Commit 9a578f87 by Leonard Guetta

### I did not do much today

parent 298d099e
 ... ... @@ -206,7 +206,7 @@ \end{enumerate} We will use the same letter to denote an $n$-category and its underlying $n$-magma. Let $C$ and $C'$ be $n$-categories, a \emph{morphism of $n$-categories} (or $n$-functor) $f : C \to C'$ is simply a morphism of $n$-magmas. We denote by $n\Cat$ the category of $n$-categories and morphisms of $n$-categories. \end{paragr} \begin{paragr} \begin{paragr}\label{paragr:defoocat} Once again, for any $n>0$ there is a canonical truncation'' functor $n\Cat \to (n \shortminus 1)\Cat ... ... @@ -232,6 +232,18 @@$ which is easily seen to be full. \end{paragr} \begin{paragr} For any $n>0$, let us denote $\tau$ the canonical truncation functor $\tau : n\Cat \to (n \shortminus 1)\Cat$ from Paragraph \ref{paragr:defoocat} and $\tau_{\leq n} : \oo\Cat \to n\Cat$ the canonical arrow of the limiting cone from the same paragraph. Let $C$ be a $(n\shortminus 1)$-category. We define a category $C'$ \end{paragr} \begin{paragr} Let $n>0$, we define the category $n\GCat$ as the following fibred product \[ ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!