hmlgy.tex 87.9 KB
Newer Older
Leonard Guetta's avatar
Leonard Guetta committed
1
\chapter{Homology and abelianization of \texorpdfstring{$\oo$}{ω}-categories}
Leonard Guetta's avatar
idem    
Leonard Guetta committed
2
\chaptermark{Homology of $\omega$-categories}
Leonard Guetta's avatar
Leonard Guetta committed
3
4
\section{Homology via the nerve}
\begin{paragr}
Leonard Guetta's avatar
Leonard Guetta committed
5
We denote by $\Ch$ the category of non-negatively graded chain complexes of abelian groups. Recall that $\Ch$ can be equipped with a cofibrantly generated model structure, known as the \emph{projective model structure on $\Ch$}, where:
Leonard Guetta's avatar
Leonard Guetta committed
6
    \begin{itemize}
Leonard Guetta's avatar
Leonard Guetta committed
7
     \item[-] the weak equivalences are the quasi-isomorphisms, i.e.\ morphisms of chain complexes that induce an isomorphism on homology groups,
Leonard Guetta's avatar
Leonard Guetta committed
8
9
10
11
12
13
14
              \item[-] the cofibrations are the morphisms of chain complexes $f: X\to Y$ such that for every $n\geq 0$, $f_n : X_n \to Y_n$ is a monomorphism with projective cokernel,
     \item[-] the fibrations are the morphisms of chain complexes $f : X \to Y$ such that for every $n>0$, $f_n : X_n \to Y_n$ is an epimorphism.
     \end{itemize}
     (See for example \cite[Section 7]{dwyer1995homotopy}.)
    From now on, we will implicitly consider that the category $\Ch$ is equipped with this model structure. 
 \end{paragr}
\begin{paragr}
Leonard Guetta's avatar
Leonard Guetta committed
15
  Let $X$ be a simplicial set. We denote by $K_n(X)$ the abelian group of $n$\nbd{}chains of $X$, i.e.\ the free abelian group on the set $X_n$. For $n>0$, let $\partial : K_n(X) \to K_{n-1}(X)$ be the linear map defined for $x \in X_n$ by
Leonard Guetta's avatar
Leonard Guetta committed
16
17
18
  \[
  \partial(x):=\sum_{i=0}^n(-1)^i\partial_i(x).
  \]
Leonard Guetta's avatar
Leonard Guetta committed
19
20
21
22
23
24
  It follows from the simplicial identities (see \cite[section 2.1]{gabriel1967calculus}) that $\partial \circ \partial = 0$. Hence, the previous data defines a chain complex $K(X)$ and this defines a functor
  \begin{align*}
    K : \Psh{\Delta} &\to \Ch\\
    X &\mapsto K(X)
  \end{align*}
  in the expected way.
Leonard Guetta's avatar
Leonard Guetta committed
25
26
\end{paragr}
\begin{paragr}
27
  Recall that an $n$-simplex $x$ of a simplicial set $X$ is \emph{degenerate} if there exists an epimorphism $\varphi : [n] \to [m]$ with $m<n$ and an $m$-simplex $y$ such that $X(\varphi)(y)=x$. We denote by $D_n(X)$ the subgroup of $K_n(X)$ generated by the degenerate $n$-simplices and by $\kappa_n(X)$ the abelian group of \emph{normalized $n$\nbd{}chains}:
Leonard Guetta's avatar
Leonard Guetta committed
28
29
30
  \[
  \kappa_n(X)=K_n(X)/D_n(X).
  \]
Leonard Guetta's avatar
Leonard Guetta committed
31
  Using the simplicial identities, it can be shown that $\partial(D_n(X)) \subseteq D_{n-1}(X)$ for every $n>0$. Hence, there is an induced differential which we still denote by $\partial$:
Leonard Guetta's avatar
Leonard Guetta committed
32
33
34
35
  \[
  \partial : \kappa_n(X) \to \kappa_{n-1}(X).
  \]
This defines a chain complex $\kappa(X)$, which we call the \emph{normalized chain complex of $X$}. This yields a functor
Leonard Guetta's avatar
Leonard Guetta committed
36
37
38
39
  \begin{align*}
    \kappa : \Psh{\Delta} &\to \Ch \\
    X &\mapsto \kappa(X).
  \end{align*}
Leonard Guetta's avatar
Leonard Guetta committed
40
\end{paragr}
Leonard Guetta's avatar
Leonard Guetta committed
41
\begin{lemma}\label{lemma:normcompquil}
42
The functor $\kappa : \Psh{\Delta} \to \Ch$ is left Quillen and sends the weak equivalences of simplicial sets to quasi-isomorphisms.  
Leonard Guetta's avatar
Leonard Guetta committed
43
44
\end{lemma}
\begin{proof}
Leonard Guetta's avatar
dodo    
Leonard Guetta committed
45
46
47
48
49
50
51
52
  Recall that the Quillen model structure on simplicial sets admits the set of inclusions
  \[
  \{\partial\Delta_n \hookrightarrow \Delta_n \vert n \in \mathbb{N} \}
  \]
  as generating cofibrations and the set of inclusions
  \[
  \{\Lambda^i_n \hookrightarrow \Delta_n \vert n \in \mathbb{N}, 0 \leq i \leq n\}
  \]
53
  as generating trivial cofibrations (see for example \cite[Section I.1]{goerss2009simplicial} for the notations). A quick computation, which we leave to the reader, shows that the image by $\kappa$ of $\partial\Delta_n \hookrightarrow \Delta_n$ is a monomorphism with projective cokernel and the image by $\kappa$ of $\Lambda^i_n \hookrightarrow \Delta_n$ is a quasi-isomorphism. This proves that $\kappa$ is left Quillen. Since all simplicial sets are cofibrant, it follows from Ken Brown's Lemma \cite[Lemma 1.1.12]{hovey2007model} that $\kappa$ also preserves weak equivalences.
Leonard Guetta's avatar
dodo    
Leonard Guetta committed
54
55
  \end{proof}
\begin{remark}
56
  The previous lemma admits also a more conceptual proof as follows. From the Dold--Kan equivalence, we know that $\Ch$ is equivalent to the category $\Ab(\Delta)$ of simplicial abelian groups and with this identification the functor $\kappa : \Psh{\Delta} \to \Ch$ is left adjoint of the canonical forgetful functor
Leonard Guetta's avatar
Leonard Guetta committed
57
58
59
    \[
    U : \Ch \simeq \Ab(\Delta) \to \Psh{\Delta}
    \]
Leonard Guetta's avatar
dodo    
Leonard Guetta committed
60
61
    induced by the forgetful functor from abelian groups to sets. The fact that $U$ is right Quillen follows then from \cite[Lemma 2.9 and Corollary 2.10]{goerss2009simplicial}.
\end{remark}
Leonard Guetta's avatar
Leonard Guetta committed
62
63
64
65
\begin{paragr}
  In particular, $\kappa$ induces a morphism of localizers \[\kappa : (\Psh{\Delta},\W_{\Delta}) \to (\Ch,\W_{\Ch}),\]
  where we wrote $\W_{\Ch}$ for the class of quasi-isomorphisms. 
  \end{paragr}
Leonard Guetta's avatar
Leonard Guetta committed
66
\begin{definition}\label{def:hmlgycat}
Leonard Guetta's avatar
Leonard Guetta committed
67
  The \emph{singular homology functor for $\oo$\nbd{}categories} $\sH^{\sing}$ is defined as the following composition
Leonard Guetta's avatar
Leonard Guetta committed
68
  \[
Leonard Guetta's avatar
Leonard Guetta committed
69
  \sH^{\sing} : \ho(\oo\Cat^{\Th}) \overset{\overline{N_{\omega}}}{\longrightarrow} \ho(\Psh{\Delta}) \overset{\overline{\kappa}}{\longrightarrow} \ho(\Ch).
Leonard Guetta's avatar
Leonard Guetta committed
70
    \]
Leonard Guetta's avatar
Leonard Guetta committed
71
    For an $\oo$\nbd{}category $C$, $\sH^{\sing}(C)$ is the \emph{singular homology of $C$}.
Leonard Guetta's avatar
Leonard Guetta committed
72
\end{definition}
73
\begin{paragr}\label{paragr:singularhmlgygroup}
Leonard Guetta's avatar
Leonard Guetta committed
74
  In other words, the singular homology of $C$ is the chain complex $\kappa(N_{\oo}(C))$ seen as an object of $\ho(\Ch)$ (see Remark \ref{remark:localizedfunctorobjects}). For $k \geq 0$, the $k$\nbd{}th singular homology group of an $\oo$\nbd{}category $C$ is defined as
Leonard Guetta's avatar
Leonard Guetta committed
75
76
77
  \[
  H_k^{\sing}(C):=H_k(\sH^{\sing}(C))=H_k(\kappa(N_{\oo}(C))),
  \]
78
  where $H_k : \ho(\Ch) \to \Ab$ is the usual functor that associates to an object of $\ho(\Ch)$ its $k$\nbd{}th homology group.
Leonard Guetta's avatar
Leonard Guetta committed
79
\end{paragr}
Leonard Guetta's avatar
Leonard Guetta committed
80
81

%% \begin{paragr}
Leonard Guetta's avatar
Leonard Guetta committed
82
%%   In simpler words, the homology of an $\oo$\nbd{}category $X$ is, by definition, the homology of its nerve. We will sometimes call this the \emph{Street homology of $X$} in order to distinguish it from other homological invariants that we shall introduce later.
Leonard Guetta's avatar
Leonard Guetta committed
83
84
85
%%   Recall  that we consider localization functors as identity on objects (see \ref{paragr:loc}). Hence, the homology of $X$ is simply $\kappa(N_{\oo}(X))$, only considered as a chain complex up to quasi-isomorphism, i.e. an object of $\ho(\Ch)$. The homology groups of $X$ are the homology groups of the chain complex $\kappa(N_{\oo}(X))$. However, with our definition, the \emph{homology of $X$} means something more precise than the mere sequence of homology groups. An alternative terminology would be to call $\sH(X)$ the \emph{homology type of $X$}, in reference to the homotopy type of a topological space. 
%% \end{paragr}

Leonard Guetta's avatar
Leonard Guetta committed
86
87
88
89
\begin{remark}\label{remark:singularhmlgyishmlgy}
  The adjective ``singular'' is there to avoid future confusion with another
  homological invariant for $\oo$\nbd{}categories that will be introduced later.
  As a matter of fact, the underlying point of view adopted in this thesis is
Leonard Guetta's avatar
Leonard Guetta committed
90
  that \emph{singular homology of $\oo$\nbd{}categories} ought to be simply called
Leonard Guetta's avatar
Leonard Guetta committed
91
92
  \emph{homology of $\oo$\nbd{}categories} as it is the only ``correct''
  definition of homology. This assertion will be justified in Remark \ref{remark:polhmlgyisnotinvariant}.
Leonard Guetta's avatar
Leonard Guetta committed
93
\end{remark}
Leonard Guetta's avatar
Leonard Guetta committed
94
\begin{remark}
95
  We could also have defined the homology of $\oo$\nbd{}categories with $K : \Psh{\Delta}\to \Ch$ instead of $\kappa : \Psh{\Delta} \to \Ch$ since these two functors are quasi-isomorphic (see \cite[Theorem 2.4]{goerss2009simplicial} for example). An advantage of the latter one is that it is left Quillen. 
Leonard Guetta's avatar
Leonard Guetta committed
96
97
\end{remark}
\begin{paragr}
Leonard Guetta's avatar
Leonard Guetta committed
98
  We will also denote by $\sH^{\sing}$ the morphism of op-prederivators defined as the following composition
Leonard Guetta's avatar
Leonard Guetta committed
99
  \[
Leonard Guetta's avatar
Leonard Guetta committed
100
  \sH^{\sing} : \Ho(\oo\Cat^{\Th}) \overset{\overline{N_{\omega}}}{\longrightarrow} \Ho(\Psh{\Delta}) \overset{\overline{\kappa}}{\longrightarrow} \Ho(\Ch).
Leonard Guetta's avatar
Leonard Guetta committed
101
102
  \]
\end{paragr}
Leonard Guetta's avatar
Leonard Guetta committed
103
\begin{proposition}\label{prop:singhmlgycocontinuous}
Leonard Guetta's avatar
Leonard Guetta committed
104
  The singular homology \[\sH^{\sing} : \Ho(\oo\Cat^{\Th}) \to \Ho(\Ch)\] is homotopy cocontinuous. 
Leonard Guetta's avatar
Leonard Guetta committed
105
106
\end{proposition}
\begin{proof}
Leonard Guetta's avatar
Leonard Guetta committed
107
  This follows from the fact that $\overline{N_{\oo}}$ and $\overline{\kappa}$ are both homotopy cocontinuous. For $\overline{N_{\oo}}$, this is because it is an equivalence of op\nbd{}prederivators and thus we can apply Lemma \ref{lemma:eqisadj} and Lemma \ref{lemma:ladjcocontinuous}. For $\overline{\kappa}$, this is because $\kappa$ is left Quillen and thus we can apply Theorem \ref{thm:cisinskiII}.
Leonard Guetta's avatar
Leonard Guetta committed
108
\end{proof}
Leonard Guetta's avatar
Leonard Guetta committed
109
\section{Abelianization}
110
We write $\Ab$ for the category of abelian groups and for an abelian group $G$, we write $\vert G \vert$ for the underlying set of $G$.
Leonard Guetta's avatar
Leonard Guetta committed
111
\begin{paragr}
Leonard Guetta's avatar
Leonard Guetta committed
112
  Let $C$ be an $\oo$\nbd{}category. For every $n\geq 0$, we define $\lambda_n(C)$ as the abelian group obtained by quotienting $\mathbb{Z}C_n$ (the free abelian group on $C_n$) by the congruence generated by the relations
Leonard Guetta's avatar
Leonard Guetta committed
113
114
115
  \[
  x \comp_k y \sim x+y
  \]
116
117
118
119
  for all $x,y \in C_n$ that are $k$\nbd{}composable for some $k<n$. For $n=0$,
  this means that $\lambda_0(C)=\mathbb{Z}C_0$. Now let $f : C \to D$ be an
  $\oo$\nbd{}functor. For every $n \geq 0$, the definition of $\oo$\nbd{}functor
  implies that the linear map
120
121
122
123
  \begin{align*}
    \mathbb{Z}C_n &\to \mathbb{Z}D_{n}\\
    x \in C_n &\mapsto f(x)
  \end{align*}
124
  induces a linear map
125
126
127
  \[
  \lambda_n(f) : \lambda_n(C) \to \lambda_n(D).
  \]
Leonard Guetta's avatar
Leonard Guetta committed
128
  This defines a functor $\lambda_n : \oo\Cat \to \Ab$.
129
130

  For $n>0$, consider the linear map
Leonard Guetta's avatar
Leonard Guetta committed
131
  \begin{align*}
Leonard Guetta's avatar
Leonard Guetta committed
132
133
  \mathbb{Z}C_n &\to \mathbb{Z}C_{n-1}\\
  x \in C_n &\mapsto t(x)-s(x).
Leonard Guetta's avatar
Leonard Guetta committed
134
  \end{align*}
Leonard Guetta's avatar
Leonard Guetta committed
135
  The axioms of $\oo$\nbd{}categories imply that it induces a map
Leonard Guetta's avatar
Leonard Guetta committed
136
  \[
Leonard Guetta's avatar
Leonard Guetta committed
137
  \partial : \lambda_{n}(C) \to \lambda_{n-1}(C)
Leonard Guetta's avatar
Leonard Guetta committed
138
  \]
Leonard Guetta's avatar
Leonard Guetta committed
139
  which is natural in $C$. Furthermore, it satisfies the equation $\partial \circ \partial = 0$. Thus, for every $\oo$\nbd{}category $C$, we have defined a chain complex $\lambda(C)$:
Leonard Guetta's avatar
Leonard Guetta committed
140
  \[
Leonard Guetta's avatar
Leonard Guetta committed
141
  \lambda_0(C) \overset{\partial}{\longleftarrow} \lambda_1(C) \overset{\partial}{\longleftarrow} \lambda_2(C) \overset{\partial}{\longleftarrow} \cdots
Leonard Guetta's avatar
Leonard Guetta committed
142
  \]
143
 and for every $f : C \to D$ a morphism of chain complexes
Leonard Guetta's avatar
Leonard Guetta committed
144
  \[
Leonard Guetta's avatar
Leonard Guetta committed
145
  \lambda(f) : \lambda(C) \to \lambda(D).
Leonard Guetta's avatar
Leonard Guetta committed
146
147
148
149
150
151
152
  \]
  Altogether, this defines a functor
  \[
  \lambda : \omega\Cat \to \Ch,
  \]
  which we call the \emph{abelianization functor}.
\end{paragr}
Leonard Guetta's avatar
Leonard Guetta committed
153
\begin{lemma}\label{lemma:adjlambda}
Leonard Guetta's avatar
Leonard Guetta committed
154
  The functor $\lambda$ is a left adjoint.
Leonard Guetta's avatar
Leonard Guetta committed
155
156
\end{lemma}
\begin{proof}
Leonard Guetta's avatar
Leonard Guetta committed
157
  The category $\Ch$ is equivalent to the category $\omega\Cat(\Ab)$ of $\oo$\nbd{}categories internal to abelian groups (see \cite[Theorem 3.3]{bourn1990another}) and with this identification, the functor $\lambda : \omega\Cat \to \omega\Cat(\Ab)$ is nothing but the left adjoint of the canonical forgetful functor $\omega\Cat(\Ab) \to \omega\Cat$.
Leonard Guetta's avatar
Leonard Guetta committed
158
\end{proof}
Leonard Guetta's avatar
Leonard Guetta committed
159
As we shall now see, when the $\oo$\nbd{}category $C$ is \emph{free} the chain complex $\lambda(C)$ admits a nice expression.
Leonard Guetta's avatar
Leonard Guetta committed
160
\begin{paragr}
Leonard Guetta's avatar
Leonard Guetta committed
161
  Let $n\geq 0$. Recall that for every monoid $M$ (supposed commutative if $n \geq 1$) we have defined in Section \ref{sec:suspmonoids} an $n$\nbd{}category $B^nM$ whose set of $n$\nbd{}cells is isomorphic to the underlying set of $M$. And the correspondence $M \mapsto B^nM$ defines a functor in the expected way. By considering abelian groups as particular cases of (commutative) monoids, we obtain a functor for each $n\geq 0$ 
162
163
164
165
166
  \begin{align*}
    B^n : \Ab &\to n\Cat \\
    G &\mapsto B^nG,
  \end{align*}
  where $\Ab$ is the category of abelian groups.
167
  
Leonard Guetta's avatar
Leonard Guetta committed
168
  Besides, let us write $\lambda_n$ again for the functor
169
  \begin{align*}
170
171
    \lambda_n : n\Cat &\to \Ab\\
    C&\mapsto \lambda_n(C).
172
  \end{align*}
173
174
175
176
  (That is the restriction of $\lambda_n : \oo\Cat \to \Ab$ to $n\Cat$.)
\end{paragr}
\begin{lemma}\label{lemma:adjlambdasusp}
  Let $n \geq 0$. The functor $\lambda_n : n\Cat \to \Ab$ is left adjoint to the functor $B^n : \Ab \to n\Cat$.
177
178
179
180
\end{lemma}
\begin{proof}
  The case $n=0$ is immediate since the functor $\lambda_0 : 0\Cat = \Set \to \Ab$ is the ``free abelian group'' functor and the functor $B^0 : \Ab \to 0\Cat=\Set$ is the ``underlying set'' functor.

Leonard Guetta's avatar
Leonard Guetta committed
181
  Suppose now that $n >0$. From Lemma \ref{lemma:nfunctortomonoid} we know that for every abelian group $G$ and every $n$\nbd{}category $C$, the map
182
183
184
185
  \begin{align*}
    \Hom_{n\Cat}(C,B^nG) &\to \Hom_{\Set}(C_n,\vert G \vert)\\
    F &\mapsto F_n,
  \end{align*}
186
 is injective and its image consists of those functions $f : C_n \to \vert G \vert$ such that:
187
  \begin{enumerate}[label=(\roman*)]
Leonard Guetta's avatar
Leonard Guetta committed
188
  \item\label{cond:comp} for every $0 \leq k <n $ and every pair $(x,y)$ of $k$\nbd{}composable $n$\nbd{}cells of $C$, we have
189
190
191
192
193
194
195
196
    \[
    f(x\comp_ky) = f(x)+f(y),
    \]
  \item\label{cond:unit} for every $x \in C_{n-1}$, we have
    \[
    f(1_x)=0.
    \]
  \end{enumerate}
197
  Let us see that because $G$ is an abelian group (recall that Lemma \ref{lemma:nfunctortomonoid} was stated for the general case of commutative monoids), condition \ref{cond:comp} imply condition \ref{cond:unit}. Let $f : C_n \to \vert G \vert$ be a function that satisfies condition \ref{cond:comp} and let $x \in C_{n-1}$. We have $1_x\comp_{n-1} 1_x = 1_x$, hence
198
  \[
199
  f(1_x)=f(1_x \comp_{n-1} 1_x)=f(1_x)+f(1_x),
200
201
202
203
204
  \]
  and then
  \[
  f(1_x)=0
  \]
Leonard Guetta's avatar
Leonard Guetta committed
205
  because every element of an (abelian) group has an inverse. Now, because of the adjunction morphism
206
207
208
  \[
  \Hom_{\Set}(C_n,\vert G \vert) \simeq \Hom_{\Ab}(\mathbb{Z}C_n,G),
  \]
Leonard Guetta's avatar
Leonard Guetta committed
209
  we have that $\Hom_{n\Cat}(C,B^nG)$ is naturally isomorphic to the set of morphisms of abelian groups $g : \mathbb{Z}C_n \to G$ such that for every pair $(x,y)$ of $k$\nbd{}composable elements of $C_n$ for some $k<n$, we have
210
211
212
213
214
215
216
  \[
  g(x\comp_ky)=g(x)+g(y).
  \]
  By definition, this set is naturally isomorphic to the set of morphisms of abelian groups from $\lambda_n(C)$ to $G$. In other words, we have
  \[
  \Hom_{n\Cat}(C,B^nG)\simeq \Hom_{\Ab}(\lambda_n(C),G).\qedhere
  \]
217
\end{proof}
218
\begin{paragr}\label{paragr:abelpolmap}
Leonard Guetta's avatar
Leonard Guetta committed
219
 Let $C$ be an $\oo$\nbd{}category, $n \in \mathbb{N}$ and $E \subseteq C_n$ a subset of the $n$-cells. We obtain a map $\mathbb{Z}E \to \lambda_n(C)$ defined as the composition
Leonard Guetta's avatar
Leonard Guetta committed
220
  \[
221
  \mathbb{Z}E \to \mathbb{Z}C_n \to \lambda_n(C),
Leonard Guetta's avatar
Leonard Guetta committed
222
  \]
223
  where the map on the left is induced by the canonical inclusion of $E$ in $C_n$ and the map on the right is the quotient map from the definition of $\lambda_n(C)$. 
Leonard Guetta's avatar
Leonard Guetta committed
224
\end{paragr}
Leonard Guetta's avatar
Leonard Guetta committed
225
\begin{lemma}\label{lemma:abelpol}
Leonard Guetta's avatar
Leonard Guetta committed
226
  Let $C$ be a \emph{free} $\oo$\nbd{}category and let $\Sigma=(\Sigma_n)_{n \in \mathbb{N}}$ be its basis. For every $n \in \mathbb{N}$, the map
Leonard Guetta's avatar
Leonard Guetta committed
227
  \[
228
  \mathbb{Z}\Sigma_n \to \lambda_n(C)
Leonard Guetta's avatar
Leonard Guetta committed
229
  \]
230
  from the previous paragraph, is an isomorphism.
Leonard Guetta's avatar
Leonard Guetta committed
231
\end{lemma}
Leonard Guetta's avatar
Leonard Guetta committed
232
\begin{proof}
Leonard Guetta's avatar
Leonard Guetta committed
233
234
235
236
237
238
239
  %% Let $G$ be an abelian group. For any $n \in \mathbb{N}$, we define an $n$-category $B^nG$ with:
  %%   \begin{itemize}
  %%   \item[-] $(B^nG)_{k}$ is a singleton set for every $k < n$,
  %%   \item[-] $(B^nG)_n = G$
  %%   \item[-] for all $x$ and $y$ in $G$ and $i<n$,
  %%     \[x \ast_i y := x +y.\]
  %%   \end{itemize}
Leonard Guetta's avatar
Leonard Guetta committed
240
  %%   It is straightforward to check that this defines an $n$-category. Note that the previous definition would still make sense with $G$ an abelian \emph{monoid}. Moreover, when $n=1$, we didn't even need it to be abelian, but for $n\geq 2$ this hypothesis is necessary because of the Eckmann-Hilton argument. For $n=0$, we only needed that $G$ was a set.
Leonard Guetta's avatar
Leonard Guetta committed
241

Leonard Guetta's avatar
Leonard Guetta committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
  %%   This defines a functor
  %%   \[
  %%   \begin{aligned}
  %%     B^n : \Ab &\to n\Cat\\
  %%     G &\mapsto B^nG,
  %%   \end{aligned}
  %%   \]
  %%   which is easily seen to be right adjoint to the functor
  %%   \[
  %%   \begin{aligned}
  %%     n\Cat &\to \Ab\\
  %%     X &\mapsto \lambda_n(X).
  %%   \end{aligned}
  %%   \]
  %% 
Leonard Guetta's avatar
Leonard Guetta committed
257
    Notice first that for every $\oo$\nbd{}category $C$, we have $\lambda_n(\tau_{\leq n}^s(C))=\lambda_n(C)$. Suppose now that $C$ is free with basis $\Sigma=(\Sigma_n)_{n \in \mathbb{N}}$. Using Lemma \ref{lemma:adjlambdasusp} and Lemma \ref{lemma:freencattomonoid}, we obtain that for every abelian group $G$, we have
Leonard Guetta's avatar
Leonard Guetta committed
258
        \begin{align*}
259
260
      \Hom_{\Ab}(\lambda_n(C),G) &\simeq \Hom_{\Ab}(\lambda_n(\tau_{\leq n}^s(C)),G)\\
      &\simeq \Hom_{n\Cat}(\tau_{\leq n}^s(C),B^nG)\\
Leonard Guetta's avatar
Leonard Guetta committed
261
      &\simeq \Hom_{\Set}(\Sigma_n,\vert G \vert)\\
262
263
      &\simeq \Hom_{\Ab}(\mathbb{Z}\Sigma_n,G),
        \end{align*}
Leonard Guetta's avatar
idem    
Leonard Guetta committed
264
265
        and it is easily checked that this isomorphism is induced by
        precomposition with the map
266
267
        $\mathbb{Z}\Sigma_n \to \lambda_n(C)$ from the previous paragraph. The
        result follows then from the Yoneda Lemma.
268
269
\end{proof}
\begin{paragr}
Leonard Guetta's avatar
Leonard Guetta committed
270
  Let $C$ be a \emph{free} $\oo$\nbd{}category and write $\Sigma=(\Sigma_n)_{n \in \mathbb{N}}$ for its basis. For every $n \geq 0$ and every $\alpha \in \Sigma_n$, recall that we have proved in Proposition \ref{prop:countingfunction} the existence of a unique function $w_{\alpha} : C_n \to \mathbb{N}$ such that:
271
272
273
  \begin{enumerate}[label=(\alph*)]
  \item\label{cond:countingfunctionfirst} $w_{\alpha}(\alpha)=1$,
  \item\label{cond:countingfunctionsecond} $w_{\alpha}(\beta)=0$ for every $\beta \in \Sigma_n$ such that $\beta\neq \alpha$,
Leonard Guetta's avatar
Leonard Guetta committed
274
  \item\label{cond:countingfunctionthird} for every pair of $k$\nbd{}composable $n$\nbd{}cells of $C$ for some $k<n$, we have
275
276
277
278
    \[
    w_{\alpha}(x\comp_k y)=w_{\alpha}(x) + w_{\alpha}(y).
    \]
  \end{enumerate}
279
  We can then define for each $n \geq 0$, a map $w_n : C_n \to \mathbb{Z}\Sigma_n$ with the formula
280
281
282
283
  \[w_n(x)=\sum_{\alpha \in \Sigma_n}w_{\alpha}(x)\cdot \alpha\]
  for every $x \in C_n$.

  
284
  Condition \ref{cond:countingfunctionthird} implies that
285
286
287
  \[
  w_n(x\comp_k y)=w_n(x)+w_n(y)
  \]
Leonard Guetta's avatar
Leonard Guetta committed
288
  for every pair $(x,y)$ of $k$\nbd{}composable $n$\nbd{}cells of $C$, and conditions \ref{cond:countingfunctionfirst} and \ref{cond:countingfunctionsecond} imply that
289
290
291
292
293
294
  \[
  w_n(\alpha)=\alpha
  \]
  for every $\alpha \in \Sigma_n$. 
\end{paragr}
\begin{proposition}\label{prop:abelianizationfreeoocat}
Leonard Guetta's avatar
Leonard Guetta committed
295
  Let $C$ be a free $\oo$\nbd{}category and let $(\Sigma_n)_{n \in \mathbb{N}}$ be its basis. The chain complex $\lambda(C)$ is canonically isomorphic to the chain complex
296
297
298
299
300
301
302
303
304
  \[
  \mathbb{Z}\Sigma_0 \overset{\partial}{\longleftarrow} \mathbb{Z}\Sigma_1 \overset{\partial}{\longleftarrow} \mathbb{Z}\Sigma_2 \overset{\partial}{\longleftarrow} \cdots
  \]
  where $\partial : \mathbb{Z}\Sigma_n \to \mathbb{Z}\Sigma_{n-1}$ is the linear map defined by the formula
  \[
  \partial(x)=w_{n-1}(\trgt(x))-w_{n-1}(\src(x))
  \]
 for every $x \in \Sigma_n$.

Leonard Guetta's avatar
Leonard Guetta committed
305
 With this identification, if $C'$ is another free $\oo$\nbd{}category and if $F : C \to C'$ is an $\oo$\nbd{}functor (not necessarily rigid), then the map $\lambda_n(F) : \lambda_n(C) \to \lambda_{n}(C')$ reads
306
 \[
307
 \lambda_n(F)(x)=w'_n(F(x))
308
309
310
311
 \]
 for every $x \in \Sigma_n$.
\end{proposition}
\begin{proof}
312
313
  For $n \geq 0$, write $\phi_n : \mathbb{Z}\Sigma_n \to \lambda_n(C)$ for the map defined in \ref{paragr:abelpolmap} (which we know is an isomorphism from Lemma \ref{lemma:abelpol}).

314
  The map $w_n: C_n \to \mathbb{Z}\Sigma_n$ induces a map $\mathbb{Z}C_n \to \mathbb{Z}\Sigma_n$ by linearity, which in turn induces a map $\lambda_n(C) \to \mathbb{Z}\Sigma_n$ (because $w_n(x \comp_k y) = w_n(x)+w_n(y)$ for every pair $(x,y)$ of $k$\nbd{}composable $n$\nbd{}cells). Write $\psi_n$ for this last map. It is immediate to check that the composition
315
316
317
318
319
320
321
  \[
  \mathbb{Z}\Sigma_n \overset{\phi_n}{\longrightarrow} \lambda_n(C) \overset{\psi_n}{\longrightarrow} \mathbb{Z}\Sigma_n
  \]
  gives the identity on $\mathbb{Z}\Sigma_n$. Hence, $\psi_n$ is the inverse of $\phi_n$.

  Now, for $n>0$, notice that the map $\partial : \mathbb{Z}\Sigma_n \to \mathbb{Z}\Sigma_{n-1}$ given in the statement of the proposition is nothing but the composition
  \[
322
  \mathbb{Z}\Sigma_n \overset{\phi_n}{\longrightarrow} \lambda_n(C) \overset{\partial}{\longrightarrow} \lambda_{n-1}(C) \overset{\psi_{n-1}}{\longrightarrow} \mathbb{Z}\Sigma_{n-1}.
323
324
325
  \]
  The first part of the proposition follows then from Lemma \ref{lemma:abelpol}.

Leonard Guetta's avatar
Leonard Guetta committed
326
  As for the second part, it suffices to notice that if we identify $\lambda_n(C)$ with $\mathbb{Z}\Sigma_n$ via $\phi_n$ for every free $\oo$\nbd{}category $C$, then map $\mathbb{Z}\Sigma_n \to \mathbb{Z}\Sigma'_n$ (where $\Sigma'_n$ is the $n$-basis of $C'$) induced by $F$ is given by the composition
327
328
329
330
  \[
  \mathbb{Z}\Sigma_n \overset{\phi_n}{\longrightarrow} \lambda_n(C) \overset{\lambda_n(F)}{\longrightarrow} \lambda_n(C') \overset{\psi_n}{\longrightarrow} \mathbb{Z}\Sigma'_n.\qedhere
  \]
 \end{proof}
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
 \section{Polygraphic homology}\label{section:polygraphichmlgy}
 \begin{paragr}\label{paragr:chainhmtpy}
   Let $f,g : K \to K'$ be two morphisms of non-negatively graded chain
   complexes. Recall that a \emph{chain homotopy} from $f$ to $g$ consists of a
   sequence of linear maps $(h_n \colon K_n \to K'_{n+1})_{n \in \mathbb{N}}$
   such that
   \[
     \partial \circ h_0 = g_0-f_0
   \]
   and such that for every $n > 0$, we have
   \[
     \partial \circ h_n + h_{n-1} \circ \partial = g_n - f_n.
   \]
   Recall also that if there is a chain homotopy from $f$ to $g$, then the
   localization functor $\gamma^{\Ch} : \Ch \to \ho(\Ch)$ identifies $f$ and
Leonard Guetta's avatar
idem    
Leonard Guetta committed
346
   $g$, which means that \[\gamma^{\Ch}(f)=\gamma^{\Ch}(g).\]
347
348
   \end{paragr}
%For the definition of \emph{homotopy of chain complexes} see for example \cite[Definition 1.4.4]{weibel1995introduction} (where it is called \emph{chain homotopy}).
Leonard Guetta's avatar
Leonard Guetta committed
349
   \begin{lemma}\label{lemma:abeloplax}
350
351
    Let $u, v : C \to D$ be two $\oo$\nbd{}functors. If there is an oplax
    transformation $\alpha : u \Rightarrow v$, then there is a chain homotopy from $\lambda(u)$ to $\lambda(v)$.
Leonard Guetta's avatar
Leonard Guetta committed
352
353
   \end{lemma}
   \begin{proof}
Leonard Guetta's avatar
Leonard Guetta committed
354
     For an $n$-cell $x$ of $C$ (resp.\ $D$), let us use the notation $[x]$ for the image of $x$ in $\lambda_n(C)$ (resp.\ $\lambda_n(D)$).
Leonard Guetta's avatar
Leonard Guetta committed
355
356
357
358

  Let $h_n$ be the map
     \[
     \begin{aligned}
359
       h_n : \lambda_n(C) &\to \lambda_{n+1}(D)\\
Leonard Guetta's avatar
Leonard Guetta committed
360
361
362
       [x] & \mapsto [\alpha_x].
       \end{aligned}
     \]
363
364
365
366
367
368
369
     The formulas for oplax transformations from Paragraph
     \ref{paragr:formulasoplax} imply that $h_n$ is linear and that for every
     $n$-cell $x$ of $C$, if $n=0$, we have
     \[
       \partial(h_0(x))=[v(x)]-[u(x)],
     \]
     and if $n>0$, we have
Leonard Guetta's avatar
Leonard Guetta committed
370
371
372
373
374
375
     \[
     \partial (h_n(x)) + h_{n-1}(\partial(x)) = [v(x)] - [u(x)].
     \]
     Details are left to the reader. 
   \end{proof}
   \begin{proposition}
376
     The abelianization functor $\lambda : \oo\Cat \to \Ch$ is left Quillen with respect to the folk model structure on $\oo\Cat$.
Leonard Guetta's avatar
Leonard Guetta committed
377
378
379
380
   \end{proposition}
   \begin{proof}
          The fact that $\lambda$ is a left adjoint is Lemma \ref{lemma:adjlambda}.

Leonard Guetta's avatar
Leonard Guetta committed
381
     A simple computation using Lemma \ref{prop:abelianizationfreeoocat} shows that for every $n\in \mathbb{N}$,
Leonard Guetta's avatar
Leonard Guetta committed
382
383
384
     \[
     \lambda(i_n) : \lambda(\sS_{n-1}) \to \lambda(\sD_{n})
     \]
Leonard Guetta's avatar
Leonard Guetta committed
385
   is a monomorphism with projective cokernel. Hence $\lambda$ sends folk cofibrations to cofibrations of chain complexes.
Leonard Guetta's avatar
Leonard Guetta committed
386

Leonard Guetta's avatar
OUF    
Leonard Guetta committed
387
     Then, we know from \cite[Sections 4.6 and 4.7]{lafont2010folk} and \cite[Remarque B.1.16]{ara2016joint} (see also \cite[Paragraph 3.11]{ara2019folk}) that there exists a set of generating trivial cofibrations $J$ of the folk model structure on $\omega\Cat$ such that every $j : X \to Y$ in $J$ is a deformation retract (see Paragraph \ref{paragr:defrtract}).
Leonard Guetta's avatar
Leonard Guetta committed
388
     From Lemma \ref{lemma:abeloplax}, we conclude that $\lambda$ sends folk trivial cofibrations to trivial cofibrations of chain complexes.
Leonard Guetta's avatar
Leonard Guetta committed
389
   \end{proof}
Leonard Guetta's avatar
Leonard Guetta committed
390
   In particular, $\lambda$ is totally left derivable (when $\oo\Cat$ is equipped with folk weak equivalences). This motivates the following definition.
Leonard Guetta's avatar
Leonard Guetta committed
391
392
393
   \begin{definition}\label{de:polhom}
     The \emph{polygraphic homology functor}
     \[
394
     \sH^{\pol} : \ho(\oo\Cat^{\folk}) \to \ho(\Ch)
Leonard Guetta's avatar
Leonard Guetta committed
395
     \]
Leonard Guetta's avatar
Leonard Guetta committed
396
     is the total left derived functor of $\lambda : \oo\Cat \to \Ch$ (where $\oo\Cat$ is equipped with folk weak equivalences). For an $\oo$\nbd{}category $C$, $\sH^{\pol}(C)$ is the \emph{polygraphic homology of $C$}. 
Leonard Guetta's avatar
Leonard Guetta committed
397
398
   \end{definition}
   \begin{paragr}
399
     Similarly to singular homology groups, for $k\geq0$ the $k$\nbd{}th polygraphic homology group of an $\oo$\nbd{}category $C$ is defined as
400
401
402
     \[
     H^{\pol}_k(C):=H_k(\sH^{\pol}(C))
     \]
403
     where $H_k : \ho(\Ch) \to \Ab$ is the usual functor that associate to an object of $\ho(\Ch)$ its $k$-th homology group. In practice, this means that one has to find a cofibrant replacement of $C$, that is to say a free $\oo$\nbd{}category $P$ and a folk trivial fibration
Leonard Guetta's avatar
Leonard Guetta committed
404
     \[
405
406
407
408
409
410
411
412
413
414
415
416
     P \to C,
     \]
     and then the polygraphic homology groups of $C$ are those of $\lambda(P)$ which are computed using Proposition \ref{prop:abelianizationfreeoocat}.
   \end{paragr}
   \begin{paragr}
     For later reference, let us recall here that since $\sH^{\pol}$ is the left derived functor of $\lambda$, it comes equipped with a universal natural transformation (see \ref{paragr:defleftderived})
         \[
     \begin{tikzcd}
        \oo\Cat \ar[d,"\gamma^{\folk}"'] \ar[r,"\lambda"] & \Ch \ar[d,"\gamma^{\Ch}"] \\
      \ho(\oo\Cat^{\Th}) \ar[r,"\sH^{\pol}"'] & \ho(\Ch).
       \ar[from=2-1,to=1-2,"\alpha^{\pol}",shorten <= 1em, shorten >= 1em, Rightarrow]
     \end{tikzcd}
Leonard Guetta's avatar
Leonard Guetta committed
417
     \]
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
Moreover, the functor $\lambda$ being left Quillen, it is strongly derivable (Definition \ref{def:strnglyder}) and hence induces a morphism of op-prederivators, which we again denote by $\sH^{\pol}$:
     \[
     \sH^{\pol} : \Ho(\oo\Cat^{\folk}) \to \Ho(\Ch).
     \]
     % We also have a universal $2$\nbd{}morphism which we again denote by $\alpha^{\pol}$:
     %          \[
     % \begin{tikzcd}
     %    \oo\Cat \ar[d,"\gamma^{\folk}"'] \ar[r,"\lambda"] & \Ch \ar[d,"\gamma^{\Ch}"] \\
     %  \Ho(\oo\Cat^{\Th}) \ar[r,"\sH^{\pol}"'] & \Ho(\Ch).
     %   \ar[from=2-1,to=1-2,"\alpha^{\pol}",shorten <= 1em, shorten >= 1em, Rightarrow]
     % \end{tikzcd}
     % \]
\end{paragr}
The following proposition is an immediate consequence of Theorem \ref{thm:cisinskiII}.
\begin{proposition}\label{prop:polhmlgycocontinuous}
  The polygraphic homology
  \[
  \sH^{\pol} : \Ho(\oo\Cat^{\folk}) \to \Ho(\Ch)
  \]
  is homotopy cocontinuous.
\end{proposition}
439
   As we shall now see, oplax homotopy equivalences (Definition \ref{def:oplaxhmtpyequiv}) induce isomorphisms in polygraphic homology. In order to prove that, we first need a couple of technical lemmas.
Leonard Guetta's avatar
Leonard Guetta committed
440
441
442
443
444
445
446
447
448
449
   \begin{lemma}\label{lemma:liftingoplax}
      Let
      \[
      \begin{tikzcd}
        C' \ar[r,"f_{\epsilon}'"] \ar[d,"u"] & D' \ar[d,"v"]\\
        C \ar[r,"f_{\epsilon}"] & D
      \end{tikzcd}
      \]
      be commutative squares in $\omega\Cat$ for $\epsilon\in\{0,1\}$.

450
      If $C'$ is a free $\omega$-category and $v$ a folk trivial fibration, then for every oplax transformation \[\alpha : f_0 \Rightarrow f_1,\] there exists an oplax transformation \[\alpha' : f_0' \Rightarrow f_1'\] such that
Leonard Guetta's avatar
Leonard Guetta committed
451
452
453
454
455
      \[
      v \star \alpha' = \alpha \star u.
      \]
\end{lemma}
   \begin{proof}
456
     Notice first that because of the natural isomorphism \[(\sD_0\amalg \sD_0) \otimes C \simeq  C \amalg C,\] we have that $\alpha : f_0 \Rightarrow f_1$ can be encoded in a functor $\alpha : \sD_1 \otimes C \to D$ such that the diagram
Leonard Guetta's avatar
Leonard Guetta committed
457
458
459
460
461
462
463
464
      \[
      \begin{tikzcd}
            (\sD_0\amalg \sD_0) \otimes C \simeq  C \amalg C \ar[d,"i_1 \otimes C"'] \ar[dr,"{\langle u, v \rangle}"] &\\
        \sD_1 \otimes C \ar[r,"\alpha"'] & D
      \end{tikzcd}
      \]
      (where $i_1 : \sD_0 \amalg \sD_0 \simeq \sS_0 \to \sD_1$ is the morphism introduced in \ref{paragr:inclusionsphereglobe}) is commutative.

Leonard Guetta's avatar
Leonard Guetta committed
465
      Now, the hypotheses of the lemma yield the following commutative square
Leonard Guetta's avatar
Leonard Guetta committed
466
467
468
469
470
471
      \[
      \begin{tikzcd}
        (\sD_0 \amalg \sD_0)\otimes C' \ar[d,"{i_1\otimes C'}"'] \ar[rr,"{\langle f'_0, f_1' \rangle}"] && D' \ar[d,"v"] \\
        \sD_1\otimes C'\ar[r,"\sD_1 \otimes u"'] & \sD_1\otimes C \ar[r,"\alpha"] & D
        \end{tikzcd}
      \]
472
473
474
475
476
      and since $i_1$ is a folk cofibration and $C'$ is cofibrant, it follows
      that the left vertical morphism of the previous square is a folk
      cofibration (see \cite[Proposition 5.1.2.7]{lucas2017cubical} or
      \cite{ara2019folk}). By hypothesis, $v$ is a folk trivial fibration, and
      so the above square admits a lift
Leonard Guetta's avatar
Leonard Guetta committed
477
478
479
480
481
      \[
      \alpha' : \sD_1\otimes C' \to D'.
      \]
      The commutativity of the two induced triangles shows what we needed to prove.
   \end{proof}
Leonard Guetta's avatar
Leonard Guetta committed
482
From now on, for an $\oo$\nbd{}functor $u$, we write $\sH^{\pol}(u)$ instead of $\sH^{\pol}(\gamma^{\folk}(u))$ (where $\gamma^{\folk}$ is the localization functor $\oo\Cat \to \ho(\oo\Cat^{\folk})$) for the morphism induced by $u$ at the level of polygraphic homology.
483
\begin{lemma}\label{lemma:oplaxpolhmlgy}
484
  Let $u,v : C \to D$ be two $\oo$\nbd{}functors. If there exists an oplax transformation $u\Rightarrow v$, then
Leonard Guetta's avatar
Leonard Guetta committed
485
486
487
488
489
  \[
  \sH^{\pol}(u)=\sH^{\pol}(v).
  \]
\end{lemma}
\begin{proof}
490
491
492
  In the case that $C$ and $D$ are both folk cofibrant, this follows immediately
  from Lemma \ref{lemma:abeloplax} and the fact that the localization functor
  $\Ch \to \ho(\Ch)$ identifies chain homotopic maps (\ref{paragr:chainhmtpy}).
Leonard Guetta's avatar
Leonard Guetta committed
493
494
495
496
497
498
499
500
501

  In the general case, let
  \[
  p : C' \to C
  \]
  and
  \[
  q : D' \to D
  \]
502
  be folk trivial fibrations with $C'$ and $D'$ cofibrant. Using that $q$ is a trivial fibration and $C'$ is cofibrant, we know that there exist $u' : C' \to D'$ and $v' : C' \to D'$ such that the squares
Leonard Guetta's avatar
Leonard Guetta committed
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
  \[
  \begin{tikzcd}
    C' \ar[d,"p"] \ar[r,"u'"] & D' \ar[d,"q"] \\
    C \ar[r,"u"] & D
  \end{tikzcd}
  \text{ and }
  \begin{tikzcd}
    C' \ar[d,"p"] \ar[r,"v'"] & D' \ar[d,"q"] \\
    C \ar[r,"v"] & D
  \end{tikzcd}  
  \]
  are commutative. From Lemma \ref{lemma:liftingoplax}, we deduce the existence of an oplax transformation $u' \Rightarrow v'$. Since $C'$ and $D'$ are cofibrant, we have already proved that
  \[\sH^{\pol}(u')=\sH^{\pol}(v').\]
  The commutativity of the two previous squares and the fact that $p$ and $q$ are folk weak equivalences imply the desired result.
\end{proof}
The following proposition is an immediate consequence of the previous lemma.
Leonard Guetta's avatar
Leonard Guetta committed
519
\begin{proposition}\label{prop:oplaxhmtpypolhmlgy}
Leonard Guetta's avatar
Leonard Guetta committed
520
  Let $u : C \to D$ be an $\oo$\nbd{}functor. If $u$ is an oplax homotopy equivalence, then the induced morphism
Leonard Guetta's avatar
Leonard Guetta committed
521
  \[
522
  \sH^{\pol}(u) : \sH^{\pol}(C) \to \sH^{\pol}(D)
Leonard Guetta's avatar
Leonard Guetta committed
523
524
525
  \]
  is an isomorphism.
\end{proposition}
526
\begin{paragr}\label{paragr:polhmlgythomeq}
Leonard Guetta's avatar
OUF    
Leonard Guetta committed
527
  Oplax homotopy equivalences being particular cases of Thomason equivalences, one may wonder whether it is true that \emph{every} Thomason equivalence induce an isomorphism in polygraphic homology. As we shall see later (Proposition \ref{prop:polhmlgynotinvariant}),  it is not the case.
Leonard Guetta's avatar
Leonard Guetta committed
528
529
\end{paragr}
\begin{remark}
530
  Lemma \ref{lemma:liftingoplax}, Lemma \ref{lemma:oplaxpolhmlgy} and Proposition \ref{prop:oplaxhmtpypolhmlgy} are also true if we replace ``oplax'' by ``lax'' everywhere. 
Leonard Guetta's avatar
Leonard Guetta committed
531
532
\end{remark}

533

Leonard Guetta's avatar
Leonard Guetta committed
534
   \section{Singular homology as derived abelianization}\label{section:singhmlgyderived}
535
   We have seen in the previous section that the polygraphic homology functor is the total left derived functor of $\lambda : \oo\Cat \to \Ch$  when $\oo\Cat$ is equipped with the folk weak equivalences. As it turns out, the abelianization functor is also totally left derivable when $\oo\Cat$ is equipped with the Thomason equivalences and the total left derived functor is the singular homology functor. In order to prove this result, we first need a few technical lemmas.
Leonard Guetta's avatar
Leonard Guetta committed
536
   \begin{lemma}\label{lemma:nuhomotopical}
537
538
     Let $\nu : \Ch \to \oo\Cat$ be the right adjoint of the abelianization
     functor (see Lemma \ref{lemma:adjlambda}). This functor sends the quasi-isomorphisms to Thomason equivalences.
Leonard Guetta's avatar
Leonard Guetta committed
539
540
   \end{lemma}
   \begin{proof}
Leonard Guetta's avatar
Leonard Guetta committed
541
     We have already seen that $\lambda : \oo\Cat \to \Ch$ is left Quillen with respect to the folk model structure on $\oo\Cat$. By adjunction, this means that $\nu$ is right Quillen for this model structure. In particular, it sends trivial fibrations of chain complexes to folk trivial fibrations. From Ken Brown's Lemma \cite[Lemma 1.1.12]{hovey2007model} and the fact that all chain complexes are fibrant, it follows that $\nu$ sends weak equivalences of chain complexes to weak equivalences of the folk model structure, which are in particular Thomason equivalences (Lemma \ref{lemma:nervehomotopical}).
Leonard Guetta's avatar
Leonard Guetta committed
542
543
   \end{proof}
   \begin{remark}
544
545
     The proof of the previous lemma shows the stronger result that $\nu$ sends
     the quasi-ismorphisms to folk weak equivalences. This will be of no use in the sequel.
Leonard Guetta's avatar
Leonard Guetta committed
546
   \end{remark}
Leonard Guetta's avatar
Leonard Guetta committed
547
   Recall that we write $c_{\oo} : \Psh{\Delta} \to \oo\Cat$ for the left adjoint of the nerve functor ${N_{\oo} : \oo\Cat \to \Psh{\Delta}}$ (see Paragraph \ref{paragr:nerve}).
Leonard Guetta's avatar
Leonard Guetta committed
548
549
550
551
552
553
554
555
556
   \begin{lemma}\label{lemma:abelor}
    The triangle of functors
    \[
    \begin{tikzcd}
      \Psh{\Delta} \ar[r,"c_{\oo}"] \ar[dr,"\kappa"']& \oo\Cat\ar[d,"\lambda"]\\
      &\Ch
    \end{tikzcd}
    \]
    is commutative (up to a canonical isomorphism).
Leonard Guetta's avatar
Leonard Guetta committed
557
   \end{lemma}
Leonard Guetta's avatar
Leonard Guetta committed
558
   \begin{proof}
Leonard Guetta's avatar
Leonard Guetta committed
559
     All the functors involved are cocontinuous, hence it suffices to prove that the triangle is commutative  when pre-composed by the Yoneda embedding $\Delta \to \Psh{\Delta}$. This follows immediately from the description of the orientals in \cite{steiner2004omega}.
Leonard Guetta's avatar
Leonard Guetta committed
560
   \end{proof}
561
   Recall now that the notions of adjunction and equivalence are valid in every $2$\nbd{}category and in particular in the $2$\nbd{}category of pre-derivators (see \ref{paragr:prederequivadjun}). We omit the proof of the following lemma, which is the same as when the ambient $2$\nbd{}category is the $2$\nbd{}category of categories.
Leonard Guetta's avatar
Leonard Guetta committed
562
    \begin{lemma}\label{lemma:adjeq}
Leonard Guetta's avatar
Leonard Guetta committed
563
     Let $\begin{tikzcd} f : y \ar[r,shift left]&z :g\ar[l,shift left] \end{tikzcd}$ be an adjunction and $h : x \to y$ an equivalence with quasi-inverse $k : y \to x$. Then $fh$ is left adjoint to $kg$.
Leonard Guetta's avatar
Leonard Guetta committed
564
565
   \end{lemma}
   We can now state and prove the promised result.
Leonard Guetta's avatar
Leonard Guetta committed
566
   \begin{theorem}\label{thm:hmlgyderived}
Leonard Guetta's avatar
Leonard Guetta committed
567
     Consider that $\oo\Cat$ is equipped with the Thomason equivalences. The abelianization functor $\lambda : \oo\Cat \to \Ch$ is strongly left derivable and the left derived morphism of op\nbd{}prederivators
Leonard Guetta's avatar
Leonard Guetta committed
568
     \[
Leonard Guetta's avatar
Leonard Guetta committed
569
     \LL \lambda^{\Th} : \Ho(\oo\Cat^{\Th}) \to \Ho(\Ch)
Leonard Guetta's avatar
Leonard Guetta committed
570
     \]
Leonard Guetta's avatar
Leonard Guetta committed
571
     is isomorphic to the singular homology
Leonard Guetta's avatar
Leonard Guetta committed
572
     \[
Leonard Guetta's avatar
Leonard Guetta committed
573
     \sH^{\sing} : \Ho(\oo\Cat^{\Th}) \to \Ho(\Ch).
Leonard Guetta's avatar
Leonard Guetta committed
574
     \]
Leonard Guetta's avatar
Leonard Guetta committed
575
   \end{theorem}
Leonard Guetta's avatar
Leonard Guetta committed
576
   \begin{proof}
Leonard Guetta's avatar
Leonard Guetta committed
577
     Let $\nu$ be the right adjoint of the abelianization functor (see Lemma \ref{lemma:adjlambda}) and consider the following adjunctions
Leonard Guetta's avatar
Leonard Guetta committed
578
     \[
Leonard Guetta's avatar
Leonard Guetta committed
579
580
581
     \begin{tikzcd}
       \Psh{\Delta} \ar[r,shift left,"c_{\omega}"] &\oo\Cat \ar[l,shift left,"N_{\omega}"] \ar[r,shift left,"\lambda"]& \Ch \ar[l,shift left,"\nu"]
       \end{tikzcd}
Leonard Guetta's avatar
Leonard Guetta committed
582
     \]
Leonard Guetta's avatar
Leonard Guetta committed
583
584
585
586
587
588
589
     where the functors from left to right are the left adjoints.
      We know that:
     \begin{itemize}[label=-]
       \item The functor $\nu$ induces a morphism of localizers
     \[
     \nu : (\Ch,\W_{\Ch}) \to (\oo\Cat,\W^{\Th}),
     \]
Leonard Guetta's avatar
Leonard Guetta committed
590
      thanks to Lemma \ref{lemma:nuhomotopical}.
Leonard Guetta's avatar
Leonard Guetta committed
591
592
   \item The functor $N_{\omega}$ induces a morphism of localizers
     \[
Leonard Guetta's avatar
Leonard Guetta committed
593
     N_{\omega} : (\oo\Cat,\W^{\Th}) \to (\Psh{\Delta},\W_{\Delta}),
Leonard Guetta's avatar
Leonard Guetta committed
594
     \]
Leonard Guetta's avatar
Leonard Guetta committed
595
     by definition of Thomason equivalences.
Leonard Guetta's avatar
Leonard Guetta committed
596
597
598
599
600
601
602
603
604
605
606
607
   \item There is an isomorphism of functors $\lambda c_{\omega} \simeq \kappa$ (Lemma \ref{lemma:abelor}), hence an induced morphism of localizers
     \[
     (\lambda c_{\omega})\simeq \kappa : (\Psh{\Delta},\W_{\Delta}) \to (\Ch,\W_{\Ch}),
     \]
     thanks to Lemma \ref{lemma:normcompquil}.
     \end{itemize}
     It follows that there is an induced adjunction at the level of op-prederivators:
     \[
     \begin{tikzcd}
       \overline{\kappa} \simeq \overline{\lambda c_{\omega}} :  \Ho(\Psh{\Delta}) \ar[r,shift left] &  \ar[l,shift left] \Ho(\Ch) :\overline{N_{\omega}}\overline{\nu}.
       \end{tikzcd}
     \]
Leonard Guetta's avatar
Leonard Guetta committed
608
     Now, we know from Theorem \ref{thm:gagna} that $\overline{N_{\omega}}$ is an equivalence of op\nbd{}prederivators, and thus admits a quasi-inverse. Let $ M : \Ho(\Psh{\Delta}) \to \Ho(\oo\Cat)$ be such a quasi-inverse. From Lemma \ref{lemma:adjeq}, we deduce that we have an adjunction:
Leonard Guetta's avatar
Leonard Guetta committed
609
610
611
612
613
     \[
     \begin{tikzcd}
       \overline{\kappa} \overline{N_{\oo}} : \Ho(\oo\Cat^{\Th}) \ar[r,shift left]& \ar[l,shift left] \Ho(\Ch) : M \overline{N_{\oo}} \overline{\nu} \simeq \overline{\nu}.
       \end{tikzcd}
     \]
614
     From Proposition \ref{prop:gonzalezcritder}, we  conclude that $\lambda : \oo\Cat \to \Ch$ is strongly left derivable and that $ \LL\lambda^{\Th}  \simeq \overline{\kappa} \overline{N_{\oo}}$, which is, by definition, the singular homology. 
Leonard Guetta's avatar
Leonard Guetta committed
615
   \end{proof}
Leonard Guetta's avatar
Leonard Guetta committed
616
   \begin{remark}
617
618
619
620
     Beware that neither $c_{\oo} : \Psh{\Delta} \to \oo\Cat$ sends all weak
     equivalences of simplicial sets to Thomason equivalences nor $\lambda :
     \oo\Cat \to \Ch$ sends all Thomason equivalences to quasi-isomorphisms.
     However, this does not contradict the fact that $\lambda c_{\oo} : \Psh{\Delta} \to \Ch$ does send all weak equivalences of simplicial sets to quasi-isomorphisms.
Leonard Guetta's avatar
Leonard Guetta committed
621
   \end{remark}
Leonard Guetta's avatar
Leonard Guetta committed
622
   \begin{paragr}\label{paragr:univmor}
623
624
     Since $\sH^{\sing} : \ho(\oo\Cat^{\Th}) \to \ho(\Ch)$ is the left derived
     functor of the abelianization functor, it comes with a universal natural transformation
Leonard Guetta's avatar
Leonard Guetta committed
625
626
     \[
     \begin{tikzcd}
627
        \oo\Cat \ar[d,"\gamma^{\Th}"'] \ar[r,"\lambda"] & \Ch \ar[d,"\gamma^{\Ch}"] \\
628
      \ho(\oo\Cat^{\Th}) \ar[r,"\sH^{\sing}"'] & \ho(\Ch).
629
       \ar[from=2-1,to=1-2,"\alpha^{\sing}",shorten <= 1em, shorten >= 1em, Rightarrow]
Leonard Guetta's avatar
Leonard Guetta committed
630
631
     \end{tikzcd}
     \]
632
633
634
635
636
     A thorough reading of the proofs of Proposition \ref{prop:gonzalezcritder}
     and Theorem \ref{thm:hmlgyderived} enables us to give the following
     description of $\alpha^{\sing}$. By post-composing the co-unit of the
     adjunction $c_{\oo} \dashv N_{\oo}$ with the abelianization functor, we
     obtain a natural transformation
Leonard Guetta's avatar
Leonard Guetta committed
637
     \[
Leonard Guetta's avatar
Leonard Guetta committed
638
     \lambda c_{\oo} N_{\oo} \Rightarrow \lambda.
Leonard Guetta's avatar
Leonard Guetta committed
639
     \]
640
     Then $\alpha^{\sing}$ is nothing but the following composition of natural transformations
Leonard Guetta's avatar
Leonard Guetta committed
641
642
     \[
     \begin{tikzcd}[column sep=huge]
643
       \oo\Cat \ar[d,"\gamma^{\Th}"]\ar[r,bend left,"\lambda",""{name=A,below}] \ar[r,"\lambda c_{\oo} N_{\oo}"',""{name=B,above}] & \Ch \ar[d,"\gamma^{\Ch}"] \\
644
        \ho(\oo\Cat^{\Th}) \ar[r,"\sH^{\sing}"'] & \ho(\Ch),
Leonard Guetta's avatar
Leonard Guetta committed
645
        \ar[from=B,to=A,Rightarrow]\ar[from=1-1,to=2-2,phantom,"\simeq" description]
Leonard Guetta's avatar
Leonard Guetta committed
646
647
     \end{tikzcd}
     \]
Leonard Guetta's avatar
Leonard Guetta committed
648
     where the square is commutative (up to an isomorphism) because $\sH^{\sing}\simeq\overline{\lambda c_{\oo}} \overline{N_{\oo}}$.
Leonard Guetta's avatar
Leonard Guetta committed
649
650
   \end{paragr}
   \section{Comparing homologies}
651
   \begin{paragr}\label{paragr:cmparisonmap}
Leonard Guetta's avatar
Leonard Guetta committed
652
     Recall from Proposition \ref{prop:folkisthom} that the identity functor on $\oo\Cat$ induces a morphism of localizers
Leonard Guetta's avatar
Leonard Guetta committed
653
     \[(\oo\Cat,\W^{\folk}) \to (\oo\Cat,\W^{\Th}),\]
Leonard Guetta's avatar
Leonard Guetta committed
654
     which in turn induces a functor
655
656
657
658
659
660
     \[\J : \ho(\oo\Cat^{\folk}) \to \ho(\oo\Cat^{\Th}),\]
     such that
     \[
     \gamma^{\Th} = \J \circ \gamma^{\folk}.
     \]
     Now, consider the following triangle 
661
     \begin{equation}\label{cmprisontrngle}
Leonard Guetta's avatar
Leonard Guetta committed
662
     \begin{tikzcd}
Leonard Guetta's avatar
Leonard Guetta committed
663
664
       \ho(\oo\Cat^{\folk}) \ar[r,"\J"] \ar[rd,"\sH^{\pol}"'] & \ho(\oo\Cat^{\Th}) \ar[d,"\sH^{\sing}"] \\
      & \ho(\Ch).
Leonard Guetta's avatar
Leonard Guetta committed
665
     \end{tikzcd}
666
     \end{equation}
Leonard Guetta's avatar
Leonard Guetta committed
667
     A natural question to ask is whether this triangle is commutative (up to an isomorphism). Since $\J$ is the identity on objects, this amounts to ask whether for every $\oo$\nbd{}category $C$ we have an isomorphism (natural in $C$)
668
     \[
669
     \sH^{\pol}(C)\simeq \sH^{\sing}(C).
670
     \]
671
672
     As it happens, this is not possible as the following counter-example, due to Ara and Maltsiniotis, shows.
       \end{paragr}
Leonard Guetta's avatar
Leonard Guetta committed
673
\begin{paragr}[Ara and Maltsiniotis' counter-example]\label{paragr:bubble}
Leonard Guetta's avatar
Leonard Guetta committed
674
  Write $\mathbb{N}=(\mathbb{N},+,0)$ for the commutative monoid of non-negative integers  and let $C$ be the $2$\nbd{}category defined as
Leonard Guetta's avatar
Leonard Guetta committed
675
676
677
  \[
  C:=B^2\mathbb{N}
  \]
678
  (see \ref{paragr:suspmonoid}). As usual, we consider $C$ as an $\oo$\nbd{}category with only unit cells strictly above dimension $2$. This $\oo$\nbd{}category is free; namely its $k$\nbd{}basis is a singleton for $k=0$ and $k=2$, and the empty set otherwise. In particular $C$ is cofibrant for the folk model structure (Proposition \ref{prop:freeiscofibrant}) and it follows from Proposition \ref{prop:abelianizationfreeoocat} that $\sH^{\pol}(C)$ is given by the chain complex (seen as an object of $\ho(\Ch)$)
Leonard Guetta's avatar
Leonard Guetta committed
679
       \[
Leonard Guetta's avatar
Leonard Guetta committed
680
681
682
683
684
685
     \begin{tikzcd}[column sep=small]
       \mathbb{Z} & 0 \ar[l] & \ar[l] \mathbb{Z} & \ar[l] 0 & \ar[l] 0 & \ar[l] \cdots
       \end{tikzcd}
     \]
     Hence, the polygraphic homology groups of $B$ are given by
     \[
686
     H^{\pol}_k(C)=\begin{cases} \mathbb{Z} \text{ if } k=0,2\\ 0 \text{ in other cases.}\end{cases}  
Leonard Guetta's avatar
Leonard Guetta committed
687
     \]
Leonard Guetta's avatar
Leonard Guetta committed
688
     On the other hand, it is proven in \cite[Theorem 4.9 and Example 4.10]{ara2019quillen} that (the nerve of) $C$ is a $K(\mathbb{Z},2)$. In particular, it has non-trivial singular homology groups in every even dimension. This proves that $\sH^{\pol}(C)$ is \emph{not} isomorphic to $\sH^{\sing}(C)$; which means that triangle \eqref{cmprisontrngle} cannot be commutative (up to an isomorphism). 
Leonard Guetta's avatar
Leonard Guetta committed
689
\end{paragr}
690
Another consequence of the above counter-example is the following result, which we claimed in \ref{paragr:polhmlgythomeq}. Recall that given a morphism $u : C \to D$ of $\oo\Cat$, we write $\sH^{\pol}(u)$ instead of $\sH^{\pol}(\gamma^{\folk}(u))$.
Leonard Guetta's avatar
Leonard Guetta committed
691
\begin{proposition}\label{prop:polhmlgynotinvariant}
692
  There exists at least one Thomason equivalence \[u : C \to D\] such that the induced morphism
Leonard Guetta's avatar
Leonard Guetta committed
693
  \[
694
  \sH^{\pol}(u) : \sH^{\pol}(C) \to \sH^{\pol}(D)
Leonard Guetta's avatar
Leonard Guetta committed
695
  \]
696
  is not an isomorphism of $\ho(\Ch)$.
Leonard Guetta's avatar
Leonard Guetta committed
697
698
\end{proposition}
\begin{proof}
Leonard Guetta's avatar
Leonard Guetta committed
699
700
701
  Suppose the converse, which is that the functor
  \[
  \sH^{\pol} \circ \gamma^{\folk} : \oo\Cat \to \ho(\Ch)
702
  \]sends the Thomason equivalences to isomorphisms of $\ho(\Ch)$. Because of the inclusion $\W^{\folk} \subseteq \W^{\Th}_{\oo}$, the category $\ho(\oo\Cat^{\Th})$ may be identified with the localization of $\ho(\oo\Cat^{\folk})$ with respect to $\gamma^{\folk}(\W^{\Th}_{\oo})$ and then the localization functor is nothing but
703
  \[
704
  \J : \ho(\oo\Cat^{\folk}) \to \ho(\oo\Cat^{\Th}).
705
  \]
706
  From this observation and because of the hypothesis we made on Thomason equivalences inducing isomorphisms in polygraphic homology, we deduce the existence of a functor
707
  \[
708
  \overline{\sH^{\pol}} : \ho(\oo\Cat^{\Th}) \to \ho(\Ch)
709
  \]
710
711
712
713
714
715
716
717
718
719
720
721
  such that we have
  \[
   \overline{\sH^{\pol}}\circ \J = \sH^{\pol},
   \]
   and because of the equality $\gamma^{\Th} = \J \circ \gamma^{\folk}$, the universal natural transformation $\alpha^{\pol}$ now reads
   \[
   \begin{tikzcd}
     \oo\Cat \ar[r,"\lambda"] \ar[d,"\gamma^{\Th}"] & \Ch \ar[d,"\gamma^{\Ch}"] \\
     \ho(\oo\Cat^{\Th}) \ar[r,"\overline{\sH^{\pol}}"'] & \ho(\Ch).
     \ar[from=2-1,to=1-2,"\alpha^{\pol}",shorten <= 1em, shorten >=1em,Rightarrow]
   \end{tikzcd}
   \]
722
   Let us show that $(\overline{\sH^{\pol}},\alpha^{\pol})$ is the left derived functor of $\lambda$ when $\oo\Cat$ is equipped with the Thomason equivalences. Let $G$ and $\beta$ be as in the following $2$\nbd{}diagram
723
724
725
726
727
728
729
      \[
   \begin{tikzcd}
     \oo\Cat \ar[r,"\lambda"] \ar[d,"\gamma^{\Th}=\J\circ \gamma^{\folk}"'] & \Ch \ar[d,"\gamma^{\Ch}"] \\
     \ho(\oo\Cat^{\Th}) \ar[r,"G"'] & \ho(\Ch).
     \ar[from=2-1,to=1-2,"\beta",shorten <= 1em, shorten >=1em,Rightarrow]
   \end{tikzcd}
   \]
730
   Since $\sH^{\pol}$ is the left derived functor of $\lambda$ when $\oo\Cat$ is equipped with the folk weak equivalences, there exists a unique $\delta : G \circ \J \Rightarrow \sH^{\pol}$ that factorizes $\beta$ as
731
732
733
734
   \[
      \begin{tikzcd}
     \oo\Cat \ar[r,"\lambda"] \ar[d,"\gamma^{\folk}"] & \Ch \ar[d,"\gamma^{\Ch}"] \\
     \ho(\oo\Cat^{\folk}) \ar[d,"\J"] \ar[r,"\sH^{\pol}"'] & \ho(\Ch)\\
Leonard Guetta's avatar
Leonard Guetta committed
735
     \ho(\oo\Cat^{\Th}) \ar[ru,"G"',bend right] &.
736
     \ar[from=2-1,to=1-2,"\alpha^{\pol}",shorten <= 1em, shorten >=1em,Rightarrow]\\
Leonard Guetta's avatar
Leonard Guetta committed
737
     \ar[from=3-1,to=2-2,"\delta"',shorten <= 1em, shorten >= 1em,Rightarrow]
Leonard Guetta's avatar
Leonard Guetta committed
738
   \end{tikzcd}
739
      \]
740
      But since $\J$ acts as a localization functor, $\delta$ also factorizes uniquely as
741
      \[
Leonard Guetta's avatar
Leonard Guetta committed
742
      \begin{tikzcd}[column sep=small] \ho(\oo\Cat^{\folk}) \ar[r,"\J"] & \ho(\oo\Cat^{\Th}) \ar[r,bend left,"\overline{\sH^{\pol}}",""{name=A,below}] \ar[r,bend right, "G"',pos=16/30,""{name=B,above}] & \ho(\Ch). \ar[from=B,to=A,Rightarrow,"\delta'"]\end{tikzcd}
743
744
745
746
747
748
749
750
      \]
      Altogether we have that $\beta$ factorizes as
      \[
   \begin{tikzcd}
     \oo\Cat \ar[r,"\lambda"] \ar[d,"\gamma^{\Th}"] & \Ch \ar[d,"\gamma^{\Ch}"] \\
     \ho(\oo\Cat^{\Th}) \ar[r,"\overline{\sH^{\pol}}",""{name=B,below}] & \ho(\Ch).
     \ar[from=2-1,to=1-2,"\alpha^{\pol}",shorten <= 1em, shorten >=1em,Rightarrow]
     \ar[from=2-1,to=2-2,"G"',pos=16/30,bend right,""{name=A,above}]
Leonard Guetta's avatar
Leonard Guetta committed
751
     \ar[from=A,to=B,Rightarrow,"\delta'"]
752
753
   \end{tikzcd}
   \]
754
   The uniqueness of such a factorization follows from a similar argument which is left to the reader. This proves that $\overline{\sH^{\pol}}$ is the left derived functor of $\lambda$ when $\oo\Cat$ is equipped with the Thomason equivalences and in particular we have
755
756
757
   \[
   \sH^{\sing}\simeq \overline{\sH^{\pol}}.
   \]
Leonard Guetta's avatar
Leonard Guetta committed
758
   But since $\J$ is the identity on objects, this implies that for every $\oo$\nbd{}category $C$ we have
759
760
761
762
   \[
   \sH^{\sing}(C)\simeq \overline{\sH^{\pol}}(C)=\sH^{\pol}(C),
   \]
   which we know is impossible.
Leonard Guetta's avatar
Leonard Guetta committed
763
764
765
766
 \end{proof}
 \begin{remark}\label{remark:polhmlgyisnotinvariant}
   It follows from the previous result that if we think of $\oo$\nbd{}categories as a
   model for homotopy types (see Theorem \ref{thm:gagna}), then the polygraphic
Leonard Guetta's avatar
Leonard Guetta committed
767
   homology of an $\oo$\nbd{}category is \emph{not} a well defined invariant. This
Leonard Guetta's avatar
Leonard Guetta committed
768
769
770
   justifies what we said in remark \ref{remark:singularhmlgyishmlgy}, which is
   that \emph{singular homology} is the only ``correct'' homology of $\oo$\nbd{}categories.
 \end{remark}
Leonard Guetta's avatar
Leonard Guetta committed
771
\begin{paragr}\label{paragr:defcancompmap}
772
  Even though triangle \eqref{cmprisontrngle} is not commutative (even up to an isomorphism), it can be filled up with a $2$\nbd{}morphism. Indeed, consider the following $2$\nbd{}square
773
774
     \[
     \begin{tikzcd}
Leonard Guetta's avatar
Leonard Guetta committed
775
776
777
       \oo\Cat \ar[d,"\gamma^{\Th}"] \ar[r,"\lambda"] & \Ch \ar[d,"\gamma^{\Ch}"] \\
       \ho(\oo\Cat^{\Th}) \ar[r,"\sH^{\sing}"] & \ho(\Ch),
       \ar[from=2-1,to=1-2,"\alpha^{\sing}",shorten <= 1em, shorten >= 1em, Rightarrow]
778
779
     \end{tikzcd}
     \]
780
781
782
     Since $\gamma^{\Th}=\J\circ \gamma^{\folk}$ and the polygraphic homology is
     the total left derived functor of the abelianization functor when $\oo\Cat$
     is equipped with the folk weak equivalences, we obtain by universal property (see \ref{paragr:defleftderived}) a unique natural transformation
783
784
     \begin{equation}\label{cmparisonmapdiag}
     \begin{tikzcd}
Leonard Guetta's avatar
Leonard Guetta committed
785
786
       \ho(\oo\Cat^{\folk}) \ar[d,"\J"] \ar[rd,"\sH^{\pol}",""{name=A,below}] & \\
     \ho(\oo\Cat^{\Th}) \ar[r,"\sH^{\sing}"']  & \ho(\Ch)\ar[from=2-1,to=A,"\pi",Rightarrow]
787
788
     \end{tikzcd}
     \end{equation}
Leonard Guetta's avatar
Leonard Guetta committed
789
790
791
792
793
794
795
796
797
798
     such that $\alpha^{\sing}$ factorizes as 
          \[
     \begin{tikzcd}
       \oo\Cat \ar[d,"\gamma^{\folk}"] \ar[r,"\lambda"] & \Ch \ar[d,"\gamma^{\Ch}"] \\
       \ho(\oo\Cat^{\folk})\ar[d,"\J"] \ar[r,"\sH^{\pol}",""{name=B,below}] & \ho(\Ch)\\
       \ho(\oo\Cat^{\Th}) \ar[ru,"\sH^{\sing}"',bend right=15] &
       \ar[from=2-1,to=1-2,"\alpha^{\pol}",shorten <= 1em, shorten >= 1em, Rightarrow]
       \ar[from=3-1,to=B,Rightarrow,"\pi",shorten <= 1em, shorten >= 1em]
     \end{tikzcd}
     \]
Leonard Guetta's avatar
Leonard Guetta committed
799
800
801
802
803
804
805
806
    %% \begin{equation}\label{trianglecomparisonmap}
    %%  \begin{tikzcd}
    %%    \sH^{\pol}\circ \gamma^{\folk} \ar[r,"\pi\ast\gamma^{\folk}",Rightarrow] \ar[rd,"\alpha^{\folk}\circ (\pi \ast \gamma^{\folk})"',Rightarrow] & \sH^{\sing}\circ \J \circ \gamma^{\folk} \ar[d,"\alpha^{\sing}\ast (\J \circ \gamma^{\folk})",Rightarrow]\\
    %%        &\gamma^{\Ch}\circ \lambda
    %%  \end{tikzcd}
    %%  \end{equation}
    %%  is commutative.
   
Leonard Guetta's avatar
Leonard Guetta committed
807
     Since $\J$ is nothing but the identity on objects, for every $\oo$\nbd{}category $C$, the natural transformation $\pi$ yields a map 
808
     \[
Leonard Guetta's avatar
Leonard Guetta committed
809
     \pi_C : \sH^{\sing}(C) \to \sH^{\pol}(C),
810
811
812
     \]
     which we shall refer to as the \emph{canonical comparison map.}
\end{paragr}
Leonard Guetta's avatar
Leonard Guetta committed
813
   \begin{remark}
Leonard Guetta's avatar
Leonard Guetta committed
814
     When $C$ is free, it follows from the considerations in \ref{paragr:univmor} that the canonical comparison map $\pi_C$ can be identified with the image by $\gamma^{\Ch}$ of the morphism of $\Ch$
Leonard Guetta's avatar
Leonard Guetta committed
815
816
817
818
819
     \[
    \lambda c_{\oo}N_{\oo}(C) \to \lambda(C)
     \]
     induced by the co-unit of $c_{\oo} \dashv N_{\oo}$.
   \end{remark}
820
821
  % This motivates the following definition.
   \begin{definition}
Leonard Guetta's avatar
Leonard Guetta committed
822
     An $\oo$\nbd{}category $C$ is said to be \emph{\good{}} when the canonical comparison map
823
     \[
Leonard Guetta's avatar
Leonard Guetta committed
824
     \pi_C : \sH^{\sing}(C) \to \sH^{\pol}(C)
825
826
827
     \]
     is an isomorphism of $\ho(\Ch)$.
     \end{definition}
Leonard Guetta's avatar
Leonard Guetta committed
828
829

  \begin{paragr}
Leonard Guetta's avatar
Leonard Guetta committed
830
The rest of this dissertation is devoted to the study of \good{} $\oo$\nbd{}categories. Examples of such $\oo$\nbd{}categories will be presented later. Following the perspective of Remark \ref{remark:polhmlgyisnotinvariant}, polygraphic homology can be thought of as a way to compute singular homology of \good{} $\oo$\nbd{}categories. 
Leonard Guetta's avatar
Leonard Guetta committed
831
     \end{paragr}
Leonard Guetta's avatar
Leonard Guetta committed
832
%% \section{A criterion to detect \good{} $\oo$\nbd{}categories}
Leonard Guetta's avatar
Leonard Guetta committed
833
%% We shall now proceed to give an abstract criterion to find \good{} $\oo$\nbd{}categories. %In the rest of this dissertation, we will exploit this criterion to exhibit the largest classes possible of \good{} $\oo$\nbd{}categories.
834

Leonard Guetta's avatar
Leonard Guetta committed
835
836
\begin{paragr}\label{paragr:prelimcriteriongoodcat}
  Similarly to \ref{paragr:cmparisonmap}, the morphism of localizers
837
  \[
Leonard Guetta's avatar
Leonard Guetta committed
838
839
840
841
842
843
844
845
846
847
848
849
 (\oo\Cat,\W^{\folk}) \to (\oo\Cat,\W^{\Th})
 \]
  induces a morphism of op-prederivators
  \[
 \J : \Ho(\oo\Cat^{\folk}) \to \Ho(\oo\Cat^{\Th})
 \]
  such that the triangle in the category of op-prederivators
  \[
  \begin{tikzcd}
    \oo\Cat \ar[d,"\gamma^{\folk}"'] \ar[rd,"\gamma^{\Th}"] &\\
    \Ho(\oo\Cat^{\folk}) \ar[r,"\J"'] & \Ho(\oo\Cat^{\Th})
  \end{tikzcd}
850
  \]
Leonard Guetta's avatar
Leonard Guetta committed
851
852
  is commutative.
  It follows from what we said in \ref{paragr:compweakeq} that the morphism $\J$ cannot be an equivalence of op-prederivators. As we shall see later, $\J$ is not even homotopy cocontinuous. In particular, this implies that given a diagram $d : I \to \oo\Cat$, the canonical arrow of $\ho(\oo\Cat^{\Th})$
853
  \begin{equation}\label{equation:Jhocolim