Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Leonard Guetta
memoire
Commits
5e7b0879
Commit
5e7b0879
authored
Dec 27, 2020
by
Leonard Guetta
Browse files
idem
parent
39423129
Changes
1
Hide whitespace changes
Inline
Side-by-side
2cat.tex
View file @
5e7b0879
...
...
@@ -929,7 +929,7 @@ of $2$-categories.
\[
(
\binerve
(
C
))
_{
\bullet
,m
}
=
NS
(
C
)
.
\]
The result follows
then
from Lemma
\ref
{
bisimpliciallemma
}
and the fact that the
The result
then
follows from Lemma
\ref
{
bisimpliciallemma
}
and the fact that the
weak equivalences of simplicial sets are stable by coproducts and finite
products.
\end{proof}
...
...
@@ -943,7 +943,7 @@ of $2$-categories.
\[
\binerve
(
C
)
_{
\bullet
,m
}
=
N
(
V
_
m
(
C
))
.
\]
The result follows
them
from Lemma
\ref
{
bisimpliciallemma
}
.
The result
then
follows from Lemma
\ref
{
bisimpliciallemma
}
.
\end{proof}
\begin{paragr}
It also follows from Lemma
\ref
{
lemma:binervthom
}
that the bisimplicial nerve
...
...
@@ -990,7 +990,7 @@ of $2$-categories.
From Proposition
\ref
{
prop:streetvsbisimplicial
}
, we deduce the proposition
below which contains two useful criteria to detect Thomason homotopy
cocartesian square of
$
2
\Cat
$
.
cocartesian square
s
of
$
2
\Cat
$
.
\end{paragr}
\begin{proposition}
\label
{
prop:critverthorThomhmtpysquare
}
Let
...
...
@@ -1036,13 +1036,14 @@ of $2$-categories.
\ar
[
from
=
1
-
1
,to
=
2
-
2
,phantom,"
\ulcorner
",very near end
]
\end
{
tikzcd
}
\]
of 2
\nbd
{}
categories. If
$
A
$
,
$
B
$
and
$
C
$
are free and
\good
{}
, if at least
$
u
$
of 2
\nbd
{}
categories. If
$
A
$
,
$
B
$
and
$
C
$
are free and
\good
{}
, if at least
one of
$
u
$
or
$
f
$
is a folk cofibration and if the square is Thomason homotopy
cocartesian, then
$
D
$
is
\good
{}
.
\end{paragr}
\begin{paragr}
Let
$
n,m
\geq
0
$
. We denote by
$
A
_{
(
m,n
)
}$
the free
$
2
$
-category with only one
generating
$
2
$
-cell whose source is a chain of length
$
m
$
and
its
target a
generating
$
2
$
-cell whose source is a chain of length
$
m
$
and
whose
target
is
a
chain of length
$
n
$
:
\[
\underbrace
{
\overbrace
{
\begin
{
tikzcd
}
[
column sep
=
small, ampersand
...
...
@@ -1128,7 +1129,7 @@ of $2$-categories.
non-trivial
$
1
$
\nbd
{}
cell of
$
\Delta
_
1
$
to the target of the generating
$
2
$
-cell of
$
A
_{
(
1
,
1
)
}$
. It is not hard to check that
$
\tau
$
is strong
deformation retract and thus, a co-universal Thomason equivalence (Lemma
\ref
{
lemma:pushoutstrngdefrtract
}
). Hence, the morphism
$
A
_{
(
1
,
1
)
}
\to
\ref
{
lemma:pushoutstrngdefrtract
}
). Hence, the morphism
$
\Delta
_
n
\to
A
_{
(
1
,n
)
}$
is also a (co-universal) Thomason equivalence and the square is
Thomason homotopy cocartesian (Lemma
\ref
{
lemma:hmtpycocartsquarewe
}
). Now,
the morphism
$
\tau
:
\Delta
_
1
\to
A
_{
(
1
,
1
)
}$
is also a folk cofibration and
...
...
@@ -1147,7 +1148,7 @@ of $2$-categories.
\end
{
tikzcd
}
\]
where
$
\sigma
:
\Delta
_
1
\to
A
_{
(
1
,
1
)
}$
is the
$
2
$
-functor that sends the
unique non trivial
$
1
$
\nbd
{}
cell of
$
\Delta
_
1
$
the source of the generating
unique non trivial
$
1
$
\nbd
{}
cell of
$
\Delta
_
1
$
to
the source of the generating
$
2
$
\nbd
{}
cell of
$
A
_{
(
1
,
1
)
}$
, we can prove that
$
A
_{
(
m,
1
)
}$
is
\good
{}
and has
the homotopy type of a point.
...
...
@@ -1163,7 +1164,7 @@ of $2$-categories.
where
$
\tau
$
is the
$
2
$
-functor that sends the unique non-trivial
$
1
$
-cell of
$
\Delta
_
1
$
to the target of the generating
$
2
$
-cell of
$
A
_{
(
m,
1
)
}$
. This
$
2
$
-functor is once again a folk cofibration, but it is
\emph
{
not
}
in general
a co-universal Thomason equivalence (it would if we had made the hypothesis that
a co-universal Thomason equivalence (it would
be
if we had made the hypothesis that
$
m
\neq
0
$
, but we did not). However, since we made the hypothesis that
$
n
\neq
0
$
, it follows from Lemma
\ref
{
lemma:istrngdefrtract
}
that
$
i :
\Delta
_
1
\to
\Delta
_
n
$
is a co-universal Thomason equivalence. Hence, the previous square
...
...
@@ -1193,7 +1194,7 @@ results at the end of the previous section.
\item
generating
$
2
$
\nbd
{}
cells:
$
\alpha
: f
\Rightarrow
1
_
A
$
,
$
\beta
: g
\Rightarrow
1
_
A
$
.
\end{itemize}
In picture, this gives
In picture
s
, this gives
\[
\begin
{
tikzcd
}
[
column sep
=
huge
]
A
\ar
[
r,bend left
=
75
,"f",""
{
name
=
A,below
}
]
\ar
[
r,bend
...
...
@@ -1204,8 +1205,8 @@ results at the end of the previous section.
\end
{
tikzcd
}
\text
{
or
}
\begin
{
tikzcd
}
A.
\ar
[
loop,in
=
50
,out
=
130
,distance
=
1
.
5
cm,"f"
'
,""
{
name
=
A,below
}
]
\ar
[
loop,in
=-
50
,out
=-
130
,distance
=
1
.
5
cm,"g",""
{
name
=
B,above
}
]
A.
\ar
[
loop,in
=
50
,out
=
130
,distance
=
1
.
5
cm,"f",""
{
name
=
A,below
}
]
\ar
[
loop,in
=-
50
,out
=-
130
,distance
=
1
.
5
cm,"g"
'
,""
{
name
=
B,above
}
]
\ar
[
from
=
A,to
=
1
-
1
,Rightarrow,"
\alpha
"
]
\ar
[
from
=
B,to
=
1
-
1
,Rightarrow,"
\beta
"
]
\end
{
tikzcd
}
...
...
@@ -1281,7 +1282,7 @@ Let us now get into more sophisticated examples.
\]
and let
$
F : P
\to
P'
$
be the unique
$
2
$
\nbd
{}
functor such that
\begin{itemize}
[label=-]
\item
$
F
(
A
)=
A'
$
and
$
F
(
B
'
)=
B
$
,
\item
$
F
(
A
)=
A'
$
and
$
F
(
B
)=
B
'
$
,
\item
$
F
(
f
)=
F
(
g
)=
h
$
,
\item
$
F
(
\alpha
)=
\gamma
$
and
$
F
(
\beta
)=
1
_
h
$
.
\end{itemize}
...
...
@@ -1363,9 +1364,9 @@ Let us now get into more sophisticated examples.
\]
Let
$
H :
\sS
_
2
\to
P''
$
be the unique
$
2
$
\nbd
{}
functor such that:
\begin{itemize}
[label=-]
\item
$
H
(
\overline
{
A
}
)=(
\overline
{
B
}
)=
A''
$
,
\item
$
H
(
\overline
{
A
}
)=
H
(
\overline
{
B
}
)=
A''
$
,
\item
$
H
(
i
)=
l
$
and
$
H
(
j
)=
1
_{
A''
}$
,
\item
$
H
(
\delta
)=
\lambda
$
and
$
H
(
\epsilon
)=
\
lambda
$
.
\item
$
H
(
\delta
)=
\lambda
$
and
$
H
(
\epsilon
)=
\
mu
$
.
\end{itemize}
Let us prove that
$
H
$
is a Thomason equivalence using Corollary
\ref
{
cor:criterionThomeqII
}
. In order to do so, we have to compute
$
V
_
k
(
H
)
:
...
...
@@ -1403,13 +1404,13 @@ Let us now get into more sophisticated examples.
and three arrows. More generally, it is a tedious but harmless exercise to
prove that for every
$
k>
0
$
, the category
$
V
_
k
(
P''
)
$
is the
free category on the graph that has one object
$
A''
$
and
$
2
k
+
1
$
arrows which are of
either
one of the following forms:
arrows which are of one of the following forms:
\begin{itemize}
[label=-]
\item
$
(
1
_
l,
\cdots
,
1
_
l,
\lambda
,
1
^
2
_{
A''
}
,
\cdots
,
1
^
2
_{
A''
}
)
$
,
\item
$
(
1
_
l,
\cdots
,
1
_
l,
\mu
,
1
^
2
_{
A''
}
,
\cdots
,
1
^
2
_{
A''
}
)
$
,
\item
$
(
1
_
l,
\cdots
,
1
_
l
)
$
.
\end{itemize}
Once again, the functor
$
V
_
k
(
H
)
$
comes from a morphism
a
reflexive graphs and
Once again, the functor
$
V
_
k
(
H
)
$
comes from a morphism
of
reflexive graphs and
is obtained by ``killing the generator
$
(
1
_
j,
\cdots
,
1
_
j
)
$
''. Hence, it is a
Thomason equivalence and thus, so is
$
H
$
. This proves that
$
P''
$
has the
homotopy type of
$
\sS
_
2
$
.
...
...
@@ -1490,7 +1491,7 @@ Let us now get into more sophisticated examples.
Notice that we have
$
F
\circ
G
=
\mathrm
{
id
}_{
P'
}$
, which means that
$
P'
$
is a
retract of
$
P
$
. In particular,
$
\sH
^{
\sing
}
(
P
)
$
is a retract of
$
\sH
^{
\sing
}
(
P'
)
$
and since
$
P'
$
has the homotopy type of a
$
K
(
\mathbb
{
Z
}
,
2
)
$
(see
\ref
{
paragr:bubble
}
), this proves that
$
P
$
ha
ve
$
K
(
\mathbb
{
Z
}
,
2
)
$
(see
\ref
{
paragr:bubble
}
), this proves that
$
P
$
ha
s
non-trivial singular homology groups in all even dimension. But since it is a
free
$
2
$
\nbd
{}
category, all its polygraphic homology groups are trivial strictly above
dimension
$
2
$
, which means that
$
P
$
is
\emph
{
not
}
\good
{}
.
...
...
@@ -1703,7 +1704,7 @@ Now let $\sS_2$ be labelled as
\end
{
tikzcd
}
\]
Let us prove that this
$
2
$
\nbd
{}
category is
\good
{}
. Let
$
P
_
0
$
be the
sub-
$
1
$
category of
$
P
$
spanned by
$
A
$
,
$
B
$
and
$
g
$
, let
$
P
_
1
$
be the
sub-
$
1
$
\nbd
{}
category of
$
P
$
spanned by
$
A
$
,
$
B
$
and
$
g
$
, let
$
P
_
1
$
be the
sub-
$
2
$
\nbd
{}
category of
$
P
$
spanned by
$
A
$
,
$
B
$
,
$
g
$
,
$
h
$
,
$
\gamma
$
and
$
\delta
$
and let
$
P
_
2
$
be the sub-
$
2
$
\nbd
{}
category of
$
P
$
spanned by
$
A
$
,
$
B
$
,
$
f
$
,
$
g
$
,
$
\alpha
$
and
$
\beta
$
. The
$
2
$
\nbd
{}
categories
$
P
_
1
$
and
$
P
_
2
$
...
...
@@ -1831,7 +1832,7 @@ Now let $\sS_2$ be labelled as
A
\ar
[
r,"f",shift left
]
\ar
[
r,"g"',shift right
]
&
B
\ar
[
r,"h",shift left
]
\ar
[
r,"i"',shift right
]
&
C.
\end
{
tikzcd
}
\]
This implies that square
\ref
{
squarebouquetvertical
}
is cocartesian for
$
k
=
0
$
and in
This implies that square
\
eq
ref
{
squarebouquetvertical
}
is cocartesian for
$
k
=
0
$
and in
virtue of Corollary
\ref
{
cor:hmtpysquaregraph
}
it is also Thomason homotopy
cocartesian for this value of
$
k
$
. For
$
k>
0
$
, the category
$
V
_
k
(
P'
)
$
has two objects
$
A
$
and
$
B
$
and an arrow
$
A
\to
B
$
is a
$
k
$
\nbd
{}
tuple of one of the following form
...
...
@@ -1861,7 +1862,7 @@ Now let $\sS_2$ be labelled as
\item
$
(
1
_
h,
\cdots
,
1
_
h
)
$
,
\item
$
(
1
_
i,
\cdots
,
1
_
i
)
$
,
\end{itemize}
and with no other arrows. This implies that square
\ref
{
squarebouquetvertical
}
and with no other arrows. This implies that square
\
eq
ref
{
squarebouquetvertical
}
is cocartesian for every
$
k>
0
$
and in virtue of Corollary
\ref
{
cor:hmtpysquaregraph
}
it is also Thomason homotopy cocartesian for these values of
$
k
$
.
Altogether, this proves that square
\eqref
{
squarebouquetbis
}
is Thomason
...
...
@@ -1878,7 +1879,7 @@ homotopy type of the torus.
\item
generating
$
2
$
\nbd
{}
cell:
$
\alpha
: g
\comp
_
0
f
\Rightarrow
f
\comp
_
0
g
$
.
\end{itemize}
In picture, this gives:
In picture
s
, this gives:
\[
\begin
{
tikzcd
}
A
\ar
[
r,"f"
]
\ar
[
d,"g"'
]
&
A
\ar
[
d,"g"
]
\\
...
...
@@ -1907,7 +1908,7 @@ homotopy type of the torus.
\item
$
F
(
\alpha
)=
1
_{
(
1
,
1
)
}$
.
\end{itemize}
This last equation makes sense since
$
(
1
,
1
)=(
0
,
1
)+(
1
,
0
)=(
1
,
0
)+(
0
,
1
)
$
. For every
$
1
$
\nbd
{}
cell
$
w
$
of
$
P
$
(encoded as a finite words
o
n the alphabet
$
\{
f,g
\}
$
)
$
1
$
\nbd
{}
cell
$
w
$
of
$
P
$
(encoded as a finite words
i
n the alphabet
$
\{
f,g
\}
$
)
such that
$
f
$
appears
$
n
$
times and
$
g
$
appears
$
m
$
times, we have
$
F
(
w
)=(
n,m
)
$
. Let us prove that
$
F
$
is a Thomason equivalence using a dual of
\cite
[Corollaire 5.26]
{
ara2020theoreme
}
(see Remark 5.20 of op.
\
cit.). If we
...
...
@@ -2044,7 +2045,7 @@ homotopy type of the torus.
\end{definition}
\begin{paragr}
The archetypal example of a
$
2
$
\nbd
{}
category that is
\emph
{
not
}
bubble-free
is
$
B
^
2
\mathbb
{
N
}$
. Another non-bubble
$
2
$
\nbd
{}
category i
f
the one from Paragraph
\ref
{
paragr:anothercounterexample
}
. It is
is
$
B
^
2
\mathbb
{
N
}$
. Another non-bubble
$
2
$
\nbd
{}
category i
s
the one from Paragraph
\ref
{
paragr:anothercounterexample
}
. It is
remarkable that of all the free
$
2
$
\nbd
{}
categories we have seen so far, these
are the only examples that are non-
\good
{}
. This motivates the following conjecture.
\end{paragr}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment