Commit 7ccf5e48 by Leonard Guetta

### Typos edited. This should be it

parent 27596721
No preview for this file type
 ... ... @@ -591,7 +591,7 @@ Furthermore, this function satisfies the condition \section{Recursive construction of free \texorpdfstring{$\oo$}{ω}-categories}\label{section:freeoocataspolygraph} \begin{definition}\label{def:cellularextension} Let $n \in \mathbb{N}$. An \emph{$n$\nbd{}cellular extension} consists of a quadruplet $\E=(C,\Sigma,\sigma,\tau)$ where: Let $n \in \mathbb{N}$. An \emph{$n$\nbd{}cellular extension} is a quadruplet $\E=(C,\Sigma,\sigma,\tau)$ where: \begin{itemize}[label=-] \item $C$ is an $n$\nbd{}category, \item $\Sigma$ is a set, whose elements are referred to as the \emph{indeterminates} of $\E$, ... ... @@ -859,7 +859,7 @@ Recall that an $n$\nbd{}category is a particular case of $n$\nbd{}magma. $\src((w\fcomp_n w'))=s(w') \text{ and } \trgt((w\fcomp_n w'))=t(w),$ \item if $w$ and $w'$ are well formed words such that $\src_k(\src(w))=\trgt_k(\trgt(w))$ for some $0 \leq k < n$, then the word $(w\fcomp_k w')$ is well formed and we have \item if $w$ and $w'$ are well formed words such that $\src_k(\src(w))=\trgt_k(\trgt(w))$ with $0 \leq k < n$, then the word $(w\fcomp_k w')$ is well formed and we have $\src((w \fcomp_k w'))=\src(w)\comp_k s(w') \text{ and } \trgt((w \fcomp_k w'))=\trgt(w) \comp_k \trgt(w').$ ... ... @@ -2487,7 +2487,8 @@ If \$k
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!