Commit 02338bc4 by Leonard Guetta

### corrections de mise en page

parent d8b4cc5a
 ... @@ -657,7 +657,7 @@ bisimplicial sets. ... @@ -657,7 +657,7 @@ bisimplicial sets. \overline{\delta^*} : \Ho(\Psh{\Delta\times\Delta}^{\mathrm{hor}}) \to \overline{\delta^*} : \Ho(\Psh{\Delta\times\Delta}^{\mathrm{hor}}) \to \Ho(\Psh{\Delta}) \Ho(\Psh{\Delta}) \] \] are homotopy cocontinuous. On the other hand, the obvious identity are homotopy cocontinuous. Now, the obvious identity $\delta^*=\delta^* \circ \mathrm{id}_{\Psh{\Delta\times\Delta}}$ implies that $\delta^*=\delta^* \circ \mathrm{id}_{\Psh{\Delta\times\Delta}}$ implies that we have commutative triangles we have commutative triangles $\[ ... @@ -846,8 +846,8 @@ an equivalent definition of the bisimplicial nerve which uses the other directio ... @@ -846,8 +846,8 @@ an equivalent definition of the bisimplicial nerve which uses the other directio \[ \[ \alpha=(\alpha_1,\alpha_2,\cdots,\alpha_k) \alpha=(\alpha_1,\alpha_2,\cdots,\alpha_k)$ \] of $2$-cells of $C$ that are vertically composable, i.e.\ such that for of vertically composable $2$-cells of $C$, i.e.\ such that for every $1 \leq i \leq k-1$, every $1 \leq i \leq k-1$, we have $\[ \src(\alpha_i)=\trgt(\alpha_{i+1}). \src(\alpha_i)=\trgt(\alpha_{i+1}).$ \] ... ...
 ... @@ -11,7 +11,7 @@ We denote by $\Ch$ the category of non-negatively graded chain complexes of abel ... @@ -11,7 +11,7 @@ We denote by $\Ch$ the category of non-negatively graded chain complexes of abel From now on, we will implicitly consider that the category $\Ch$ is equipped with this model structure. From now on, we will implicitly consider that the category $\Ch$ is equipped with this model structure. \end{paragr} \end{paragr} \begin{paragr} \begin{paragr} Let $X$ be a simplicial set. We denote by $K_n(X)$ the abelian group of $n$-chains of $X$, i.e.\ the free abelian group on the set $X_n$. For $n>0$, let $\partial : K_n(X) \to K_{n-1}(X)$ be the linear map defined for $x \in X_n$ by Let $X$ be a simplicial set. We denote by $K_n(X)$ the abelian group of $n$\nbd{}chains of $X$, i.e.\ the free abelian group on the set $X_n$. For $n>0$, let $\partial : K_n(X) \to K_{n-1}(X)$ be the linear map defined for $x \in X_n$ by $\[ \partial(x):=\sum_{i=0}^n(-1)^i\partial_i(x). \partial(x):=\sum_{i=0}^n(-1)^i\partial_i(x).$ \] ... @@ -455,7 +455,7 @@ As we shall now see, when the $\oo$\nbd{}category $C$ is \emph{free} the chain c ... @@ -455,7 +455,7 @@ As we shall now see, when the $\oo$\nbd{}category $C$ is \emph{free} the chain c \] \] The commutativity of the two induced triangles shows what we needed to prove. The commutativity of the two induced triangles shows what we needed to prove. \end{proof} \end{proof} From now on, when given an $\oo$\nbd{}functor $u$, we write $\sH^{\pol}(u)$ instead of $\sH^{\pol}(\gamma^{\folk}(u))$ (where $\gamma^{\folk}$ is the localization functor $\oo\Cat \to \ho(\oo\Cat^{\folk})$) for the morphism induced by $u$ at the level of polygraphic homology. From now on, for an $\oo$\nbd{}functor $u$, we write $\sH^{\pol}(u)$ instead of $\sH^{\pol}(\gamma^{\folk}(u))$ (where $\gamma^{\folk}$ is the localization functor $\oo\Cat \to \ho(\oo\Cat^{\folk})$) for the morphism induced by $u$ at the level of polygraphic homology. \begin{lemma}\label{lemma:oplaxpolhmlgy} \begin{lemma}\label{lemma:oplaxpolhmlgy} Let $u,v : C \to D$ be two $\oo$\nbd{}functors. If there exists an oplax transformation $u\Rightarrow v$, then Let $u,v : C \to D$ be two $\oo$\nbd{}functors. If there exists an oplax transformation $u\Rightarrow v$, then $\[ ... @@ -633,7 +633,7 @@ The following proposition is an immediate consequence of Theorem \ref{thm:cisins ... @@ -633,7 +633,7 @@ The following proposition is an immediate consequence of Theorem \ref{thm:cisins \ar[from=B,to=A,Rightarrow]\ar[from=1-1,to=2-2,phantom,"\simeq" description] \ar[from=B,to=A,Rightarrow]\ar[from=1-1,to=2-2,phantom,"\simeq" description] \end{tikzcd} \end{tikzcd}$ \] where the bottom square is commutative (up to an isomorphism) because $\sH^{\sing}\simeq\overline{\lambda c_{\oo}} \overline{N_{\oo}}$. where the square is commutative (up to an isomorphism) because $\sH^{\sing}\simeq\overline{\lambda c_{\oo}} \overline{N_{\oo}}$. \end{paragr} \end{paragr} \section{Comparing homologies} \section{Comparing homologies} \begin{paragr}\label{paragr:cmparisonmap} \begin{paragr}\label{paragr:cmparisonmap} ... @@ -687,9 +687,7 @@ Another consequence of the above counter-example is the following result, which ... @@ -687,9 +687,7 @@ Another consequence of the above counter-example is the following result, which Suppose the converse, which is that the functor Suppose the converse, which is that the functor $\[ \sH^{\pol} \circ \gamma^{\folk} : \oo\Cat \to \ho(\Ch) \sH^{\pol} \circ \gamma^{\folk} : \oo\Cat \to \ho(\Ch)$sends Thomason equivalences to isomorphisms of $\ho(\Ch)$. \]sends Thomason equivalences to isomorphisms of $\ho(\Ch)$. Because of the inclusion $\W^{\folk} \subseteq \W^{\Th}_{\oo}$, the category $\ho(\oo\Cat^{\Th})$ may be identified with the localization of $\ho(\oo\Cat^{\folk})$ with respect to $\gamma^{\folk}(\W^{\Th}_{\oo})$ and then the localization functor is nothing but Because of the inclusion $\W^{\folk} \subseteq \W^{\Th}_{\oo}$, the category $\ho(\oo\Cat^{\Th})$ may be identified with the localization of $\ho(\oo\Cat^{\folk})$ with respect to $\gamma^{\folk}(\W^{\Th}_{\oo})$ and then the localization functor is nothing but $\[ \J : \ho(\oo\Cat^{\folk}) \to \ho(\oo\Cat^{\Th}). \J : \ho(\oo\Cat^{\folk}) \to \ho(\oo\Cat^{\Th}).$ \] ... ...
 ... @@ -115,7 +115,7 @@ ... @@ -115,7 +115,7 @@ \] \] For $m > 0$ and $0 \leq i \leq m$, the $(m-1)$-simplex $\partial_i(X)$ is obtained by composing arrows at $X_i$ (or simply deleting it for $i=0$ or $m$). For $m \geq 0$ and $0 \leq i \leq m$, the $(m+1)$-simplex $s_i(X)$ is obtained by inserting a unit map at $X_i$. For $m > 0$ and $0 \leq i \leq m$, the $(m-1)$-simplex $\partial_i(X)$ is obtained by composing arrows at $X_i$ (or simply deleting it for $i=0$ or $m$). For $m \geq 0$ and $0 \leq i \leq m$, the $(m+1)$-simplex $s_i(X)$ is obtained by inserting a unit map at $X_i$. For $n=2$, the functor $N_2$ is what is sometimes known as the \emph{Duskin nerve} \cite{duskin2002simplicial} (restricted from bicategories to $2$-categories). For a $2$-category $C$, an $m$-simplex $X$ of $N_2(C)$ consists of: For $n=2$, the functor $N_2$ is what is sometimes known as the \emph{Duskin nerve} \cite{duskin2002simplicial} (restricted from bicategories to $2$-categories). For a $2$-category $C$, an $m$\nbd{}simplex $X$ of $N_2(C)$ consists of: \begin{itemize}[label=-] \begin{itemize}[label=-] \item for every $0\leq i \leq m$, an object $X_i$ of $C$, \item for every $0\leq i \leq m$, an object $X_i$ of $C$, \item for all $0\leq i \leq j \leq m$, an arrow $X_{i,j} : X_i \to X_j$ of $C$, \item for all $0\leq i \leq j \leq m$, an arrow $X_{i,j} : X_i \to X_j$ of $C$, ... @@ -388,7 +388,8 @@ From now on, we will consider that the category $\Psh{\Delta}$ is equipped with ... @@ -388,7 +388,8 @@ From now on, we will consider that the category $\Psh{\Delta}$ is equipped with \] \] \end{paragr} \end{paragr} \begin{remark} \begin{remark} All the above descriptions of oplax transformations can be easily dualized for \emph{lax transformations} (that is to say $1$\nbd{}cells of the $\oo$\nbd{}category $\underline{\hom}_{\mathrm{lax}}(X,Y)$ for some $\oo$\nbd{}categories $X$ and $Y$). Habit is the only reason why we put emphasis on oplax transformations rather than lax transformations. All the above descriptions of oplax transformations can be easily dualized for \emph{lax transformations} (i.e.\ the $1$\nbd{}cells of the $\oo$\nbd{}category $\underline{\hom}_{\mathrm{lax}}(X,Y)$ for some $\oo$\nbd{}categories $X$ and $Y$). Habit is the only reason why we put emphasis on oplax transformations rather than lax transformations. \end{remark} \end{remark} \section{Homotopy equivalences and deformation retracts} \section{Homotopy equivalences and deformation retracts} \begin{paragr}\label{paragr:hmtpyequiv} \begin{paragr}\label{paragr:hmtpyequiv} ... @@ -431,7 +432,7 @@ From now on, we will consider that the category $\Psh{\Delta}$ is equipped with ... @@ -431,7 +432,7 @@ From now on, we will consider that the category $\Psh{\Delta}$ is equipped with B \ar[r,"v"] & B'\ar[from=1-1,to=2-2,phantom,very near end,"\ulcorner"] B \ar[r,"v"] & B'\ar[from=1-1,to=2-2,phantom,very near end,"\ulcorner"] \end{tikzcd} \end{tikzcd} be a cocartesian square. We have to show that $i'$ is also a strong oplax deformation retract. By hypothesis there exists $r : B \to A$ such that $r \circ i = \mathrm{id}_A$ and $\alpha : \sD_1 \otimes B \to B$ such that the diagrams be a cocartesian square. We have to show that $i'$ is also a strong oplax deformation retract. By hypothesis there exist $r : B \to A$ such that $r \circ i = \mathrm{id}_A$ and $\alpha : \sD_1 \otimes B \to B$ such that the diagrams \label{diagramtransf}\tag{ii} \label{diagramtransf}\tag{ii} \begin{tikzcd} \begin{tikzcd} B\ar[rd,"\mathrm{id}_B"] \ar[d,"i_0^B"']& \\ B\ar[rd,"\mathrm{id}_B"] \ar[d,"i_0^B"']& \\ ... @@ -922,7 +923,7 @@ The nerve functor $N_{\omega} : \omega\Cat \to \Psh{\Delta}$ sends the equivalen ... @@ -922,7 +923,7 @@ The nerve functor $N_{\omega} : \omega\Cat \to \Psh{\Delta}$ sends the equivalen & (\alpha,\Lambda) & (\alpha,\Lambda) \end{pmatrix} \end{pmatrix} \] \] whose image by $u/c_0$ is equivalent for the relation $\sim_{\oo}$ to the above $(n+1)$\nbd{}cell of $B/c_0$. In particular, the source and target of $\alpha$ are respectively $f$ and $f'$. Finally, we obtain that $\alpha \sim_{\oo} \beta$ by applying the canonical $\oo$\nbd{}functor $A/b_0 \to A$. whose image by $u/c_0$ is equivalent for the relation $\sim_{\oo}$ to the above ${(n+1)}$\nbd{}cell of $B/c_0$. In particular, the source and target of $\alpha$ are respectively $f$ and $f'$. Finally, we obtain that $\alpha \sim_{\oo} \beta$ by applying the canonical $\oo$\nbd{}functor $A/b_0 \to A$. \end{enumerate} \end{enumerate} \end{proof} \end{proof} ... ...
 ... @@ -110,8 +110,8 @@ For later reference, we put here the following definition. ... @@ -110,8 +110,8 @@ For later reference, we put here the following definition. \begin{remark}\label{remark:localizedfunctorobjects} \begin{remark}\label{remark:localizedfunctorobjects} Since we always consider that for every localizer $(\C,\W)$ the categories Since we always consider that for every localizer $(\C,\W)$ the categories $\C$ and $\ho(\C)$ have the same class of objects and the localization functor $\C$ and $\ho(\C)$ have the same class of objects and the localization functor is the identity on objects, it follows that for a morphism of localizers ${F : is the identity on objects, it follows that for a morphism of localizers$F \colon (\C,\W) \to (\C',\W')}$, we tautologically have (\C,\W) \to (\C',\W')$, we tautologically have $\[ \overline{F}(X)=F(X) \overline{F}(X)=F(X)$ \] ... @@ -951,10 +951,10 @@ We now turn to the most important way of obtaining op\nbd{}prederivators. ... @@ -951,10 +951,10 @@ We now turn to the most important way of obtaining op\nbd{}prederivators. \end{theorem} \end{theorem} \begin{theorem}[Cisinski]\label{thm:cisinskiII} \begin{theorem}[Cisinski]\label{thm:cisinskiII} Let $\M$ and $\M'$ be two model categories and let ${F : \M \to \M'}$ be a left Let $\M$ and $\M'$ be model categories. Let $F \colon \M \to \M'$ be a left Quillen functor (i.e.\ the left adjoint in a Quillen adjunction). The Quillen functor (i.e.\ the left adjoint in a Quillen adjunction). The functor $F$ is strongly left derivable and the morphism of functor $F$ is strongly left derivable and the morphism of op\nbd{}prederivators $\LL F : \Ho(\M) \to \Ho(\M')$ is homotopy op\nbd{}prederivators $\LL F \colon \Ho(\M) \to \Ho(\M')$ is homotopy cocontinuous. cocontinuous. \end{theorem} \end{theorem} \begin{remark} \begin{remark} ... @@ -963,10 +963,10 @@ We now turn to the most important way of obtaining op\nbd{}prederivators. ... @@ -963,10 +963,10 @@ We now turn to the most important way of obtaining op\nbd{}prederivators. no use whatsoever of homotopy limits in this dissertation. no use whatsoever of homotopy limits in this dissertation. \end{remark} \end{remark} \begin{remark} \begin{remark} Since the homotopy op\nbd{}prederivator of a model category Note that for a model category $(\M,\W,\Cof,\Fib)$ only depends on its underlying localizer, the existence $(\M,\W,\Cof,\Fib)$, its homotopy op\nbd{}prederivator only depends on its underlying localizer. Hence, the existence of the classes $\Cof$ and $\Fib$ with the usual properties defining model of the classes $\Cof$ and $\Fib$ with the usual properties defining a model structure ought to be thought as a \emph{property} of the localizer structure ought to be thought of as a \emph{property} of the localizer $(\M,\W)$, which is sufficient to define a homotopy theory''. For $(\M,\W)$, which is sufficient to define a homotopy theory''. For example, Theorem \ref{thm:cisinskiI} should have been stated by saying that example, Theorem \ref{thm:cisinskiI} should have been stated by saying that if a localizer $(\M,\W)$ can be extended to a model category if a localizer $(\M,\W)$ can be extended to a model category ... ...
 ... @@ -485,7 +485,7 @@ $\mathbf{Str}\oo\Cat$ la catégorie des $\oo$\nbd{}catégories (strictes). ... @@ -485,7 +485,7 @@ $\mathbf{Str}\oo\Cat$ la catégorie des $\oo$\nbd{}catégories (strictes). libre est homologiquement cohérente si et seulement si elle est sans bulles. libre est homologiquement cohérente si et seulement si elle est sans bulles. \end{named} \end{named} \selectlanguage{english} \selectlanguage{english} \frenchspacing %%% Local Variables: %%% Local Variables: %%% mode: latex %%% mode: latex %%% TeX-master: "main" %%% TeX-master: "main" ... ...
 \documentclass[12pt,a4paper]{report} \documentclass[12pt,a4paper,twoside]{report} \usepackage[dvipsnames]{xcolor} \usepackage[dvipsnames]{xcolor} \usepackage[unicode,psdextra,final]{hyperref} \usepackage[unicode,psdextra,final]{hyperref} ... @@ -25,6 +25,8 @@ ... @@ -25,6 +25,8 @@ %% \usepackage[pagewise,displaymath, mathlines]{lineno} %% \usepackage[pagewise,displaymath, mathlines]{lineno} %% \linenumbers %% \linenumbers \frenchspacing \begin{document} \begin{document} \begin{titlepage} \begin{titlepage} ... @@ -97,7 +99,8 @@ ... @@ -97,7 +99,8 @@ % \vspace*{-3cm} % \vspace*{-3cm} \end{titlepage} \end{titlepage} \selectlanguage{french} \selectlanguage{french} \begin{abstract} \begin{abstract} Dans cette thèse, on compare l'homologie \og classique \fg{} d'une Dans cette thèse, on compare l'homologie \og classique \fg{} d'une ... @@ -128,6 +131,7 @@ des dérivateurs de Grothendieck. ... @@ -128,6 +131,7 @@ des dérivateurs de Grothendieck. théorie de l'homotopie, polygraphes. théorie de l'homotopie, polygraphes. \end{abstract} \end{abstract} \selectlanguage{english} \selectlanguage{english} \frenchspacing \begin{abstract} \begin{abstract} In this dissertation, we compare the classical'' In this dissertation, we compare the classical'' homology of an $\oo$\nbd{}category (defined as the homology of its Street homology of an $\oo$\nbd{}category (defined as the homology of its Street ... @@ -156,10 +160,12 @@ théorie de l'homotopie, polygraphes. ... @@ -156,10 +160,12 @@ théorie de l'homotopie, polygraphes. homotopy theory, polygraphs. homotopy theory, polygraphs. \end{abstract} \end{abstract} \pagenumbering{roman} \include{remerciements} \tableofcontents \tableofcontents %\include{remerciements} \newpage \pagenumbering{arabic} \include{introduction} \include{introduction} \include{introduction_fr} \include{introduction_fr} \include{omegacat} \include{omegacat} ... ...
 ... @@ -590,7 +590,7 @@ Furthermore, this function satisfies the condition ... @@ -590,7 +590,7 @@ Furthermore, this function satisfies the condition \section{Recursive construction of free \texorpdfstring{$\oo$}{ω}-categories}\label{section:freeoocataspolygraph} \section{Recursive construction of free \texorpdfstring{$\oo$}{ω}-categories}\label{section:freeoocataspolygraph} \begin{definition}\label{def:cellularextension} \begin{definition}\label{def:cellularextension} Let $n \in \mathbb{N}$. A \emph{$n$\nbd{}cellular extension} consists of a quadruplet $\E=(C,\Sigma,\sigma,\tau)$ where: Let $n \in \mathbb{N}$. An \emph{$n$\nbd{}cellular extension} consists of a quadruplet $\E=(C,\Sigma,\sigma,\tau)$ where: \begin{itemize}[label=-] \begin{itemize}[label=-] \item $C$ is an $n$\nbd{}category, \item $C$ is an $n$\nbd{}category, \item $\Sigma$ is a set, whose elements are referred to as the \emph{indeterminates} of $\E$, \item $\Sigma$ is a set, whose elements are referred to as the \emph{indeterminates} of $\E$, ... @@ -712,7 +712,7 @@ We can now prove the following proposition, which is the key result of this sect ... @@ -712,7 +712,7 @@ We can now prove the following proposition, which is the key result of this sect \] \] \end{paragr} \end{paragr} \begin{proposition}\label{prop:criterionnbasis} \begin{proposition}\label{prop:criterionnbasis} Let $C$ be an $(n+1)$\nbd{}category. A subset $E \subseteq C_{n+1}$ is an $(n+1)$\nbd{}basis of $C$ if and only if the canonical $(n+1)$\nbd{}functor Let $C$ be an $(n+1)$\nbd{}category. A subset $E \subseteq C_{n+1}$ is an ${(n+1)}$\nbd{}basis of $C$ if and only if the canonical $(n+1)$\nbd{}functor $\[ \E_E^* \to C \E_E^* \to C$ \] ... @@ -724,7 +724,7 @@ We can now prove the following proposition, which is the key result of this sect ... @@ -724,7 +724,7 @@ We can now prove the following proposition, which is the key result of this sect Conversely, if $E$ is an $(n+1)$\nbd{}base of $C$, then we can define an $(n+1)$\nbd{}functor $C \to \E_E^*$ that sends $E$, seen as a subset of $C_{n+1}$, to $E$, seen as a subset of $(\E^*_E)_{n+1}$ (and which is obviously the identity on cells of dimension strictly lower than $n+1$). The fact that $C$ and $\E^*$ have $E$ as an $(n+1)$\nbd{}base implies that this $(n+1)$\nbd{}functor $C \to \E^*$ is the inverse of the canonical one $\E^* \to C$. Conversely, if $E$ is an $(n+1)$\nbd{}base of $C$, then we can define an $(n+1)$\nbd{}functor $C \to \E_E^*$ that sends $E$, seen as a subset of $C_{n+1}$, to $E$, seen as a subset of $(\E^*_E)_{n+1}$ (and which is obviously the identity on cells of dimension strictly lower than $n+1$). The fact that $C$ and $\E^*$ have $E$ as an $(n+1)$\nbd{}base implies that this $(n+1)$\nbd{}functor $C \to \E^*$ is the inverse of the canonical one $\E^* \to C$. \end{proof} \end{proof} \begin{paragr} \begin{paragr} We extend the definitions and results from \ref{def:cellularextension} to We extend the definitions and the results from \ref{def:cellularextension} to \ref{prop:criterionnbasis} to the case $n=-1$ by saying that a $(-1)$-cellular \ref{prop:criterionnbasis} to the case $n=-1$ by saying that a $(-1)$-cellular extension is simply a set $\Sigma$ (which is the set of indeterminates) and $(-1)\Cat^+$ is the category of sets. Since a $0\Cat$ is also the category of sets, it makes sense to define the functors extension is simply a set $\Sigma$ (which is the set of indeterminates) and $(-1)\Cat^+$ is the category of sets. Since a $0\Cat$ is also the category of sets, it makes sense to define the functors \[ \[ ... ...
 ... @@ -51,7 +51,7 @@ formidablement singulier, je crois ... @@ -51,7 +51,7 @@ formidablement singulier, je crois que ce que j'admire le plus c'est sa liberté d'esprit. que ce que j'admire le plus c'est sa liberté d'esprit. Merci à mes s\oe{}urs Margot, Naomi et Oriane d'êtres présentes dans ma vie. Vous Merci à mes s\oe{}urs Margot, Naomi et Oriane d'êtres présentes dans ma vie. Vous occupez une place dans mon c\oeu{}r bien plus grande que vous ne le soupçonnez occupez une place dans mon c\oe{}ur bien plus grande que vous ne le soupçonnez certainement. Merci Maman de m'avoir toujours poussé et encouragé dans certainement. Merci Maman de m'avoir toujours poussé et encouragé dans toutes mes entreprises. Il ne fait aucun doute que je n'en serais pas là sans toutes mes entreprises. Il ne fait aucun doute que je n'en serais pas là sans toi. Merci Papa d'avoir éveillé en moi le goût pour les toi. Merci Papa d'avoir éveillé en moi le goût pour les ... @@ -72,6 +72,7 @@ rend toute tentative de remerciement d'une fadeur ingrate. Indirectement, cette ... @@ -72,6 +72,7 @@ rend toute tentative de remerciement d'une fadeur ingrate. Indirectement, cette thèse doit autant à toi qu'à moi et c'est pourquoi elle t'est dédiée... thèse doit autant à toi qu'à moi et c'est pourquoi elle t'est dédiée... \selectlanguage{english} \selectlanguage{english} \frenchspacing %%% Local Variables: %%% Local Variables: %%% mode: latex %%% mode: latex %%% TeX-master: "main" %%% TeX-master: "main" ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!