typer.ml 18.8 KB
Newer Older
1
2
(* I. Transform the abstract syntax of types and patterns into
      the internal form *)
3
4
5
6

open Location
open Ast

7
8
exception Pattern of string
exception NonExhaustive of Types.descr
9
exception MultipleLabel of Types.label
10
exception Constraint of Types.descr * Types.descr * string
11
exception ShouldHave of Types.descr * string
12
exception WrongLabel of Types.descr * Types.label
13
exception UnboundId of string
14
15

let raise_loc loc exn = raise (Location (loc,exn))
16
17
18
19

(* Internal representation as a graph (desugar recursive types and regexp),
   to compute freevars, etc... *)

20
type ti = {
21
22
23
24
25
26
27
28
  id : int; 
  mutable loc' : loc;
  mutable fv : string SortedList.t option; 
  mutable descr': descr;
  mutable type_node: Types.node option;
  mutable pat_node: Patterns.node option
} 
and descr =
29
   [ `Alias of string * ti
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
   | `Type of Types.descr
   | `Or of ti * ti
   | `And of ti * ti
   | `Diff of ti * ti
   | `Times of ti * ti
   | `Arrow of ti * ti
   | `Record of Types.label * bool * ti
   | `Capture of Patterns.capture
   | `Constant of Patterns.capture * Types.const
   ]
    


module S = struct type t = string let compare = compare end
module StringMap = Map.Make(S)
module StringSet = Set.Make(S)

let mk' =
  let counter = ref 0 in
49
  fun loc ->
50
    incr counter;
51
52
    let rec x = { 
      id = !counter; 
53
      loc' = loc; 
54
55
56
57
58
      fv = None; 
      descr' = `Alias ("__dummy__", x);  
      type_node = None; 
      pat_node = None 
    } in
59
60
61
    x

let cons loc d =
62
  let x = mk' loc in
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
  x.descr' <- d;
  x
    
(* Note:
   Compilation of Regexp is implemented as a ``rewriting'' of
   the parsed syntax, in order to be able to print its result
   (for debugging for instance)
   
   It would be possible (and a little more efficient) to produce
   directly ti nodes.
*)
    
module Regexp = struct
  let memo = Hashtbl.create 51
  let defs = ref []
  let name =
    let c = ref 0 in
    fun () ->
      incr c;
      "#" ^ (string_of_int !c)

  let rec seq_vars accu = function
    | Epsilon | Elem _ -> accu
    | Seq (r1,r2) | Alt (r1,r2) -> seq_vars (seq_vars accu r1) r2
    | Star r | WeakStar r -> seq_vars accu r
    | SeqCapture (v,r) -> seq_vars (StringSet.add v accu) r

  let rec propagate vars = function
    | Epsilon -> `Epsilon
    | Elem x -> `Elem (vars,x)
    | Seq (r1,r2) -> `Seq (propagate vars r1,propagate vars r2)
    | Alt (r1,r2) -> `Alt (propagate vars r1, propagate vars r2)
    | Star r -> `Star (propagate vars r)
    | WeakStar r -> `WeakStar (propagate vars r)
    | SeqCapture (v,x) -> propagate (StringSet.add v vars) x

  let cup r1 r2 = 
    match (r1,r2) with
      | (_, `Empty) -> r1
      | (`Empty, _) -> r2
      | (`Res t1, `Res t2) -> `Res (mk noloc (Or (t1,t2)))

  let rec compile fin e seq : [`Res of Ast.ppat | `Empty] = 
    if List.mem seq e then `Empty
    else 
      let e = seq :: e in
      match seq with
	| [] ->
	    `Res fin
	| `Epsilon :: rest -> 
	    compile fin e rest
	| `Elem (vars,x) :: rest -> 
	    let capt = StringSet.fold
			 (fun v t -> mk noloc (And (t, (mk noloc (Capture v)))))
			 vars x in
	    `Res (mk noloc (Prod (capt, guard_compile fin rest)))
	| `Seq (r1,r2) :: rest -> 
	    compile fin e (r1 :: r2 :: rest)
	| `Alt (r1,r2) :: rest -> 
	    cup (compile fin e (r1::rest)) (compile fin e (r2::rest))
	| `Star r :: rest -> cup (compile fin e (r::seq)) (compile fin e rest) 
	| `WeakStar r :: rest -> cup (compile fin e rest) (compile fin e (r::seq))

  and guard_compile fin seq =
    try Hashtbl.find memo seq 
    with
	Not_found ->
          let n = name () in
	  let v = mk noloc (PatVar n) in
          Hashtbl.add memo seq v;
	  let d = compile fin [] seq in
	  (match d with
	     | `Empty -> assert false
	     | `Res d -> defs := (n,d) :: !defs);
	  v


  let atom_nil = Types.mk_atom "nil"
  let constant_nil v t = 
    mk noloc (And (t, (mk noloc (Constant (v, Types.Atom atom_nil)))))

  let compile regexp queue : ppat =
    let vars = seq_vars StringSet.empty regexp in
    let fin = StringSet.fold constant_nil vars queue in
    let n = guard_compile fin [propagate StringSet.empty regexp] in
    Hashtbl.clear memo;
    let d = !defs in
    defs := [];
    mk noloc (Recurs (n,d))
end

let compile_regexp = Regexp.compile


let rec compile env { loc = loc; descr = d } : ti = 
  match (d : Ast.ppat') with
  | PatVar s -> 
      (try StringMap.find s env
161
162
       with Not_found -> 
	 raise_loc loc (Pattern ("Undefined type variable " ^ s))
163
      )
164
  | Recurs (t, b) -> compile (compile_many env b) t
165
166
167
168
169
170
171
172
173
174
175
  | Regexp (r,q) -> compile env (Regexp.compile r q)
  | Internal t -> cons loc (`Type t)
  | Or (t1,t2) -> cons loc (`Or (compile env t1, compile env t2))
  | And (t1,t2) -> cons loc (`And (compile env t1, compile env t2))
  | Diff (t1,t2) -> cons loc (`Diff (compile env t1, compile env t2))
  | Prod (t1,t2) -> cons loc (`Times (compile env t1, compile env t2))
  | Arrow (t1,t2) -> cons loc (`Arrow (compile env t1, compile env t2))
  | Record (l,o,t) -> cons loc (`Record (l,o,compile env t))
  | Constant (x,v) -> cons loc (`Constant (x,v))
  | Capture x -> cons loc (`Capture x)

176
177
178
179
180
181
182
183
and compile_many env b = 
  let b = List.map (fun (v,t) -> (v,t,mk' t.loc)) b in
  let env = 
    List.fold_left (fun env (v,t,x) -> StringMap.add v x env) env b in
  List.iter (fun (v,t,x) -> x.descr' <- `Alias (v, compile env t)) b;
  env


184
185
186
187
188
189
let rec comp_fv seen s =
  match s.fv with
    | Some l -> l
    | None ->
	let l = 
	  match s.descr' with
190
	    | `Alias (_,x) -> if List.memq s seen then [] else comp_fv (s :: seen) x
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
	    | `Or (s1,s2) 
	    | `And (s1,s2)
	    | `Diff (s1,s2)
	    | `Times (s1,s2)
	    | `Arrow (s1,s2) -> SortedList.cup (comp_fv seen s1) (comp_fv seen s2)
	    | `Record (l,opt,s) -> comp_fv seen s
	    | `Type _ -> []
	    | `Capture x
	    | `Constant (x,_) -> [x]
	in
	if seen = [] then s.fv <- Some l;
	l


let fv = comp_fv []

let rec typ seen s : Types.descr =
  match s.descr' with
209
210
211
212
213
    | `Alias (v,x) ->
	if List.memq s seen then 
	  raise_loc s.loc' 
	    (Pattern 
	       ("Unguarded recursion on variable " ^ v ^ " in this type"))
214
215
216
217
218
219
220
221
	else typ (s :: seen) x
    | `Type t -> t
    | `Or (s1,s2) -> Types.cup (typ seen s1) (typ seen s2)
    | `And (s1,s2) ->  Types.cap (typ seen s1) (typ seen s2)
    | `Diff (s1,s2) -> Types.diff (typ seen s1) (typ seen s2)
    | `Times (s1,s2) ->	Types.times (typ_node s1) (typ_node s2)
    | `Arrow (s1,s2) ->	Types.arrow (typ_node s1) (typ_node s2)
    | `Record (l,o,s) -> Types.record l o (typ_node s)
222
    | `Capture _ | `Constant _ -> assert false
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

and typ_node s : Types.node =
  match s.type_node with
    | Some x -> x
    | None ->
	let x = Types.make () in
	s.type_node <- Some x;
	let t = typ [] s in
	Types.define x t;
	x

let type_node s = Types.internalize (typ_node s)

let rec pat seen s : Patterns.descr =
  if fv s = [] then Patterns.constr (type_node s) else
  match s.descr' with
239
240
241
242
243
    | `Alias (v,x) ->
	if List.memq s seen then 
	  raise_loc s.loc' 
	    (Pattern 
	       ("Unguarded recursion on variable " ^ v ^ " in this pattern"))
244
245
246
247
248
249
	else pat (s :: seen) x
    | `Or (s1,s2) -> Patterns.cup (pat seen s1) (pat seen s2)
    | `And (s1,s2) -> Patterns.cap (pat seen s1) (pat seen s2)
    | `Diff (s1,s2) when fv s2 = [] ->
	let s2 = Types.cons (Types.neg (Types.descr (type_node s2)))in
	Patterns.cap (pat seen s1) (Patterns.constr s2)
250
251
    | `Diff _ ->
	raise_loc s.loc' (Pattern "Difference not allowed in patterns")
252
253
    | `Times (s1,s2) -> Patterns.times (pat_node s1) (pat_node s2)
    | `Record (l,false,s) -> Patterns.record l (pat_node s)
254
255
256
    | `Record _ ->
	raise_loc s.loc' 
	  (Pattern "Optional field not allowed in record patterns")
257
258
    | `Capture x ->  Patterns.capture x
    | `Constant (x,c) -> Patterns.constant x c
259
260
261
    | `Arrow _ ->
	raise_loc s.loc' (Pattern "Arrow not allowed in patterns")
    | `Type _ -> assert false
262
263
264
265
266
267
268
269
270
271
272

and pat_node s : Patterns.node =
  match s.pat_node with
    | Some x -> x
    | None ->
	let x = Patterns.make (fv s) in
	s.pat_node <- Some x;
	let t = pat [] s in
	Patterns.define x t;
	x

273
274
275
let global_types = ref StringMap.empty

let mk_typ e =
276
  if fv e = [] then type_node e 
277
278
279
280
281
  else raise_loc e.loc' (Pattern "Capture variables are not allowed in types")
    

let typ e =
  mk_typ (compile !global_types e)
282
283

let pat e =
284
  let e = compile !global_types e in
285
286
  pat_node e

287
288
let register_global_types b =
  let env = compile_many !global_types b in
289
290
  List.iter (fun (v,_) -> 
	       let d = Types.descr (mk_typ (StringMap.find v env)) in
291
	       let d = Types.normalize d in
292
293
	       Types.Print.register_global v d
	    ) b;
294
  global_types := env
295
296


297
298
(* II. Build skeleton *)

299
300
module Fv = StringSet

301
let rec expr { loc = loc; descr = d } = 
302
  let (fv,td) = 
303
    match d with
304
      | DebugTyper t -> (Fv.empty, Typed.DebugTyper (typ t))
305
306
307
308
      | Var s -> (Fv.singleton s, Typed.Var s)
      | Apply (e1,e2) -> 
	  let (fv1,e1) = expr e1 and (fv2,e2) = expr e2 in
	  (Fv.union fv1 fv2, Typed.Apply (e1,e2))
309
      | Abstraction a ->
310
311
312
313
	  let iface = List.map (fun (t1,t2) -> (typ t1, typ t2)) a.fun_iface in
	  let t = List.fold_left 
		    (fun accu (t1,t2) -> Types.cap accu (Types.arrow t1 t2)) 
		    Types.any iface in
314
315
316
	  let iface = List.map 
			(fun (t1,t2) -> (Types.descr t1, Types.descr t2)) 
			iface in
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
	  let (fv0,body) = branches a.fun_body in
	  let fv = match a.fun_name with
	    | None -> fv0
	    | Some f -> Fv.remove f fv0 in
	  (fv,
	   Typed.Abstraction 
	     { Typed.fun_name = a.fun_name;
	       Typed.fun_iface = iface;
	       Typed.fun_body = body;
	       Typed.fun_typ = t;
	       Typed.fun_fv = Fv.elements fv0
	     }
	  )
      | Cst c -> (Fv.empty, Typed.Cst c)
      | Pair (e1,e2) ->
	  let (fv1,e1) = expr e1 and (fv2,e2) = expr e2 in
	  (Fv.union fv1 fv2, Typed.Pair (e1,e2))
334
335
      | Dot (e,l) ->
	  let (fv,e) = expr e in
336
	  (fv,  Typed.Dot (e,l))
337
      | RecordLitt r -> 
338
339
340
341
	  (* Note: quadratic check for non duplication of labels.
	     Should improve that to O(n log n) for dealing
	     with huge number of attributes ?
	  *)
342
	  let fv = ref Fv.empty in
343
	  let labs = ref [] in
344
345
346
	  let r = List.map 
		    (fun (l,e) -> 
		       let (fv2,e) = expr e in
347
348
349
		       if (List.mem l !labs) then 
			 raise_loc loc (MultipleLabel l);
		       labs := l :: !labs;
350
351
352
353
		       fv := Fv.union !fv fv2;
		       (l,e)
		    ) r in
	  (!fv, Typed.RecordLitt r)
354
355
356
357
      | Op (op,le) ->
	  let (fvs,ltes) = List.split (List.map expr le) in
	  let fv = List.fold_left Fv.union Fv.empty fvs in
	  (fv, Typed.Op (op,ltes))
358
359
360
361
362
363
364
365
      | Match (e,b) -> 
	  let (fv1,e) = expr e
	  and (fv2,b) = branches b in
	  (Fv.union fv1 fv2, Typed.Match (e, b))
      | Map (e,b) ->
	  let (fv1,e) = expr e
	  and (fv2,b) = branches b in
	  (Fv.union fv1 fv2, Typed.Map (e, b))
366
  in
367
368
  fv,
  { Typed.exp_loc = loc;
369
370
371
372
    Typed.exp_typ = Types.empty;
    Typed.exp_descr = td;
  }
	      
373
374
  and branches b = 
    let fv = ref Fv.empty in
375
    let accept = ref Types.empty in
376
377
378
379
    let b = List.map 
	      (fun (p,e) ->
		 let (fv2,e) = expr e in
		 fv := Fv.union !fv fv2;
380
381
		 let p = pat p in
		 accept := Types.cup !accept (Types.descr (Patterns.accept p));
382
		 { Typed.br_used = false;
383
		   Typed.br_pat = p;
384
385
		   Typed.br_body = e }
	      ) b in
386
387
388
389
390
391
392
    (!fv, 
     { 
       Typed.br_typ = Types.empty; 
       Typed.br_branches = b; 
       Typed.br_accept = !accept 
     } 
    )
393
394
395
396
397

module Env = StringMap

open Typed

398
399
400
401

let check loc t s msg =
  if not (Types.subtype t s) then raise_loc loc (Constraint (t, s, msg))

402
let rec type_check env e constr precise = 
403
(*  Format.fprintf Format.std_formatter "constr=%a precise=%b@\n"
404
405
    Types.Print.print_descr constr precise;  *)

406

407
  let d = type_check' e.exp_loc env e.exp_descr constr precise in
408
409
410
  e.exp_typ <- Types.cup e.exp_typ d;
  d

411
and type_check' loc env e constr precise = match e with
412
  | Abstraction a ->
413
414
415
416
417
418
419
      let t =
	try Types.Arrow.check_strenghten a.fun_typ constr 
	with Not_found -> 
	  raise_loc loc 
	  (ShouldHave
	     (constr, "but the interface of the abstraction is not compatible"))
      in
420
421
422
      let env = match a.fun_name with
	| None -> env
	| Some f -> Env.add f a.fun_typ env in
423
424
425
426
427
428
429
430
      List.iter 
	(fun (t1,t2) ->
	   ignore (type_check_branches loc env t1 a.fun_body t2 false)
	) a.fun_iface;
      t
  | Match (e,b) ->
      let t = type_check env e b.br_accept true in
      type_check_branches loc env t b constr precise
431

432
  | Pair (e1,e2) -> 
433
434
435
436
437
438
439
440
441
442
443
444
445
      let rects = Types.Product.get constr in
      if Types.Product.is_empty rects then 
	raise_loc loc (ShouldHave (constr,"but it is a pair."));
      let pi1 = Types.Product.pi1 rects in

      let t1 = type_check env e1 (Types.Product.pi1 rects) 
		 (precise || (Types.Product.need_second rects))in
      let rects = Types.Product.restrict_1 rects t1 in
      let t2 = type_check env e2 (Types.Product.pi2 rects) precise in
      if precise then 
	Types.times (Types.cons t1) (Types.cons t2)
      else
	constr
446

447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
  | RecordLitt r ->
      let rconstr = Types.Record.get constr in
      if Types.Record.is_empty rconstr then
	raise_loc loc (ShouldHave (constr,"but it is a record."));

      let (rconstr,res) = 
	List.fold_left 
	  (fun (rconstr,res) (l,e) ->
	     let rconstr = Types.Record.restrict_label_present rconstr l in
	     let pi = Types.Record.project_field rconstr l in
	     if Types.Record.is_empty rconstr then
	       raise_loc loc 
		 (ShouldHave (constr,(Printf.sprintf 
					"Field %s is not allowed here."
					(Types.label_name l)
				     )
			     ));
	     let t = type_check env e pi true in
	     let rconstr = Types.Record.restrict_field rconstr l t in
	     
	     let res = 
	       if precise 
	       then Types.cap res (Types.record l false (Types.cons t))
	       else res in
	     (rconstr,res)
	  ) (rconstr, if precise then Types.Record.any else constr) r
      in
      res

476
477
478
479
480
481
  | Map (e,b) ->
      let t = type_check env e (Sequence.star b.br_accept) true in

      let constr' = Sequence.approx (Types.cap Sequence.any constr) in
      let exact = Types.subtype (Sequence.star constr') constr in

482
483
484
485
      if exact then (
	(* Note: typing mail fail because of the approx on t *)
	let res = type_check_branches loc env (Sequence.approx t) 
		    b constr' precise in
486
	if precise then Sequence.star res else constr
487
      )
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
      else
	(* Note: 
	   - could be more precise by integrating the decomposition
	   of constr inside Sequence.map.
	*)
	let res = 
	  Sequence.map 
	    (fun t -> type_check_branches loc env t b constr' true) 
	    t in
	if not exact then check loc res constr "";
	if precise then res else constr
  | Op ("@", [e1;e2]) ->
      let constr' = Sequence.star 
		      (Sequence.approx (Types.cap Sequence.any constr)) in
      let exact = Types.subtype constr' constr in
      if exact then
	let t1 = type_check env e1 constr' precise
	and t2 = type_check env e2 constr' precise in
	if precise then Sequence.concat t1 t2 else constr
      else
	(* Note:
	   the knownledge of t1 may makes it useless to
	   check t2 with 'precise' ... *)
	let t1 = type_check env e1 constr' true
	and t2 = type_check env e2 constr' true in
	let res = Sequence.concat t1 t2 in
	check loc res constr "";
	if precise then res else constr
516
517
518
519
520
521
522
523
524
525
526
527
528
  | Op ("flatten", [e]) ->
      let constr' = Sequence.star 
		      (Sequence.approx (Types.cap Sequence.any constr)) in
      let sconstr' = Sequence.star constr' in
      let exact = Types.subtype constr' constr in
      if exact then
	let t = type_check env e sconstr' precise in
	if precise then Sequence.flatten t else constr
      else
	let t = type_check env e sconstr' true in
	let res = Sequence.flatten t in
	check loc res constr "";
	if precise then res else constr
529
530
531
532
533
534
535
536
537
538
  | _ -> 
      let t : Types.descr = compute_type' loc env e in
      check loc t constr "";
      t

and compute_type env e =
  type_check env e Types.any true

and compute_type' loc env = function
  | DebugTyper t -> Types.descr t
539
540
541
542
  | Var s -> 
      (try Env.find s env 
       with Not_found -> raise_loc loc (UnboundId s)
      )
543
544
545
546
547
548
549
550
551
552
  | Apply (e1,e2) ->
      let t1 = type_check env e1 Types.Arrow.any true in
      let t1 = Types.Arrow.get t1 in
      let dom = Types.Arrow.domain t1 in
      if Types.Arrow.need_arg t1 then
	let t2 = type_check env e2 dom true in
	Types.Arrow.apply t1 t2
      else
	(ignore (type_check env e2 dom false); Types.Arrow.apply_noarg t1)
  | Cst c -> Types.constant c
553
554
555
556
  | Dot (e,l) ->
      let t = type_check env e Types.Record.any true in
         (try (Types.Record.project t l) 
          with Not_found -> raise_loc loc (WrongLabel(t,l)))
557
558
559
  | Op (op, el) ->
      let args = List.map (fun e -> (e.exp_loc, compute_type env e)) el in
      type_op loc op args
560
561
  | Map (e,b) ->
      let t = compute_type env e in
562
      Sequence.map (fun t -> type_check_branches loc env t b Types.any true) t
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580

(* We keep these cases here to allow comparison and benchmarking ...
   Just comment the corresponding cases in type_check' to
   activate these ones.
*)
  | Pair (e1,e2) -> 
      let t1 = compute_type env e1 
      and t2 = compute_type env e2 in
      Types.times (Types.cons t1) (Types.cons t2)
  | RecordLitt r ->
      List.fold_left 
        (fun accu (l,e) ->
           let t = compute_type env e in
           let t = Types.record l false (Types.cons t) in
           Types.cap accu t
        ) Types.Record.any r


581
  | _ -> assert false
582

583
and type_check_branches loc env targ brs constr precise =
584
  if Types.is_empty targ then Types.empty 
585
586
  else (
    brs.br_typ <- Types.cup brs.br_typ targ;
587
588
589
    branches_aux loc env targ 
      (if precise then Types.empty else constr) 
      constr precise brs.br_branches
590
  )
591
    
592
and branches_aux loc env targ tres constr precise = function
593
  | [] -> raise_loc loc (NonExhaustive targ)
594
595
596
597
598
599
  | b :: rem ->
      let p = b.br_pat in
      let acc = Types.descr (Patterns.accept p) in

      let targ' = Types.cap targ acc in
      if Types.is_empty targ' 
600
      then branches_aux loc env targ tres constr precise rem
601
602
603
604
605
606
      else 
	( b.br_used <- true;
	  let res = Patterns.filter targ' p in
	  let env' = List.fold_left 
		       (fun env (x,t) -> Env.add x (Types.descr t) env) 
		       env res in
607
608
	  let t = type_check env' b.br_body constr precise in
	  let tres = if precise then Types.cup t tres else tres in
609
610
	  let targ'' = Types.diff targ acc in
	  if (Types.non_empty targ'') then 
611
	    branches_aux loc env targ'' tres constr precise rem 
612
613
	  else
	    tres
614
	)
615
616
617
618
619
620
621

and type_op loc op args =
  match (op,args) with
    | ("+", [loc1,t1; loc2,t2]) ->
	type_int_binop Intervals.add loc1 t1 loc2 t2
    | ("*", [loc1,t1; loc2,t2]) ->
	type_int_binop (fun i1 i2 -> Intervals.any) loc1 t1 loc2 t2
622
623
624
625
626
627
628
629
    | ("@", [loc1,t1; loc2,t2]) ->
	check loc1 t1 Sequence.any
	  "The first argument of @ must be a sequence";
	Sequence.concat t1 t2
    | ("flatten", [loc1,t1]) ->
	check loc1 t1 Sequence.seqseq 
	  "The argument of flatten must be a sequence of sequences";
	Sequence.flatten t1
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
    | _ -> assert false

and type_int_binop f loc1 t1 loc2 t2 =
  if not (Types.Int.is_int t1) then
    raise_loc loc1 
      (Constraint 
	 (t1,Types.Int.any,
	  "The first argument must be an integer"));
  if not (Types.Int.is_int t2) then
    raise_loc loc2
      (Constraint 
	       (t1,Types.Int.any,
		"The second argument must be an integer"));
  Types.Int.put
    (f (Types.Int.get t1) (Types.Int.get t2));