
	  (fun t ->
	     let resid = Types.diff t b.br_accept in
	     let res = type_check_branches loc env t b Sequence.any true in
	     (res,resid)
	  ) t in
      check loc t constr

985
986
987
988
  | Validate (e, schema_name, elt_name) ->
      ignore (type_check env e Types.any false);
      let t = fst (Hashtbl.find !schema_elements (schema_name, elt_name)) in
      check loc t constr
989

990
991
992
993
  | Ref (e,t) ->
      ignore (type_check env e (Types.descr t) false);
      check loc (Builtin_defs.ref_type t) constr

994
and type_check_pair ?(kind=`Normal) loc env e1 e2 constr precise =
995
  let rects = Types.Product.normal ~kind constr in
996
997
  if Types.Product.is_empty rects then 
    (match kind with
998
999
      | `Normal -> should_have loc constr "but it is a pair"
      | `XML -> should_have loc constr "but it is an XML element");
1000
  let need_s = Types.Product.need_second rects in
1001
1002
1003
1004
1005
  let t1 = type_check env e1 (Types.Product.pi1 rects) (precise || need_s) in
  let c2 = Types.Product.constraint_on_2 rects t1 in
  if Types.is_empty c2 then 
    raise_loc loc (ShouldHave2 (constr,"but the first component has type",t1));
  let t2 = type_check env e2 c2 precise in
1006

1007
  if precise then 
1008
1009
1010
    match kind with
      | `Normal -> Types.times (Types.cons t1) (Types.cons t2)
      | `XML -> Types.xml (Types.cons t1) (Types.cons t2)
1011
1012
1013
  else
    constr

1014
1015
1016
1017
1018
1019
1020
1021
1022
and type_check_string loc env ofs s i j e constr precise =
  if U.equal_index i j then type_check env e constr precise
  else
    let rects = Types.Product.normal constr in
    if Types.Product.is_empty rects 
    then should_have_str loc ofs constr "but it is a string"
    else
      let need_s = Types.Product.need_second rects in
      let (ch,i') = U.next s i in
1023
      let ch = Chars.V.mk_int ch in
1024
1025
1026
1027
1028
1029
1030
      let tch = Types.constant (Types.Char ch) in
      let t1 = check_str loc ofs tch (Types.Product.pi1 rects) in
      let c2 = Types.Product.constraint_on_2 rects t1 in
      let t2 = type_check_string loc env (ofs + 1) s i' j e c2 precise in
      if precise then Types.times (Types.cons t1) (Types.cons t2)
      else constr

1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
and type_record loc env r constr precise =
(* try to get rid of precise = true for values of fields *)
(* also: the use equivalent of need_second to optimize... *)
  if not (Types.Record.has_record constr) then
    should_have loc constr "but it is a record";
  let (rconstr,res) = 
    List.fold_left
      (fun (rconstr,res) (l,e) ->
	 (* could compute (split l e) once... *)
	 let pi = Types.Record.project_opt rconstr l in
	 if Types.is_empty pi then 
1042
	   (let l = Label.to_string (LabelPool.value l) in
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
	    should_have loc constr
	      (Printf.sprintf "Field %s is not allowed here." l));
	 let t = type_check env e pi true in
	 let rconstr = Types.Record.condition rconstr l t in
	 let res = (l,Types.cons t) :: res in
	 (rconstr,res)
      ) (constr, []) (LabelMap.get r)
  in
  if not (Types.Record.has_empty_record rconstr) then
    should_have loc constr "More fields should be present";
  let t = 
    Types.record' (false, LabelMap.from_list (fun _ _ -> assert false) res)
  in
  check loc t constr
1057

1058

1059
and type_check_branches loc env targ brs constr precise =
1060
  if Types.is_empty targ then Types.empty
1061
1062
  else (
    brs.br_typ <- Types.cup brs.br_typ targ;
1063
    branches_aux loc env targ 
1064
1065
      (if precise then Types.empty else constr) 
      constr precise brs.br_branches
1066
  )
1067
    
1068
and branches_aux loc env targ tres constr precise = function
1069
  | [] -> tres
1070
1071
1072
1073
1074
1075
  | b :: rem ->
      let p = b.br_pat in
      let acc = Types.descr (Patterns.accept p) in

      let targ' = Types.cap targ acc in
      if Types.is_empty targ' 
1076
      then branches_aux loc env targ tres constr precise rem
1077
1078
1079
1080
1081
1082
      else 
	( b.br_used <- true;
	  let res = Patterns.filter targ' p in
	  let env' = List.fold_left 
		       (fun env (x,t) -> Env.add x (Types.descr t) env) 
		       env res in