Commit 5d35f06c by Leonard Guetta

### Oops still correcting the formulas for the composition of slices

parent f203e5c7
 ... @@ -795,8 +795,8 @@ The nerve functor $N_{\omega} : \omega\Cat \to \Psh{\Delta}$ sends the equivalen ... @@ -795,8 +795,8 @@ The nerve functor $N_{\omega} : \omega\Cat \to \Psh{\Delta}$ sends the equivalen \begin{tabular}{ll} \begin{tabular}{ll} $z_{i}=y_i\comp_k x_i$, & for every $k+1 \leq i \leq n$, \\[0.75em] $z_{i}=y_i\comp_k x_i$, & for every $k+1 \leq i \leq n$, \\[0.75em] $z'_i=y'_i \comp_k x'_i$, & for every $k+1 \leq i \leq n-1$, \\[0.75em] $z'_i=y'_i \comp_k x'_i$, & for every $k+1 \leq i \leq n-1$, \\[0.75em] $c_i=a_i\comp_{k+1} b_i \comp_{k} a'_{k} \comp_{k-1} a'_{k-1} \comp_{k-2} \cdots \comp_{1} a'_1\comp_0 x_k$,&for every $k+2 \leq i \leq n+1$, \\[0.75em] $c_i=a_i\comp_{k+1} b_i \comp_{k} a'_{k} \comp_{k-1} a'_{k-1} \comp_{k-2} \cdots \comp_{1} a'_1\comp_0 x_{k+1}$,&for every $k+2 \leq i \leq n+1$, \\[0.75em] $c'_i=a'_i\comp_{k+1} b'_i \comp_{k} a'_{k} \comp_{k-1} a'_{k-1} \comp_{k-2} \cdots \comp_{1} a'_1\comp_0 x'_k$,&for every $k+2 \leq i \leq n$.\\ $c'_i=a'_i\comp_{k+1} b'_i \comp_{k} a'_{k} \comp_{k-1} a'_{k-1} \comp_{k-2} \cdots \comp_{1} a'_1\comp_0 x'_{k+1}$,&for every $k+2 \leq i \leq n$.\\ \end{tabular} \end{tabular} \end{itemize} \end{itemize} We leave it to the reader to check that the formulas are well defined and that the axioms for $\oo$\nbd{}categories are satisfied. The canonical forgetful $\oo$\nbd{}functor $\pi : A/a_0 \to A$ is simply expressed as: We leave it to the reader to check that the formulas are well defined and that the axioms for $\oo$\nbd{}categories are satisfied. The canonical forgetful $\oo$\nbd{}functor $\pi : A/a_0 \to A$ is simply expressed as: ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!