Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Leonard Guetta
memoire
Commits
01539760
Commit
01539760
authored
Jan 21, 2021
by
Leonard Guetta
Browse files
Encore des typos et du layout
parent
5df9566f
Changes
3
Hide whitespace changes
Inline
Sidebyside
2cat.tex
View file @
01539760
...
...
@@ 25,7 +25,7 @@ In this section, we review some homotopical results on free
are the morphisms
$
f : G
\to
G'
$
that are injective on objects and on arrows,
i.e. such that
$
f
_
0
: G
_
0
\to
G
_
0
'
$
and
$
f
_
1
: G
_
1
\to
G'
_
1
$
are injective.
There is a ``underlying reflexive graph'' functor
There is a
n
``underlying reflexive graph'' functor
\[
U :
\Cat
\to
\Rgrph
,
\]
...
...
@@ 239,7 +239,7 @@ From the previous proposition, we deduce the following very useful corollary.
L
(
C
)
\ar
[
r,"L
(
\gamma
)
"
]
&
L
(
D
)
\end
{
tikzcd
}
\]
is
a
Thomason homotopy cocartesian.
is Thomason homotopy cocartesian.
\end{corollary}
\begin{proof}
Since the nerve
$
N
$
induces an equivalence of opprederivators
...
...
@@ 272,11 +272,11 @@ From the previous proposition, we deduce the following very useful corollary.
By working a little more, we obtain the more general result stated
in the proposition below. Let us say that a morphism of reflexive
graphs
$
\alpha
: A
\to
B
$
is
\emph
{
quasiinjective on arrows
}
when
for all
$
f
$
and
$
g
$
arrows
of
$
A
$
, if
for all
arrows
$
f
$
and
$
g
$
of
$
A
$
, if
\[
\alpha
(
f
)=
\alpha
(
g
)
,
\]
then either
$
f
=
g
$
or
$
f
$
and
$
g
$
are both units. In other words,
$
\alpha
$
then either
$
f
=
g
$
,
or
$
f
$
and
$
g
$
are both units. In other words,
$
\alpha
$
never sends a nonunit arrow to a unit arrow and
$
\alpha
$
never identifies two
nonunit arrows. It follows that if
$
\alpha
$
is quasiinjective on arrows and
injective on objects, then it is also injective on arrows and hence, a
...
...
@@ 304,7 +304,7 @@ From the previous proposition, we deduce the following very useful corollary.
L
(
C
)
\ar
[
r,"L
(
\gamma
)
"
]
&
L
(
D
)
\end
{
tikzcd
}
\]
is Thomason homotopy cocartesian
square
.
is Thomason homotopy cocartesian.
\end{proposition}
\begin{proof}
The case where
$
\alpha
$
or
$
\beta
$
is both injective on objects and
...
...
@@ 415,7 +415,7 @@ We now apply Corollary \ref{cor:hmtpysquaregraph} and Proposition
\ref
{
cor:hmtpysquaregraph
}
.
\end{example}
\begin{remark}
Since
$
i
_
1
:
\sS
_
0
\to
\sD
_
1
$
is a folk cofibration
% , since a Thomason homotopy
Since
$
i
_
1
:
\sS
_
0
\to
\sD
_
1
$
is a folk cofibration
% , since a Thomason homotopy
% cocartesian square in $\Cat$ is also so in $\oo\Cat$
and since every free category is obtained by recursively adding generators
starting from a set of objects (seen as a
$
0
$
category), the previous example
...
...
@@ 456,7 +456,7 @@ We now apply Corollary \ref{cor:hmtpysquaregraph} and Proposition
\ar
[
from
=
1

1
,to
=
2

2
,phantom,"
\ulcorner
",very near end
]
\end
{
tikzcd
}
\]
Then, this
above
square is Thomason homotopy cocartesian. Indeed, it
Then, this square is Thomason homotopy cocartesian. Indeed, it
obviously is the image of a cocartesian square in
$
\Rgrph
$
by the
functor
$
L
$
and since the source and target of
$
f
$
are different,
the top map comes from a monomorphism of
$
\Rgrph
$
. Hence, we can
...
...
@@ 744,7 +744,7 @@ In practice, we will use the following corollary.
\ref
{
prop:bisimplicialcocontinuous
}
.
\end{proof}
\section
{
Bisimplicial nerve for 2categories
}
\label
{
section:bisimplicialnerve
}
We shall now describe a ``nerve'' for
$
2
$

categories with values in bisimplicial
We shall now describe a ``nerve'' for
$
2
$
\nbd
{}
categories with values in bisimplicial
sets and recall a few results that shows that this nerve is, in some sense,
equivalent to the nerve defined in
\ref
{
paragr:nerve
}
.
\begin{notation}
...
...
@@ 757,23 +757,23 @@ equivalent to the nerve defined in \ref{paragr:nerve}.
\]
is the set of
$
k
$
simplices of the nerve of
$
C
$
.
\item
[]
Similarly, we write
$
N :
2
\Cat
\to
\Psh
{
\Delta
}$
instead of
$
N
_
2
$
for
the nerve of
$
2
$

categories. This makes sense since the nerve for categories
is the restriction of the nerve for
$
2
$

categories.
\item
[]
For
$
2
$

categories, we refer to the
$
\comp
_
0
$
composition of
$
2
$

cells as the
\emph
{
horizontal composition
}
and the
$
\comp
_
1
$
composition
of
$
2
$

cells as the
\emph
{
vertical composition
}
.
\item
[]
For a
$
2
$

category
$
C
$
and
$
x
$
and
$
y
$
objects of
$
C
$
, we denote by
the nerve of
$
2
$
\nbd
{}
categories. This makes sense since the nerve for categories
is the restriction of the nerve for
$
2
$
\nbd
{}
categories.
\item
[]
For
$
2
$
\nbd
{}
categories, we refer to the
$
\comp
_
0
$
composition of
$
2
$
\nbd
{}
cells as the
\emph
{
horizontal composition
}
and the
$
\comp
_
1
$
composition
of
$
2
$
\nbd
{}
cells as the
\emph
{
vertical composition
}
.
\item
[]
For a
$
2
$
\nbd
{}
category
$
C
$
and
$
x
$
and
$
y
$
objects of
$
C
$
, we denote by
\[
C
(
x,y
)
\]
the category whose objects are the
$
1
$
cells of
$
C
$
with
$
x
$
as source and
$
y
$
as target, and whose arrows are the
$
2
$

cells of
$
C
$
with
$
x
$
as
$
y
$
as target, and whose arrows are the
$
2
$
\nbd
{}
cells of
$
C
$
with
$
x
$
as
$
0
$
source and
$
y
$
as
$
0
$
target. Composition is induced by vertical
composition in
$
C
$
.
\end{itemize}
\end{notation}
\begin{paragr}
Every
$
2
$

category
$
C
$
defines a simplicial object in
$
\Cat
$
,
Every
$
2
$
\nbd
{}
category
$
C
$
defines a simplicial object in
$
\Cat
$
,
\[
S
(
C
)
:
\Delta
^{
\op
}
\to
\Cat
,
\]
where, for each
$
n
\geq
0
$
,
\[
S
_
n
(
C
)
:
=
\coprod
_{
(
x
_
0
,
\cdots
,x
_
n
)
\in
\Ob
(
C
)
^{
\times
(
n
+
1
)
}}
C
(
x
_
0
,x
_
1
)
...
...
@@ 795,7 +795,7 @@ equivalent to the nerve defined in \ref{paragr:nerve}.
category.
\end{remark}
\begin{definition}
The
\emph
{
bisimplicial nerve
}
of a
$
2
$

category
$
C
$
is the bisimplicial set
The
\emph
{
bisimplicial nerve
}
of a
$
2
$
\nbd
{}
category
$
C
$
is the bisimplicial set
$
\binerve
(
C
)
$
defined as
\[
\binerve
(
C
)
_{
n,m
}
:
=
N
(
S
_
n
(
C
))
_
m,
...
...
@@ 804,7 +804,7 @@ equivalent to the nerve defined in \ref{paragr:nerve}.
\end{definition}
\begin{paragr}
\label
{
paragr:formulabisimplicialnerve
}
In other words, the bisimplicial nerve of
$
C
$
is obtained by ``uncurrying''
the functor
$
NS
(
C
)
:
\Delta
^{
op
}
\to
\Psh
{
\Delta
}$
.
the functor
$
NS
(
C
)
:
\Delta
^{
\
op
}
\to
\Psh
{
\Delta
}$
.
Since the nerve
$
N
$
commutes with products and sums, we obtain the formula
\begin{equation}
\label
{
fomulabinerve
}
...
...
@@ 847,7 +847,7 @@ an equivalent definition of the bisimplicial nerve which uses the other directio
\[
\alpha
=(
\alpha
_
1
,
\alpha
_
2
,
\cdots
,
\alpha
_
k
)
\]
of vertically composable
$
2
$

cells of
$
C
$
, i.e.
\
such that for
of vertically composable
$
2
$
\nbd
{}
cells of
$
C
$
, i.e.
\
such that for
every
$
1
\leq
i
\leq
k

1
$
, we have
\[
\src
(
\alpha
_
i
)=
\trgt
(
\alpha
_{
i
+
1
}
)
.
...
...
@@ 879,7 +879,7 @@ an equivalent definition of the bisimplicial nerve which uses the other directio
degeneracy operators are induced by the units for the vertical composition.
\end{paragr}
\begin{lemma}
\label
{
lemma:binervehorizontal
}
Let
$
C
$
be a
$
2
$

category. For every
$
n
\geq
0
$
, we have
Let
$
C
$
be a
$
2
$
\nbd
{}
category. For every
$
n
\geq
0
$
, we have
\[
N
(
V
_
m
(
C
))
_
n
=(
\binerve
(
C
))
_{
n,m
}
.
\]
...
...
@@ 897,7 +897,7 @@ an equivalent definition of the bisimplicial nerve which uses the other directio
theory of bisimplicial sets.
\end{paragr}
\begin{lemma}
\label
{
lemma:binervthom
}
A
$
2
$

functor
$
F : C
\to
D
$
is a Thomason equivalence if and only if
A
$
2
$
\nbd
{}
functor
$
F : C
\to
D
$
is a Thomason equivalence if and only if
$
\binerve
(
F
)
$
is a diagonal weak equivalence of bisimplicial sets.
\end{lemma}
\begin{proof}
...
...
@@ 910,9 +910,9 @@ an equivalent definition of the bisimplicial nerve which uses the other directio
\cite
[Théorème 3.13]
{
ara2020comparaison
}
.
\end{proof}
From this lemma, we deduce two useful criteria to detect Thomason equivalences
of
$
2
$

categories.
of
$
2
$
\nbd
{}
categories.
\begin{corollary}
\label
{
cor:criterionThomeqI
}
Let
$
F : C
\to
D
$
be a
$
2
$

functor. If
Let
$
F : C
\to
D
$
be a
$
2
$
\nbd
{}
functor. If
\begin{enumerate}
[label=
\alph*
)]
\item
$
F
_
0
: C
_
0
\to
D
_
0
$
is a bijection,
\end{enumerate}
...
...
@@ 924,10 +924,10 @@ of $2$categories.
\]
induced by
$
F
$
is a Thomason equivalence of
$
1
$
categories,
\end{enumerate}
then
$
F
$
is a Thomason equivalence of
$
2
$

categories.
then
$
F
$
is a Thomason equivalence of
$
2
$
\nbd
{}
categories.
\end{corollary}
\begin{proof}
By definition, for every
$
2
$

category
$
C
$
and every
$
m
\geq
0
$
, we have
By definition, for every
$
2
$
\nbd
{}
category
$
C
$
and every
$
m
\geq
0
$
, we have
\[
(
\binerve
(
C
))
_{
\bullet
,m
}
=
NS
(
C
)
.
\]
...
...
@@ 936,9 +936,9 @@ of $2$categories.
products.
\end{proof}
\begin{corollary}
\label
{
cor:criterionThomeqII
}
Let
$
F : C
\to
D
$
be a
$
2
$

functor. If for every
$
k
\geq
0
$
,
Let
$
F : C
\to
D
$
be a
$
2
$
\nbd
{}
functor. If for every
$
k
\geq
0
$
,
\[
V
_
k
(
F
)
: V
_
k
(
C
)
\to
V
_
k
(
D
)
\]
is a Thomason equivalence of
$
1
$
categories,
then
$
F
$
is a Thomason equivalence of
$
2
$

categories.
then
$
F
$
is a Thomason equivalence of
$
2
$
\nbd
{}
categories.
\end{corollary}
\begin{proof}
From Lemma
\ref
{
lemma:binervehorizontal
}
, we now that for every
$
m
\geq
0
$
,
...
...
@@ 1071,8 +1071,8 @@ of $2$categories.
cocartesian, then
$
D
$
is
\good
{}
.
\end{paragr}
\begin{paragr}
Let
$
n,m
\geq
0
$
. We denote by
$
A
_{
(
m,n
)
}$
the free
$
2
$

category with only one
generating
$
2
$

cell whose source is a chain of length
$
m
$
and whose target is a
Let
$
n,m
\geq
0
$
. We denote by
$
A
_{
(
m,n
)
}$
the free
$
2
$
\nbd
{}
category with only one
generating
$
2
$
\nbd
{}
cell whose source is a chain of length
$
m
$
and whose target is a
chain of length
$
n
$
:
\[
\underbrace
{
\overbrace
{
\begin
{
tikzcd
}
[
column sep
=
small, ampersand
...
...
@@ 1092,7 +1092,7 @@ of $2$categories.
for
}
0
\leq
i
\leq
m

1
\\
g
_{
j
+
1
}
: B
_
j
\to
B
_{
j
+
1
}
&
\text
{
for
}
0
\leq
j
\leq
n

1
%\\g_1 : A_0 \to B_1 & \\g_{n} : B_{n1} \to A_m &
\end
{
cases
}$
\item
generating
$
2
$

cell:
$
\alpha
: f
_{
m
}
\circ
\cdots
\circ
f
_
1
\Rightarrow
\item
generating
$
2
$
\nbd
{}
cell:
$
\alpha
: f
_{
m
}
\circ
\cdots
\circ
f
_
1
\Rightarrow
g
_
n
\circ
\cdots
\circ
g
_
1
$
.
\end{itemize}
Notice that
$
A
_{
(
1
,
1
)
}$
is nothing but
$
\sD
_
2
$
. We are going to prove that if
...
...
@@ 1113,10 +1113,10 @@ of $2$categories.
\ar
[
from
=
A,to
=
1

1
,Rightarrow,"
\alpha
"
]
\end
{
tikzcd
}
\]
and has many non trivial
$
2
$

cells, such as
$
f
\comp
_
0
\alpha
\comp
_
0
f
$
.
and has many non trivial
$
2
$
\nbd
{}
cells, such as
$
f
\comp
_
0
\alpha
\comp
_
0
f
$
.
Note that when
$
m
=
0
$
\emph
{
and
}
$
n
=
0
$
, then the
$
2
$

category
$
A
_{
(
0
,
0
)
}$
is
nothing but the
$
2
$

category
$
B
^
2
\mathbb
{
N
}$
and we have already seen that it
Note that when
$
m
=
0
$
\emph
{
and
}
$
n
=
0
$
, then the
$
2
$
\nbd
{}
category
$
A
_{
(
0
,
0
)
}$
is
nothing but the
$
2
$
\nbd
{}
category
$
B
^
2
\mathbb
{
N
}$
and we have already seen that it
is
\emph
{
not
}
\good
{}
(see
\ref
{
paragr:bubble
}
).
\end{paragr}
\begin{paragr}
...
...
@@ 1154,9 +1154,9 @@ of $2$categories.
end,"
\ulcorner
"
]
\end
{
tikzcd
}
\]
where
$
\tau
:
\Delta
_
1
\to
A
_{
(
1
,
1
)
}$
is the
$
2
$

functor that sends the unique
where
$
\tau
:
\Delta
_
1
\to
A
_{
(
1
,
1
)
}$
is the
$
2
$
\nbd
{}
functor that sends the unique
nontrivial
$
1
$
\nbd
{}
cell of
$
\Delta
_
1
$
to the target of the generating
$
2
$

cell of
$
A
_{
(
1
,
1
)
}$
. It is not hard to check that
$
\tau
$
is strong
$
2
$
\nbd
{}
cell of
$
A
_{
(
1
,
1
)
}$
. It is not hard to check that
$
\tau
$
is strong
deformation retract and thus, a couniversal Thomason equivalence (Lemma
\ref
{
lemma:pushoutstrngdefrtract
}
). Hence, the morphism
$
\Delta
_
n
\to
A
_{
(
1
,n
)
}$
is also a (couniversal) Thomason equivalence and the square is
...
...
@@ 1176,7 +1176,7 @@ of $2$categories.
end,"
\ulcorner
"
]
\end
{
tikzcd
}
\]
where
$
\sigma
:
\Delta
_
1
\to
A
_{
(
1
,
1
)
}$
is the
$
2
$

functor that sends the
where
$
\sigma
:
\Delta
_
1
\to
A
_{
(
1
,
1
)
}$
is the
$
2
$
\nbd
{}
functor that sends the
unique non trivial
$
1
$
\nbd
{}
cell of
$
\Delta
_
1
$
to the source of the generating
$
2
$
\nbd
{}
cell of
$
A
_{
(
1
,
1
)
}$
, we can prove that
$
A
_{
(
m,
1
)
}$
is
\good
{}
and has
the homotopy type of a point.
...
...
@@ 1190,9 +1190,9 @@ of $2$categories.
end,"
\ulcorner
"
]
\end
{
tikzcd
}
\]
where
$
\tau
$
is the
$
2
$

functor that sends the unique nontrivial
$
1
$
cell of
$
\Delta
_
1
$
to the target of the generating
$
2
$

cell of
$
A
_{
(
m,
1
)
}$
. This
$
2
$

functor is once again a folk cofibration, but it is
\emph
{
not
}
in general
where
$
\tau
$
is the
$
2
$
\nbd
{}
functor that sends the unique nontrivial
$
1
$
cell of
$
\Delta
_
1
$
to the target of the generating
$
2
$
\nbd
{}
cell of
$
A
_{
(
m,
1
)
}$
. This
$
2
$
\nbd
{}
functor is once again a folk cofibration, but it is
\emph
{
not
}
in general
a couniversal Thomason equivalence (it would be if we had made the hypothesis that
$
m
\neq
0
$
, but we did not). However, since we made the hypothesis that
$
n
\neq
0
$
, it follows from Lemma
\ref
{
lemma:istrngdefrtract
}
that
$
i :
\Delta
_
1
\to
...
...
@@ 1207,7 +1207,7 @@ of $2$categories.
Combined with the result of Paragraph
\ref
{
paragr:bubble
}
, we have proved the
following proposition.
\begin{proposition}
\label
{
prop:classificationAmn
}
Let
$
m,n
\geq
0
$
and consider the
$
2
$

category
$
A
_{
(
m,n
)
}$
. If
$
m
\neq
0
$
or
Let
$
m,n
\geq
0
$
and consider the
$
2
$
\nbd
{}
category
$
A
_{
(
m,n
)
}$
. If
$
m
\neq
0
$
or
$
n
\neq
0
$
, then
$
A
_{
(
m,n
)
}$
is
\good
{}
and has the homotopy type of a point.
If
$
n
=
m
=
0
$
, then
$
A
_{
(
0
,
0
)
}$
is not
\good
{}
and has the homotopy type of a
$
K
(
\mathbb
{
Z
}
,
2
)
$
.
...
...
@@ 1546,7 +1546,7 @@ Let us now get into more sophisticated examples.
\begin{center}
\begin{tabular}
{
 l  c  c 
}
\hline
$
2
$

category
&
\good
{}
?
&
homotopy type
\\
\hline
\hline
$
2
$
\nbd
{}
category
&
\good
{}
?
&
homotopy type
\\
\hline
\hline
{
$
\begin
{
tikzcd
}
\bullet
\ar
[
r,bend
...
...
main.tex
View file @
01539760
...
...
@@ 182,11 +182,11 @@ homotopy theory, polygraphs.
\pagestyle
{
fancy
}
\fancyhf
{}
\fancyfoot
[C]
{
\thepage
}
\fancyhead
[RO]
{
INTRODUCTION
}
\fancyhead
[RO
,LE
]
{
INTRODUCTION
}
\include
{
introduction
}
\fancyhf
{}
\fancyfoot
[C]
{
\thepage
}
\fancyhead
[RO]
{
INTRODUCTION (FRANÇAIS)
}
\fancyhead
[RO
,LE
]
{
INTRODUCTION (FRANÇAIS)
}
\include
{
introduction
_
fr
}
\fancyhf
{}
\fancyfoot
[C]
{
\thepage
}
...
...
memoire.bib
View file @
01539760
...
...
@@ 57,7 +57,7 @@ year={2020}
year
=
{2020}
}
@article
{
ara2019quillen
,
title
=
{A {Q}uillen
T
heorem {B} for strict $\infty$\nbd{}categories}
,
title
=
{A {Q}uillen
{T}
heorem {B} for strict $\infty$\nbd{}categories}
,
author
=
{Ara, Dimitri}
,
journal
=
{Journal of the London Mathematical Society}
,
volume
=
{100}
,
...
...
@@ 67,7 +67,7 @@ year={2020}
publisher
=
{Wiley Online Library}
}
@article
{
batanin1998monoidal
,
title
=
{Monoidal globular categories as a natural environment for the theory of weak
n
\nbd{}categories}
,
title
=
{Monoidal globular categories as a natural environment for the theory of weak
$n$
\nbd{}categories}
,
author
=
{Batanin, Michael A.}
,
journal
=
{Advances in Mathematics}
,
volume
=
{136}
,
...
...
@@ 137,7 +137,7 @@ publisher = "Elsevier"
publisher
=
{Citeseer}
}
@article
{
cisinski2003images
,
title
=
{Images directes cohomologiques dans les cat{\'e}gories de mod
e
les}
,
title
=
{Images directes cohomologiques dans les cat{\'e}gories de mod
{\`e}
les}
,
author
=
{Cisinski, DenisCharles}
,
journal
=
{Annales Math{\'e}matiques Blaise Pascal}
,
volume
=
{10}
,
...
...
@@ 170,7 +170,7 @@ publisher = "Elsevier"
year
=
{1995}
}
@article
{
duskin2002simplicial
,
title
=
{Simplicial matrices and the nerves of weak
n
\nbd{}categories. {I}. Nerves of bicategories}
,
title
=
{Simplicial matrices and the nerves of weak
$n$
\nbd{}categories. {I}. Nerves of bicategories}
,
author
=
{Duskin, John W.}
,
journal
=
{Theory and Applications of Categories}
,
volume
=
{9}
,
...
...
@@ 197,7 +197,7 @@ publisher = "Elsevier"
year
=
{1995}
}
@article
{
eilenberg1954groups
,
title
=
{On the groups {H}(
$
\pi
$
,n), {II}: Methods of computation}
,
title
=
{On the groups
$
{H}(\pi,n)
$
, {II}: Methods of computation}
,
author
=
{Eilenberg, Samuel and Mac Lane, Saunders}
,
journal
=
{Annals of Mathematics}
,
pages
=
{49139}
,
...
...
@@ 221,7 +221,7 @@ publisher = "Elsevier"
publisher
=
{Springer}
}
@article
{
gagna2018strict
,
title
=
{Strict
n
categories and augmented directed complexes model homotopy types}
,
title
=
{Strict
$n$\nbd{}
categories and augmented directed complexes model homotopy types}
,
author
=
{Gagna, Andrea}
,
journal
=
{Advances in Mathematics}
,
volume
=
{331}
,
...
...
@@ 480,7 +480,7 @@ note={In preparation}
publisher
=
{Springer}
}
@article
{
schreiber2013differential
,
title
=
{Differential cohomology in a cohesive inf
inity
topos}
,
title
=
{Differential cohomology in a cohesive
$\
inf
ty$\nbd{}
topos}
,
author
=
{Schreiber, Urs}
,
journal
=
{arXiv preprint arXiv:1310.7930}
,
year
=
{2013}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment