Commit 86a84479 authored by Leonard Guetta's avatar Leonard Guetta
Browse files

Details...details...

parent 0814b307
......@@ -315,7 +315,9 @@ From now on, we will consider that the category $\Psh{\Delta}$ is equipped with
\end{paragr}
\begin{paragr}\label{paragr:formulasoplax}[Formulas for oplax transformations] We now give a third way of describing oplax transformations based on explicit formulas. The proof that this description is equivalent to those given in the previous paragraph can be found in \cite[Appendice B.2]{ara2016joint}.
\begin{paragr}\label{paragr:formulasoplax}[Formulas for oplax
transformations] We now give a third way of describing oplax
transformations based on explicit formulas. The proof that this description is equivalent to those given in the previous paragraph can be found in \cite[Appendice B.2]{ara2016joint}.
Let $u, v : X \to Y$ two $\oo$\nbd{}functors. An oplax transformation $\alpha : u \Rightarrow v$ is given by the data of:
\begin{itemize}[label=-]
......@@ -340,7 +342,9 @@ From now on, we will consider that the category $\Psh{\Delta}$ is equipped with
\]
\end{enumerate}
\end{itemize}
\end{itemize}
Note that to read the formulas correctly, one has to remember the
convention that for $k<n$, the composition $\comp_k$ has priority over $\comp_n$ (see \ref{paragr:defoomagma}).
\end{paragr}
\begin{example}\label{example:natisoplax}
When $C$ and $D$ are $n$\nbd{}categories with $n$ finite and $u,v :C \to D$ are two $n$\nbd{}functors, an oplax transformation $\alpha : u \Rightarrow v$ amounts to the data of a $(k+1)$\nbd{}cell $\alpha_x$ of $D$ for each $k$\nbd{}cell $x$ of $C$ with $0 \leq k \leq n$, with source and target as in the previous paragraph. These data being subject to the axioms of the previous paragraph. Note that when $x$ is an $n$\nbd{}cell of $C$, $\alpha_x$ is necessarily a unit, which can be expressed as the equality
......@@ -748,7 +752,7 @@ The nerve functor $N_{\omega} : \omega\Cat \to \Psh{\Delta}$ sends the equivalen
(x_0',a_1') & (x_1',a_2')
\end{matrix}
& (x_2,a_{3})
\end{pmatrix}$}:&{$\begin{tikzcd}[column sep=small] x_0 \ar[rr,"x_1"] \ar[rd,"a_1"',""{name=A,left}] && x_0' \ar[ld,"a_1'"] \\ &a_0 & \ar[from=1-3,to=A,Rightarrow,"a_2", shorten <=1em, shorten >=1em]\end{tikzcd}\; \overset{a_3}{\Lleftarrow} \; \begin{tikzcd}[column sep=small] x_0\ar[rr,bend left=50,"x_1",pos=11/20,""{name=toto,below}] \ar[rr,"x_1'"description,""{name=titi,above}] \ar[rd,"a_1"',""{name=A,left}] && x_0' \ar[ld,"a_1'"] \\ &a_0 & \ar[from=1-3,to=A,Rightarrow,"a_2'", shorten <=1em, shorten >=1em] \ar[from=toto,to=titi,Rightarrow,"x_2",pos=1/5]\end{tikzcd}$}
\end{pmatrix}$}:&{$\begin{tikzcd}[column sep=small] x_0 \ar[rr,"x_1"] \ar[rd,"a_1"',""{name=A,left}] && x_0' \ar[ld,"a_1'"] \\ &a_0 & \ar[from=1-3,to=A,Rightarrow,"a_2", shorten <=1em, shorten >=1em]\end{tikzcd}\; \overset{a_3}{\Lleftarrow} \; \begin{tikzcd}[column sep=small] x_0\ar[rr,bend left=50,"x_1",pos=11/20,""{name=toto,below}] \ar[rr,"x_1'"description,""{name=titi,above}] \ar[rd,"a_1"',""{name=A,left}] && x_0' \ar[ld,"a_1'"] \\ &a_0 &. \ar[from=1-3,to=A,Rightarrow,"a_2'", shorten <=1em, shorten >=1em] \ar[from=toto,to=titi,Rightarrow,"x_2",pos=1/5]\end{tikzcd}$}
\end{tabular}
\item The source and target of the $n$\nbd{}cell $(a,x)$ are given by the matrices:
\[
......
No preview for this file type
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment