pres.tex 39.2 KB
Newer Older
1
\documentclass{beamer}
Leonard Guetta's avatar
Leonard Guetta committed
2

Leonard Guetta's avatar
Leonard Guetta committed
3
4
%\usepackage[utf8]{inputenc}
\usepackage{mystyle}
Leonard Guetta's avatar
Leonard Guetta committed
5
\usepackage{graphicx}
Leonard Guetta's avatar
Leonard Guetta committed
6
7
\usetheme{Madrid}
\usecolortheme{beaver}
Leonard Guetta's avatar
Leonard Guetta committed
8
9
10
11
12
13
14
15
16
17

%gets rid of bottom navigation bars
\setbeamertemplate{footline}[frame number]{}

%gets rid of bottom navigation symbols
\setbeamertemplate{navigation symbols}{}

%gets rid of footer
%will override 'frame number' instruction above
%comment out to revert to previous/default definitions
18
%\setbeamertemplate{footline}{}
Leonard Guetta's avatar
Leonard Guetta committed
19

Leonard Guetta's avatar
Leonard Guetta committed
20
21
22
\title{Homology of strict $\omega$-categories}
%\subtitle{PhD defense}
\author{Léonard Guetta}
Leonard Guetta's avatar
Leonard Guetta committed
23
\date{PhD defense, 28 January 2021}
Leonard Guetta's avatar
Leonard Guetta committed
24
25
\institute{IRIF - Université de Paris}

26
27
28
29
30
31
32
\AtBeginSection[]
{
  \begin{frame}[noframenumbering,plain]
    \frametitle{Table of Contents}
    \tableofcontents[currentsection]
  \end{frame}
}
Leonard Guetta's avatar
Leonard Guetta committed
33
34
\begin{document}

35
\frame[noframenumbering,plain]{\titlepage}
Leonard Guetta's avatar
Leonard Guetta committed
36

Leonard Guetta's avatar
Leonard Guetta committed
37
38
39
40
41
% \begin{frame}
%   \frametitle{Table of Contents}
%   \tableofcontents
% \end{frame}

42
\section{The setting}
Leonard Guetta's avatar
Leonard Guetta committed
43
44
45
46
47
48
49
\begin{frame}
  \frametitle{Preliminary conventions}
  In this talk:
  \begin{itemize}
  \item<2-> $\oo$\nbd{}category = strict $\omega$\nbd{}category
    \item<3-> $n$\nbd{}category = $\oo$\nbd{}category with only unit cells above
      dimension $n$
50
51
52
    \item<4-> $1$\nbd{}category = (small) category
    \item<5-> the functor $n\Cat \to \oo\Cat$ is an inclusion
      
Leonard Guetta's avatar
Leonard Guetta committed
53
  \end{itemize}
54
55
\end{frame}

Leonard Guetta's avatar
Leonard Guetta committed
56
57
%%% oo-categories as spaces

Leonard Guetta's avatar
Leonard Guetta committed
58
\begin{frame}
Leonard Guetta's avatar
Leonard Guetta committed
59
60
61
62
63
  \frametitle{$\oo$\nbd{}categories as spaces}
  Starting point: Street's \emph{orientals}
  \[
    \Or \colon \Psh{\Delta} \to \oo\Cat.
  \]
64
  \pause In pictures:
Leonard Guetta's avatar
Leonard Guetta committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
  \[
  \Or_0 = \bullet,
\]
\pause
  \[
    \Or_1=\begin{tikzcd}[ampersand replacement=\&]
     \bullet \ar[r] \&\bullet,
    \end{tikzcd}
  \]
  \pause
  \[
    \Or_2=
    \begin{tikzcd}[ampersand replacement=\&]
      \& \bullet \ar[rd]\& \\
    \bullet \ar[ru]\ar[rr,""{name=A,above}]\&\&\bullet,
    \ar[Rightarrow,from=A,to=1-2]
    \end{tikzcd}
  \]
  \pause
  \[
  \Or_3=
  \begin{tikzcd}[ampersand replacement=\&]
    \& \bullet \ar[rd]\& \\
    \bullet\ar[ru] \ar[rd,""{name=B,above}] \ar[rr,""{name=A,above}]\& \& \bullet \ar[ld]\\
    \& \bullet \&
    \ar[from=A,to=1-2,Rightarrow, shorten <= 0.25em, shorten >= 0.25em]
    \ar[from=B,to=2-3,Rightarrow, near start, shorten <= 1.1em, shorten >= 1.5em]
  \end{tikzcd}
 \Rrightarrow
    \begin{tikzcd}[ampersand replacement=\&]
    \& \bullet \ar[rd] \ar[dd,""{name=B,right}] \& \\
    \bullet\ar[ru] \ar[rd,""{name=A,above}] \& \& \bullet.  \ar[ld]\\
    \& \bullet \&
    \ar[from=A,to=1-2,Rightarrow, near start, shorten <= 1em, shorten >= 1.5em]
    \ar[from=B,to=2-3,Rightarrow, shorten <= 0.75em, shorten >=0.75em]
    \end{tikzcd}
    \]
Leonard Guetta's avatar
Leonard Guetta committed
102
\end{frame}
Leonard Guetta's avatar
Leonard Guetta committed
103
104
105
106
107
108
109
110
111
112
113
114
\begin{frame}
  \frametitle{$\oo$\nbd{}categories as spaces}
  \begin{block}{Definition}
    The \alert{nerve} of an $\oo$\nbd{}category $C$ is the simplicial
    set
    \[
  \begin{aligned}
        N_{\omega}(C) : \Delta^{\op} &\to \Set\\
      [n] &\mapsto \Hom_{\omega\Cat}(\Or_n,C).
    \end{aligned}
    \]
  \end{block}
Leonard Guetta's avatar
Leonard Guetta committed
115
116
117
118
119
120
121
  \pause
  This yields the \alert{nerve functor} for $\oo$\nbd{}categories
  \[
    \begin{aligned}
      N_{\oo} : \oo\Cat &\to \Psh{\Delta} \\
      C &\mapsto N_{\oo}(C).
      \end{aligned}
Leonard Guetta's avatar
Leonard Guetta committed
122
123
124
125
126
127
    \]
    \pause
    \begin{exampleblock}{Example}
      When $C$ is a (1-)category, $N_{\oo}(C)$ is nothing but the usual nerve of
      $C$.
      \end{exampleblock}
Leonard Guetta's avatar
Leonard Guetta committed
128
\end{frame}
Leonard Guetta's avatar
Leonard Guetta committed
129

Leonard Guetta's avatar
Leonard Guetta committed
130
131
132
133
134
135
136
\begin{frame}
  \frametitle{$\oo$\nbd{}categories as spaces}
  \begin{block}{Definition}
    A morphism $f\colon C \to D$ of $\oo\Cat$ is a \emph{Thomason equivalence}
    if $N_{\oo}(f)\colon N_{\oo}(C) \to N_{\oo}(D)$ is a weak equivalence of
    simplicial sets. 
  \end{block}
Leonard Guetta's avatar
qsdf    
Leonard Guetta committed
137
138
  %\pause $\W^{\Th}$:=class of Thomason equivalences.
  \pause By definition, the
Leonard Guetta's avatar
Leonard Guetta committed
139
140
    nerve functor induces 
    \[
Leonard Guetta's avatar
qsdf    
Leonard Guetta committed
141
      \overline{N_{\oo}} : \Ho(\oo\Cat^{\Th}) \to \Ho(\Psh{\Delta}),
Leonard Guetta's avatar
Leonard Guetta committed
142
    \]
Leonard Guetta's avatar
qsdf    
Leonard Guetta committed
143
    where:
Leonard Guetta's avatar
Leonard Guetta committed
144
145
    \begin{itemize}[label=$\bullet$]
      \item $\Ho(\oo\Cat^{\Th})$ is the localization of $\oo\Cat$ with respect to
Leonard Guetta's avatar
qsdf    
Leonard Guetta committed
146
        the Thomason equivalences,
Leonard Guetta's avatar
Leonard Guetta committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
        \item $\Ho(\Psh{\Delta})$ is the localization of $\Psh{\Delta}$ with
          respect to weak equivalences of simplicial sets.
      \end{itemize}
    % Where $\Ho(-)$ stands for the localized category (or better
    % the localized pre-derivator or even weak $(\oo,1)$\nbd{}category).
  \end{frame}
\begin{frame}
  \frametitle{$\oo$\nbd{}categories as spaces}
  \begin{alertblock}{Theorem (Gagna, 2018)}
    $\overline{N_{\oo}} : \Ho(\oo\Cat^{\Th}) \to \Ho(\Psh{\Delta})$ is an
    equivalence of categories (or better an equivalence of derivators, or of weak $(\infty,1)$\nbd{}categories).
  \end{alertblock}
  \pause In other words:
  \begin{center}
Leonard Guetta's avatar
qsdf    
Leonard Guetta committed
161
    Homotopy theory of $\oo$\nbd{}categories induced by Thomason equivalences \\$\cong$\\ Homotopy theory of spaces.
Leonard Guetta's avatar
Leonard Guetta committed
162
163
164
165
166
167
168
169
    \end{center}
  \end{frame}
  \begin{frame}
    \frametitle{Singular homology of $\oo$\nbd{}categories}
    Recall that we have the (normalized) chain complex functor
    \[
      \kappa \colon \Psh{\Delta} \to \Ch,
    \]
Leonard Guetta's avatar
qsdf    
Leonard Guetta committed
170
    where $\Ch$ is the category of non-negatively graded chain complexes.\pause
Leonard Guetta's avatar
Leonard Guetta committed
171
172

    
173
    This functor sends weak equivalences of simplicial sets to quasi-isomorphisms.\pause
Leonard Guetta's avatar
Leonard Guetta committed
174
175
176
177
178
179
180
181
182
    Hence,
    \[
      \overline{\kappa} \colon \Ho(\Psh{\Delta}) \to \Ho(\Ch),
    \]
    where $\Ho(\Ch)$ is the localization of $\Ch$ with respect to quasi-isomorphisms.
  \end{frame}
  \begin{frame}
    \frametitle{Singular homology of $\oo$\nbd{}categories}
    \begin{block}{Definition}
Leonard Guetta's avatar
Leonard Guetta committed
183
184
      The \emph{singular homology functor} $\sH^{\sing} \colon
      \Ho(\oo\Cat^{\Th}) \to \Ho(\Ch)$ is defined as the composition
Leonard Guetta's avatar
Leonard Guetta committed
185
186
187
188
189
190
      \[
        \Ho(\oo\Cat^{\Th}) \overset{\overline{N_{\oo}}}{\longrightarrow}
        \Ho(\Psh{\Delta}) \overset{\overline{\kappa}}{\longrightarrow} \Ho(\Ch).
      \]
    \end{block}
    \pause
Leonard Guetta's avatar
Leonard Guetta committed
191
    In practice, the $k$\nbd{}th singular homology group of an $\oo$\nbd{}category $C$ is
Leonard Guetta's avatar
qsdf    
Leonard Guetta committed
192
      the $k$\nbd{}th homology group of $\kappa(N_{\oo}(C))$
Leonard Guetta's avatar
Leonard Guetta committed
193
      \[
Leonard Guetta's avatar
qsdf    
Leonard Guetta committed
194
195
196
197
        \begin{aligned}
        H_k^{\sing}(C)&:=H_k(\sH^{\sing}(C))\\
        &=H_k(\kappa(N_{\oo}(C))).
        \end{aligned}
Leonard Guetta's avatar
Leonard Guetta committed
198
      \]
Leonard Guetta's avatar
qsdf    
Leonard Guetta committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
    \end{frame}
    \begin{frame}
      \frametitle{Equivalence of $\oo$\nbd{}categories and the folk model
        structure}
      \begin{block}{Definition}
      Let $C$ be an $\oo$\nbd{}category and $x,y$ two $n$\nbd{}cells of $C$.
      We say that \alert{$x \sim_{\oo} y $} if there exist $(n+1)$\nbd{}cells $r : x \to y $ and $\overline{r} : y
      \to x$ such that
      \[
        r \comp_n \overline{r} \sim_{\oo} 1_y \text{ and } \overline{r} \comp_n
        r \sim_{\oo }1_x.
      \]
      (This definition is co-inductive.)
    \end{block}
    \pause
    \begin{exampleblock}{Example 1}
      Let $x$ and $y$ be two objects of a 1-category. We have $x \sim_{\oo} y $
      if and only if $x$ and $y$ are \alert{isomorphic}.
      
    \end{exampleblock}
    \pause
    \begin{exampleblock}{Example 2}
      Let $x$ and $y$ be two objects of a $2$\nbd{}category. We have
      $x\sim_{\oo} y$ if and only if $x$ and $y$ are \alert{equivalent}.
      \end{exampleblock}
    \end{frame}
        \begin{frame}
      \frametitle{Equivalence of $\oo$\nbd{}categories and the folk model
        structure}
      \begin{block}{Definition}
        A morphism $f : C \to D$ of $\oo\Cat$ is an \alert{equivalence of
          $\oo$\nbd{}categories} if:
        \begin{itemize}[label=$\bullet$]
          \item<2-> for every $0$\nbd{}cell $y$ of $D$, there exists a $0$\nbd{}cell $x$
            of $C$ such that
            \[
              f(x)\sim_{\oo} y,
            \]
            \item<3-> for every parallel $n$\nbd{}cells $x$ and $x'$ of $C$ and for
              every $(n+1)$\nbd{}cell $\beta : f(x) \to f(x')$ of $D$, there
              exists an $(n+1)$\nbd{}cell $\alpha : x \to x'$ of $C$ such that
              \[
                f(\alpha) \sim_{\oo} \beta.
              \]
          \end{itemize}
        \end{block}
        \pause\pause\pause
        When $C$ and $D$ are (1-)categories, we recover the usual notion of
        equivalence of categories.

      \end{frame}
Leonard Guetta's avatar
Leonard Guetta committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
      \begin{frame}
        \frametitle{Equivalence of $\oo$\nbd{}categories and the folk model
          structure}
        For every $n \in \mathbb{N}$,
        \begin{itemize}[label=-]
          \item<2-> let $\sD_n$ be the ``$n$\nbd{}globe'' $\oo$\nbd{}category:
            \begin{columns}
              \column{0.5\textwidth}
              \pause\pause \[
                \sD_0=\bullet,
              \]
              \pause 
                 \[
                \begin{tikzcd}[ampersand replacement=\&]
                  \sD_1=\bullet \to \bullet,
                  \end{tikzcd}
                \]
          
              \column{0.5\textwidth}
              \pause
               \[
                \sD_2=
                \begin{tikzcd}[ampersand replacement=\&]
                  \bullet\ar[r,bend left=50,""{name=A,below}] \ar[r,bend
                  right=50,""{name=B,above}]\& \bullet,
                  \ar[from=A,to=B,Rightarrow]
                \end{tikzcd}
              \]
                \pause
              \[
                \sD_3=
                \begin{tikzcd}[ampersand replacement=\&]
                  \bullet \ar[r,bend left=50,""{name = U,below,near
                    start},""{name = V,below,near end}] \ar[r,bend
                  right=50,""{name=D,near start},""{name = E,near end}]\&\bullet,
                  \ar[Rightarrow, from=U,to=D, bend right,""{name=
                    L,above}]\ar[Rightarrow, from=V,to=E, bend left,""{name=
                    R,above}] \arrow[phantom,"\Rrightarrow",from=L,to=R]
                \end{tikzcd}
              \]
            \end{columns}
            \begin{center}
              etc.
              \end{center}
        \item<7-> let $\sS_n$ be the ``$n$\nbd{}sphere'' $\oo$\nbd{}category:
        \begin{columns}
          \column{0.5\textwidth}
          \pause\pause
          \[
            \sS_0=\emptyset,
          \]
          \pause
                \[
            \sS_1=
            \begin{tikzcd}[ampersand replacement=\&]
              \bullet \& \bullet
              \end{tikzcd}
            \]
 
          \column{0.5\textwidth}
          \pause
             \[
             \sS_2 =
            \begin{tikzcd}[ampersand replacement=\&]
             \bullet\ar[r,bend left=50] \ar[r,bend right=50]\& \bullet
            \end{tikzcd}
          \]
            \pause
            \[
              \sS_3=
              \begin{tikzcd}[ampersand replacement=\&]
                \bullet \ar[r,bend left=50,""{name = U,below,near
                  start},""{name = V,below,near end}] \ar[r,bend
                right=50,""{name=D,near start},""{name = E,near end}]\&\bullet.
                \ar[Rightarrow, from=U,to=D, bend right,""{name=
                  L,above}]\ar[Rightarrow, from=V,to=E, bend left,""{name=
                  R,above}]
              \end{tikzcd}
            \]
            \end{columns}
            \begin{center}
              etc.
            \end{center}
333
          \item<12-> let $i_n : \sS_{n-1} \to \sD_n$ be the ``boundary'' inclusion.
Leonard Guetta's avatar
Leonard Guetta committed
334
335
336
337
338
      \end{itemize}
    \end{frame}
    \begin{frame}
      \frametitle{Equivalence of $\oo$\nbd{}categories and the folk model
          structure}
Leonard Guetta's avatar
Leonard Guetta committed
339
      \begin{alertblock}{Theorem (Lafont,Métayer,Worytkiewicz - 2010)}
Leonard Guetta's avatar
Leonard Guetta committed
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
        There exists a model structure on $\oo\Cat$ such that:
        \begin{itemize}[label=$\bullet$]
          \item the weak equivalences are the equivalences of
            $\oo$\nbd{}categories,
            \item the set $\{i_n : \sS_n \to \sD_n \vert n \in \mathbb{N}\}$ is
              a set of generating cofibrations.
        \end{itemize}
      \end{alertblock}
      \pause
      It is known as the \alert{folk model structure} on $\oo\Cat$.
      \pause
      \begin{alertblock}{Theorem (Métayer - 2008)}
        The cofibrant objects of the folk model structure are exactly the
        $\oo$\nbd{}categories that are free on a polygraph. 
      \end{alertblock}
    \end{frame}
    \begin{frame}
      \frametitle{Polygraphs}
Leonard Guetta's avatar
Leonard Guetta committed
358
359
360
361
362
363
      \begin{block}{Definition}
        An $\oo$\nbd{}category is free on a polygraph if it can be obtained
        recursively from the empty category by freely
        attaching cells.
      \end{block}
      \pause
Leonard Guetta's avatar
Leonard Guetta committed
364
365
366
      Terminological convention:
      \begin{center}
        free $\oo$\nbd{}category = $\oo$\nbd{}category
Leonard Guetta's avatar
Leonard Guetta committed
367
368
369
370
        free on a polygraph.
      \end{center}
      \pause
      \begin{exampleblock}{Important fact}
Leonard Guetta's avatar
Leonard Guetta committed
371
372
        If $C$ is a free $\oo$\nbd{}category, then there is a \emph{unique} set
        of generating cells possible.
Leonard Guetta's avatar
Leonard Guetta committed
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
      \end{exampleblock}
    \end{frame}
    \begin{frame}
      \frametitle{Abelianization of $\oo$\nbd{}categories}
      Recall that by a variation of the Dold--Kan equivalence, we have:
      \[
        \Ab(\oo\Cat) \simeq \Ch,
      \]
      \pause
      hence, a forgetful functor
      \[\Ch\simeq \Ab(\oo\Cat) \to \oo\Cat,
      \]
      \pause which
      has a left adjoint
      \[
        \lambda : \oo\Cat \to \Ch,
      \]
      which we refer to as the \alert{abelianization functor}.
Leonard Guetta's avatar
Leonard Guetta committed
391
    \end{frame}
Leonard Guetta's avatar
Leonard Guetta committed
392
393
    \begin{frame}
      \frametitle{Polygraphic homology}
Leonard Guetta's avatar
Leonard Guetta committed
394
      \begin{alertblock}{Proposition}
Leonard Guetta's avatar
Leonard Guetta committed
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
        The functor $\lambda : \oo\Cat \to \Ch$ is left Quillen w.r.t the folk
        model structure on $\oo\Cat$ and the projective model structure on $\Ch$.
      \end{alertblock}
      \pause
      \begin{block}{Definition}
        The \alert{polygraphic homology functor} is the left derived functor of
        $\lambda$:
        \[
          \sH^{\pol}:=\LL \lambda \colon \Ho(\oo\Cat^{\folk})\to \Ho(\Ch),
        \]
        where $\Ho(\ooCat^{\folk})$ is the localization of $\oo\Cat$ w.r.t the
        equivalences of $\oo$\nbd{}categories.
        \end{block}
      \end{frame}
      \begin{frame}
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
        \frametitle{Polygraphic homology in practice}
        Let $C$ be a free $\oo$\nbd{}category and write $\Sigma_k$ for its set
        of generating $k$\nbd{}cells.

        \pause The polygraphic homology of $C$ is the homology of the chain
        complex
        \[
          \mathbb{Z}\Sigma_0 \overset{\partial}{\longleftarrow}
          \mathbb{Z}\Sigma_1 \overset{\partial}{\longleftarrow}
          \mathbb{Z}\Sigma_2 \overset{\partial}{\longleftarrow} \cdots,
        \]
        \pause where for $x \in \Sigma_n$, we have
        \[
          \partial(x)=\text{``generators in the target of x''
          }-\text{``generators in the source of x''}. 
        \]
        \pause 
        \begin{exampleblock}{Motivation}
          For a \emph{free} $\oo$\nbd{}category, the polygraphic homology is \emph{a
            priori} simpler to compute than the singular homology.
        \end{exampleblock}
Leonard Guetta's avatar
Leonard Guetta committed
431
432
      \end{frame}
      \begin{frame}
Leonard Guetta's avatar
Leonard Guetta committed
433
        \frametitle{Polygraphic homology vs singular homology}
Leonard Guetta's avatar
Leonard Guetta committed
434
435
436
437
438
        A natural question:
        \begin{center}
          Let $C$ be an $\oo$\nbd{}category. Do we have $\sH^{\pol}(C) \simeq
          \sH^{\sing}(C)$ ? 
        \end{center}
Leonard Guetta's avatar
Leonard Guetta committed
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
        \pause
        A first partial answer:
        \begin{block}{Theorem (Lafont, Métayer - 2009)}
          For every monoid $M$ (considered as an $\oo$\nbd{}category), we have
          \[
            \sH^{\pol}(M) \simeq \sH^{\sing}(M).
          \]
        \end{block}
        \pause
        However, there are $\oo$\nbd{}categories $C$ for which
        $\sH^{\pol}(C) \not \simeq \sH^{\sing}(C)$.
      \end{frame}
      \begin{frame}
        \frametitle{Ara and Maltsiniotis' counter-example}
        Let $B$ be the commutative monoid $(\mathbb{N},+)$ considered as a
        $2$\nbd{}category with exactly one $0$\nbd{}cell and one $1$\nbd{}cell:
        \[
          B = \begin{tikzcd}[ampersand replacement=\&] \bullet \& \bullet
            \ar[l,shift right] \ar[l,shift left] \& \mathbb{N} \ar[l,shift right] \ar[l,shift left].\end{tikzcd}
        \]
        \pause $B$ is free as an $\oo$\nbd{}category and we have
        \[
          H_k^{\pol}(B)\simeq \begin{cases}\mathbb{Z} &\text{ if } k=0,2 \\ 0 &
            \text{ otherwise.} \end{cases}
        \]
        \pause But (the nerve) of $B$ has the homotopy type of a
        $K(\mathbb{Z},2)$, hence $H^{\sing}_k(B)$ is non-trivial for \alert{all}
        even values of $k$.
        \pause

        % More generally, we can construct for every $n\geq
        % 2$ an $n$\nbd{}category $C$ for which $\sH^{\pol}(C)\not \simeq \sH^{\sing}(C)$.
      \end{frame}
      \begin{frame}
        % \frametitle{The big question}
        \begin{exampleblock}{The fundamental question}
          For which $\oo$\nbd{}categories $C$ do we have $\sH^{\pol}(C)\simeq
          \sH^{\sing}(C)$ ?
        \end{exampleblock}
        \pause
        This is what I tried to answer in my PhD. 
      \end{frame}
481
      \section{Abstract reformulation}
Leonard Guetta's avatar
Leonard Guetta committed
482
      \begin{frame}
Leonard Guetta's avatar
dodo    
Leonard Guetta committed
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
        \frametitle{Equivalence of $\oo$\nbd{}categories vs Thomason
          equivalences}
        \begin{block}{Important Lemma}
          Every equivalence of $\oo$\nbd{}categories is a Thomason equivalence.
        \end{block}
               \pause Consequence: the identity functor $\mathrm{id} : \oo\Cat \to
        \oo\Cat$ induces a functor
        \[
          \mathcal{J} : \Ho(\oo\Cat^{\folk}) \to \Ho(\oo\Cat^{\Th}).
        \]
        \pause
        \underline{Remark}: The converse of the above lemma is false. For
        example
        \[
          \sD_1 \to \sD_0
        \]
        is a Thomason equivalence but not an equivalence of $\oo$\nbd{}categories.
        \end{frame}
 
      \begin{frame}
        \frametitle{Singular homology as a derived functor}
Leonard Guetta's avatar
Leonard Guetta committed
504
        \begin{alertblock}{Theorem (G. - 2020)}
Leonard Guetta's avatar
dodo    
Leonard Guetta committed
505
          The functor $\lambda : \oo\Cat \to \Ch$ is left derivable w.r.t the
Leonard Guetta's avatar
Leonard Guetta committed
506
507
508
509
510
511
512
          \emph{Thomason equivalences} on $\oo\Cat$ and we have
          \[
            \sH^{\sing}\simeq \LL \lambda : \Ho(\oo\Cat^{\Th}) \to \Ho(\Ch).
          \]
        \end{alertblock}
        \pause
        Hence, both $\sH^{\pol}$ and $\sH^{\sing}$ are obtained as left derived
Leonard Guetta's avatar
dodo    
Leonard Guetta committed
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
        functors of $\lambda$ but not w.r.t the same class of weak equivalences.
        \begin{exampleblock}{Corollary}
          There is a canonical natural transformation
          \[
            \begin{tikzcd}[ampersand replacement=\&]
              \Ho(\oo\Cat^{\folk})\ar[d,"\mathcal{J}"'] \ar[dr,"\sH^{\pol}",""{name=A,below}]\& \\
              \Ho(\oo\Cat^{\Th}) \ar[r,"\sH^{\sing}"']\& \Ho(\Ch).
              \ar[from=2-1,to=A,Rightarrow,"\pi"]
            \end{tikzcd}
          \]
          \end{exampleblock}
        \end{frame}
        \begin{frame}
          \frametitle{Homologically coherent $\oo$\nbd{}categories}
          In other words, for every $\oo$\nbd{}category $C$ we have a map
          \[
            \pi_C : \sH^{\sing}(C) \to \sH^{\folk}(C),
          \]
          which is natural in $C$. We refer to it as the \alert{canonical
            comparison map}.
Leonard Guetta's avatar
Leonard Guetta committed
533
          \pause
Leonard Guetta's avatar
dodo    
Leonard Guetta committed
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
          \begin{block}{Definition}
            An $\oo$\nbd{}category $C$ is \alert{homogically coherent} if the
            map
            \[
              \pi_C : \sH^{\sing}(C) \to \sH^{\folk}(C)
            \]
            is an isomorphism.
          \end{block}
          \pause
          Goal: Understand which $\oo$\nbd{}categories are homogically coherent. 
        \end{frame}
        \begin{frame}
          \frametitle{Polygraphic homology is not homotopical}
          Another formal consequence of $\sH^{\sing}$ being left derived of the
          abelianization is:
          \begin{block}{Proposition}
            There exists at least one Thomason equivalence $u : C \to D$ such
            that the induced morphism
            \[
              \sH^{\pol}(C) \to \sH^{\pol}(D)
            \]
            is \emph{not} an isomorphism.
          \end{block}
          \pause In other words, if we think of $\oo$\nbd{}categories as models
          for homotopy types, then the polygraphic homology is \emph{not} a
          well-defined invariant!
          \pause
          \begin{exampleblock}{New slogan}
            The polygraphic homology is a
          way of computing the singular homology of homogically coherent
          $\oo$\nbd{}categories.
          \end{exampleblock}
        \end{frame}
        \begin{frame}\frametitle{Equivalence of homology in low dimension}
          \begin{block}{Proposition}
            Let $C$ be \emph{any} $\oo$\nbd{}category. The canonical comparison
            map induces an isomorphism
            \[\sH^{\sing}_k(C) \to \sH^{\pol}_k(C)\]
            for $k=0,1$.
          \end{block}
          \pause
          For all $k\geq 4$, it is possible to find a $C$ such that
          \[
            H^{\pol}_k(C)\not \simeq H_k^{\sing}(C).
          \]
          \pause
          \begin{exampleblock}{Open question:}
            Do we have
            \[
              H^{\pol}_k(C)\simeq H^{\sing}_k(C)
            \]
            for $k=2,3$, for any $\oo$\nbd{}category $C$ ?
          \end{exampleblock}
        \end{frame}
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
        \section{Detecting homologically coherent $\oo$-categories I}
        \begin{frame}\frametitle{Preliminaries: oplax contractile
            $\oo$\nbd{}categories}
          \begin{block}{Definition}
            An $\oo$\nbd{}category $C$ is \alert{oplax contractible} if the
            canonical morphism
            \[
              C \to \sD_0
            \]
            has an inverse ``up to an oplax transformation''.
          \end{block}
          \pause
          \begin{exampleblock}{Lemma}
            Every oplax contractible $\oo$\nbd{}category is homologically
            coherent (and has the homotopy type of a point).
            \end{exampleblock}
        \end{frame}
        \begin{frame}\frametitle{An abstract criterion to detect homological coherence}
          Back to the triangle:
Leonard Guetta's avatar
dodo    
Leonard Guetta committed
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
          \[
            \begin{tikzcd}[ampersand replacement=\&]
              \Ho(\oo\Cat^{\folk})\ar[d,"\mathcal{J}"'] \ar[dr,"\sH^{\pol}",""{name=A,below}]\& \\
              \Ho(\oo\Cat^{\Th}) \ar[r,"\sH^{\sing}"']\& \Ho(\Ch).
              \ar[from=2-1,to=A,Rightarrow,"\pi"]
            \end{tikzcd}
          \]
          \pause \begin{exampleblock}{Fundamental observation:} $\sH^{\pol}$ and $\sH^{\sing}$ preserve
            homotopy colimits but $\J$ does \emph{not} in general.
            \end{exampleblock}
          % (Because this
          % would imply that the canonical comparison map is always an isomorphism.)
          \pause

          In other words, for a diagram $d : I \to \oo\Cat$, the
          canonical map
          \[
            \hocolim_{I}^{\folk}(d) \to \hocolim_{I}^{\Th}(d)
          \]
          is not an isomorphism in general.
          \pause

          Idea: exploit that sometimes it \emph{is} an isomorphism.
      
        \end{frame}
632
        \begin{frame}\frametitle{An abstract criterion to detect homological coherence}
Leonard Guetta's avatar
dodo    
Leonard Guetta committed
633
634
635
              \begin{block}{Proposition}
           Let $C$ be an $\oo$\nbd{}category. Suppose that there exists $d : I
           \to \oo\Cat$ such that:
Leonard Guetta's avatar
Leonard Guetta committed
636
           \begin{enumerate}[label=(\roman*)]
Leonard Guetta's avatar
Leonard Guetta committed
637
           \item<2-> $\displaystyle\hocolim^{\folk}_I(d)\simeq \hocolim^{\Th}_I(d)
Leonard Guetta's avatar
Leonard Guetta committed
638
639
640
641
             \simeq C,$
             \item<3-> for each $i \in \Ob(I)$, the $\oo$\nbd{}category $d(i)$ is
               homologically coherent.
             \end{enumerate}
642
             \pause\pause\pause Then $C$ is homologically coherent.
Leonard Guetta's avatar
Leonard Guetta committed
643
           \end{block}
644
           %\pause It is our main strategy to detect homologically coherent $\oo$\nbd{}categories
Leonard Guetta's avatar
Leonard Guetta committed
645
646
647
           % \pause
           % Often, we will use:
     
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
         \end{frame}
         \begin{frame}\frametitle{Easy application: homology of globes and spheres}
           For every $n\geq 0$, $\sD_n$ is oplax contractible, hence
           homologically coherent.\pause  Moreover, we have
           \begin{equation}\label{squaresphere}\tag{$\ast$}
             \begin{tikzcd}[ampersand replacement=\&]
               \sS_{n-1} \ar[r,"i_n"] \ar[d,"i_n"] \& \sD_n \ar[d] \\
               \sD_n \ar[r] \& \sS_n,
               \ar[from=1-1,to=2-2,"\ulcorner",very near end, phantom]
             \end{tikzcd}
           \end{equation}
           (with $\sS_{-1}=\emptyset$). \pause This square is ``folk homotopy cocartesian''
           because $i_n$ is a cofibration.
               \pause
         \begin{exampleblock}{Exceptional situation:}
           The image by $N_{\oo}$ of \eqref{squaresphere} in $\Psh{\Delta}$ is a \emph{cocartesian} square
           of monos, hence homotopy cocartesian. \pause It follows that square
           \eqref{squaresphere} is ``Thomason homotopy cocartesian''.
         \end{exampleblock}
         \pause By an immediate induction, $\sS_n$ is homologically coherent
         (and has the homotopy type of an $n$\nbd{}sphere).
Leonard Guetta's avatar
Leonard Guetta committed
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
         \end{frame}
         \begin{frame}\frametitle{The case of 1-categories}
           \begin{alertblock}{Theorem (G. - 2019)}
             Every (small) category is homologically coherent.
           \end{alertblock}
           \pause
           \underline{Remark 1:} The homology (polygraphic or singular)
           of a category need not be trivial above dimension $1$.
           %Hence the previous result is \emph{not} trivial.
           \pause

           
           \underline{Remark 2:} Extension of Lafont and Métayer's result on the
           homology of monoids, but more precise and completely new proof.
         \end{frame}
         \begin{frame}\frametitle{The case of 1-categories}
           \emph{Sketch of proof:}
           Let $A$ be a small category. Recall that
           \[
             \colim_{a \in A}A/a \simeq A.
           \]
           \pause Moreover:
           \begin{itemize}[label=$\bullet$]
           \item<2-> each $A/a$ is oplax contractible, hence homologically coherent,
           \item<3-> $\displaystyle\hocolim_{a \in A}^{\Th}A/a \simeq \colim_{a \in A}A/a
694
             \simeq A$ (From Thomason's homotopy colimit theorem).
Leonard Guetta's avatar
Leonard Guetta committed
695
696
697
698
           \end{itemize}
           \pause\pause
           All that is left to show is that we also have \[\hocolim_{a \in
               A}^{\folk}A/a\simeq \colim_{a \in A}A/a\simeq A.\]
699
700
701
702
703
           \pause
           Let $f : P \longrightarrow A$ be a folk cofibrant
           resolution of $A$. \pause (Note that $P$ is free but need not be a
           $1$\nbd{}category).
           % \pause How do we prove that ? Let us take a detour.
Leonard Guetta's avatar
Leonard Guetta committed
704
705
         %   \pause In order to do
         % this, let $f : P \to A$ be a folk cofibrant replacement of $A$, and for
Leonard Guetta's avatar
Leonard Guetta committed
706
         \end{frame}
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
             \begin{frame}\frametitle{The case of $1$\nbd{}categories (sequel)}
           For each $a \in A$, we define $P/a$ as:
        \[
           \begin{tikzcd}[ampersand replacement=\&]
             P/a \ar[r] \ar[d] \& P \ar[d,"f"] \\
             A/a \ar[r] \& A.
             \ar[from=1-1,to=2-2,"\lrcorner",phantom,very near start]
           \end{tikzcd}
          \]
          %We have $\displaystyle\colim_{a \in A}P/a \simeq P$.
           \pause
         \begin{exampleblock}{Crucial lemma}
           The functor
           \[
             \begin{aligned}
               P/{-} : A &\to \oo\Cat\\
               a &\mapsto P/a
               \end{aligned}
           \] is a cofibrant object for
           the projective model structure on $\underline{\Hom}(A,\oo\Cat)$ induced by the
           folk model structure.
         \end{exampleblock}
         \pause Then, $\displaystyle\hocolim^{\folk}_{a \in A}A/a\simeq \hocolim^{\folk}_{a \in A}P/a \simeq
         \displaystyle\colim_{a \in A}P/a \simeq P \simeq A.$ \hfill CQFD

         \pause
         But how do we prove the crucial lemma ? Let us take a detour.
         \end{frame}
         \begin{frame}\frametitle{Interlude: Conduché discrete $\oo$\nbd{}functor}
           \begin{block}{Definition}
             An $\oo$\nbd{}functor $f : C \to D$ is \alert{discrete Conduché} if
             for every $n$\nbd{}cell $x$ of $C$ that decomposes as
             \[
               f(x)=y'\comp_k y'',
             \]
             there exists a \emph{unique} pair $(x',x'')$ of $k$\nbd{}composable
             $n$\nbd{}cells of $C$ such that:
             \begin{itemize}[label=$\bullet$]
               \item $x=x'\comp_k x''$,
               \item $f(x')=y'$ and $f(x'')=y''$.
             \end{itemize}
           \end{block}
           \pause
           \begin{alertblock}{Theorem (G. 2018)}
             Let $f : C \to D$ be a discrete Conduché $\oo$\nbd{}functor. If $D$
             is free then so is $C$.\pause Moreover the set of generating cells of $C$
             is the inverse image of those of $D$ by $f$.
           \end{alertblock}
           \pause \underline{Proof}: Long and tedious but not so hard conceptually.
         \end{frame}
         \begin{frame}\frametitle{Sketched proof of the crucial lemma}
           Back to the square:
                \[
           \begin{tikzcd}[ampersand replacement=\&]
             P/a \ar[r] \ar[d] \& P \ar[d,"f"] \\
             A/a \ar[r] \& A.
             \ar[from=1-1,to=2-2,"\lrcorner",phantom,very near start]
           \end{tikzcd}
         \]
         \pause
         \begin{itemize}
         \item<2-> It is easy to check that $A/a \to A$ is discrete Conduché.

         \item<3-> Hence,
         so is $P/a \to P$ (stability by pullback of Conduché).
      
         \item<4-> Thus, for every $a \in A$, the $\oo$\nbd{}category $P/a$ is free.

         
Leonard Guetta's avatar
Leonard Guetta committed
776
         \item<5-> Besides, the set of generating cells of $P/a$ is ``natural in a''.
777
778
779
780
           \item<6-> Worked out properly (cf. thesis), this means that
         \[P/{-} : A \to \oo\Cat\] is
         cofibrant. \hfill CQFD
         \end{itemize}
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
       \end{frame}
       \section{Detecting homologically coherent $\oo$-categories II}
         %   \begin{frame}\frametitle{A criterion}
         %     A variation of the homotopy colimit criterion:
         %         \begin{exampleblock}{Proposition}
         %     Let
         %     \[
         %       \begin{tikzcd}[ampersand replacement=\&]
         %         A \ar[r,"u"] \ar[d,"v"] \& B \ar[d] \\
         %         C \ar[r] \& D
         %         \ar[from=1-1,to=2-2,"\ulcorner",very near end,phantom]
         %        \end{tikzcd}
         %      \]
         %      be a cocartesian square in $\oo\Cat$. If
         %      \begin{enumerate}[label=(\roman*)]
         %      \item<2-> $A$,$B$ and $C$ are homologically coherent,
         %      \item<3-> $u$ or $v$ is a folk cofibration,
         %      \item<4-> the square is homotopy cocartesian w.r.t Thomason equivalences,
         %      \end{enumerate}
         %      \pause\pause\pause\pause then $D$ is homologically coherent.
         %    \end{exampleblock}
         %   \pause The third condition will usually be the hard one to prove. 
         % \end{frame}
   
Leonard Guetta's avatar
Leonard Guetta committed
805
806
807
808
809
810
811
         \begin{frame}\frametitle{2-categories}
           We would like to understand which 2-categories are homologically
           coherent.
           \begin{itemize}

             \item<2-> For simplification, we focus on \emph{free} 2-categories.

812
           \item<3-> Archetypal situation to understand: given a cocartesian square
Leonard Guetta's avatar
Leonard Guetta committed
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
           \[
             \begin{tikzcd}[ampersand replacement=\&]
               \sS_1 \ar[d,"i_1"'] \ar[r] \& P \ar[d] \\
               \sD_2 \ar[r] \& P'
               \ar[from=1-1,to=2-2,"\ulcorner",very near end,phantom]
             \end{tikzcd}
           \]
           with $P$ and $P'$ free $2$\nbd{}categories, when is it homotopy
           cocartesian w.r.t the Thomason equivalences ?
         \item<4-> I do not have a general answer to this question...
         \item<5-> However, using tools that I don't have time to explain, I know how to answer this question in many concrete situations.
         \end{itemize}
       \end{frame}
       \begin{frame}\frametitle{Zoology of 2-categories: basic examples}
         For $n, m \geq 0$, let $A_{(m,n)}$ be the free $2$\nbd{}category, with
         one generating $2$\nbd{}cell whose source is a chain of length $m$ and target
         a chain of length $n$:
         \pause
         \[
          A_{(m,n)} = \qquad \underbrace{\overbrace{\begin{tikzcd}[column sep=small, ampersand
          replacement=\&] \&\bullet
          \ar[r,description,"\cdots",phantom,""{name=A,below}] \& \bullet
          \ar[rd] \& \\ \bullet \ar[ru] \ar[rd] \& \& \&\bullet \\ \&\bullet
          \ar[r,description,"\cdots",phantom,""{name=B,above}] \& \bullet.
          \ar[ru]\ar[from=A,to=B,shorten <= 2em, shorten >=
          2em,Rightarrow]\end{tikzcd}}^{m}}_{n}
  \]
  \pause Examples:
  \begin{itemize}[label=-]
  \item<4-> $A_{(1,1)}$ is $\sD_2$.
    \item<5-> $A_{(0,0)}$ is the $2$\nbd{}category $B$ from Ara and
      Maltsiniotis' counter-example.
    \end{itemize}
  \end{frame}
  \begin{frame}\frametitle{Zoology of $2$\nbd{}categories: basic examples}
    \begin{block}{Proposition}
      If $n+m>0$, the $2$\nbd{}category $A_{(m,n)}$ has the homotopy type of a
      point and is homologically coherent.

      Else, $A_{(0,0)}$ has the homotopy type of a $K(\mathbb{Z},2)$.
    \end{block}
    \pause Note: for $m+n=1$, the result was not \emph{a priori} clear.
    
    \pause For example:
    \[
      A_{(1,0)}=   \begin{tikzcd}
      \bullet \ar[loop,in=50,out=130,distance=1.5cm,""{name=A,below}]
      \ar[from=A,to=1-1,Rightarrow]
    \end{tikzcd}
  \]
  has many non-trivial $2$\nbd{}cells.
\end{frame}
\begin{frame}\frametitle{Zoology of $2$\nbd{}categories: variation of spheres}
 % \small
  \begin{center}
    \scalebox{0.85}{
      \begin{tabular}{ l || c | c }
      \hline
      $2$\nbd{}category & \good{}? & homotopy type \\ \hline \hline \pause
      {
      $\begin{tikzcd}[ampersand replacement=\&]
        \bullet \ar[r,bend
        left=75,""{name=A,below,pos=9/20},""{name=C,below,pos=11/20}]
        \ar[r,bend
        right=75,""{name=B,above,pos=9/20},""{name=D,above,pos=11/20}] \& \bullet
        \ar[from=C,to=D,bend left,Rightarrow] \ar[from=A,to=B,bend
        right,Rightarrow]
      \end{tikzcd}$
                                                                         } & yes & $\sS_2$\\
    
      \hline
      \pause
      { $ \begin{tikzcd}[ampersand replacement=\&]
          \bullet \ar[r,bend left=75,""{name=A,below}] \ar[r,bend
          right=75,""{name=B,above}] \& \bullet \ar[from=A,to=B,bend
          right,Rightarrow] \ar[from=B,to=A,bend
          right,Rightarrow]
        \end{tikzcd}$} & yes & $\sS_2$ \\ \hline \pause {$ \begin{tikzcd}[ampersand replacement=\&] \bullet
          \ar[r,""{name=A,above}] \& \bullet \ar[from=A,to=A,loop, in=130,
          out=50,distance=1cm, Rightarrow] \end{tikzcd}$} & yes &$\sS_2$ \\
      \hline
      \pause
      {
      $\begin{tikzcd}
        \bullet \ar[loop,in=30,out=150,distance=2cm,""{name=A,below}]
        \ar[from=A,to=1-1,bend right,Rightarrow]
        \ar[from=A,to=1-1,bend left,Rightarrow]
      \end{tikzcd}$ } & yes & $\sS_2$ \\ \hline \pause { $\begin{tikzcd} \bullet
        \ar[loop,in=30,out=150,distance=2cm,""{name=A,below}]
        \ar[from=A,to=1-1,bend right,Rightarrow] \ar[from=1-1,to=A,bend
        right,Rightarrow]
      \end{tikzcd}$ } & no & $K(\mathbb{Z},2)$ \\ \hline \pause {$\begin{tikzcd}
        \bullet \ar[loop,in=120,out=60,distance=1.2cm,Rightarrow]
      \end{tikzcd}$} & no & $K(\mathbb{Z},2)$ \\ \hline
    \end{tabular}
    }
  \end{center}
  
\end{frame}
Leonard Guetta's avatar
Leonard Guetta committed
912
\begin{frame}
913
  \frametitle{Zoology of 2-categories: Bouquets of spheres}
Leonard Guetta's avatar
Leonard Guetta committed
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
    \begin{center}
    \scalebox{0.85}{
      \begin{tabular}{ l || c | c }
      \hline
      $2$\nbd{}category & \good{}? & homotopy type \\ \hline \hline \pause
      $\begin{tikzcd}[column sep=huge,ampersand replacement=\&]
      \bullet \ar[r,bend
      left=75,""{name=A,below,pos=8/20},""{name=C,below,pos=1/2},""{name=E,below,pos=12/20}]
      \ar[r,bend
      right=75,""{name=B,above,pos=8/20},""{name=D,above,pos=1/2},""{name=F,above,pos=12/20}]
      \& \bullet \ar[from=A,to=B,Rightarrow,bend right]
      \ar[from=C,to=D,Rightarrow]
      \ar[from=E,to=F,Rightarrow,bend left]
    \end{tikzcd}$ & yes & $\sS_2\vee \sS_2$ \\  \hline \pause
        $\begin{tikzcd}[column sep=huge,ampersand replacement =\&]
      \bullet \ar[r,bend
      left=75,""{name=A,below,pos=8/20},""{name=E,below,pos=12/20}]
      \ar[r,""{name=B,above,pos=8/20},""{name=C,below,pos=8/20},""{name=F,above,pos=12/20},""{name=G,below,pos=12/20}]
      \ar[r,bend
      right=75,""{name=D,above,pos=8/20},""{name=H,above,pos=12/20}] \& \bullet
      \ar[from=A,to=B,Rightarrow,bend right]
      \ar[from=C,to=D,Rightarrow,bend right]
      \ar[from=E,to=F,Rightarrow,bend left]
      \ar[from=G,to=H,Rightarrow,bend left]
    \end{tikzcd}$ & yes & $\sS_2\vee \sS_2$ \\ \hline \pause
        $\begin{tikzcd}[column sep=huge,ampersand replacement=\&]
      \bullet \ar[r,bend
      left=75,""{name=A,below,pos=8/20},""{name=C,below,pos=12/20}]
      \ar[r,bend
      right=75,""{name=B,above,pos=8/20},""{name=D,above,pos=12/20}] \& \bullet
      \ar[r,bend
      left=75,""{name=E,below,pos=8/20},""{name=G,below,pos=12/20}]
      \ar[r,bend
      right=75,""{name=F,above,pos=8/20},""{name=H,above,pos=12/20}] \& \bullet
      \ar[from=A,to=B,bend right,Rightarrow] \ar[from=C,to=D,bend
      left,Rightarrow] \ar[from=E,to=F,bend right,Rightarrow]
      \ar[from=G,to=H,bend left,Rightarrow]
    \end{tikzcd}$ & yes &  $\sS_2\vee \sS_2$ \\ \hline \pause
        $\begin{tikzcd}[column sep=huge,ampersand replacement=\&]
      A \ar[r,bend
      left=75,""{name=A,below,pos=9/20},""{name=C,below,pos=11/20}]
      \ar[r,bend
      right=75,""{name=B,above,pos=9/20},""{name=D,above,pos=11/20}] \& A
      \ar[from=C,to=D,bend left,Rightarrow] \ar[from=A,to=B,bend
      right,Rightarrow]
    \end{tikzcd}$ & yes & $\sS_2 \vee \sS_1$ \\ \hline
      \end{tabular}
    }
  \end{center}
\end{frame}
\begin{frame}\frametitle{Zoology of 2-categories: Torus}
  Let $C$ be the free $2$\nbd{}category pictured as
    \[
    \begin{tikzcd}[ampersand replacement=\&]
      A \ar[r,"f"] \ar[d,"g"'] \& A \ar[d,"g"] \\
      A \ar[r,"f"'] \& A. \ar[from=2-1,to=1-2,Rightarrow]
    \end{tikzcd}
  \]
  \pause This $2$\nbd{}category has the homotopy type of the \alert{torus} and
  is homologically coherent.

975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
  \pause Idea of proof: show that $C$ is Thomason equivalent to the
  monoid $(\mathbb{N}\times \mathbb{N},+)$ (which is not free) and use the
  equivalence of polygraphic and singular homologies for monoids.
  
  \pause Not that easy to carry out properly !
\end{frame}
\begin{frame}\frametitle{Bubbles}
  \begin{block}{Definition}
    A \alert{bubble} in a $2$\nbd{}category is a non unit
  $2$\nbd{}cell $\alpha$ whose source and target are units on a $0$\nbd{}cell.
  \end{block}
  \pause
  In pictures:
  \[
     \begin{tikzcd}[ampersand replacement=\&]
      A \ar[r,bend left=75,"1_A",""{name=A,below}] \ar[r,bend
      right=75,"1_A"',pos=21/40,""{name=B,above}] \&A
      \ar[from=A,to=B,"\alpha",Rightarrow]
    \end{tikzcd}
    \text{ or }
        \begin{tikzcd}[ampersand replacement=\&]
      A. \ar[loop,in=120,out=60,distance=1cm,"\alpha"',Rightarrow]
    \end{tikzcd}
  \]
  \pause
      \begin{block}{Definition}
    A $2$\nbd{}category is \alert{bubble-free} if it has no bubbles.
  \end{block}
 \end{frame}
\begin{frame}\frametitle{The bubble-free conjecture}

   The archetypal example of \emph{non} bubble-free $2$\nbd{}category is
  the $2$\nbd{}category $B$ from Ara and Maltsiniotis' counter-example.
  \pause
  
  In all the examples, the free $2$\nbd{}categories that are homologically
  coherent are exactly the bubble-free ones.
  \pause
  \begin{exampleblock}{Conjecture}
    Let $C$ be a free $2$\nbd{}category. It is homologically coherent if and
    only if it is bubble-free.
  \end{exampleblock}
Leonard Guetta's avatar
Leonard Guetta committed
1017
  \end{frame}
1018
1019
1020
1021
1022
  \begin{frame}[noframenumbering,plain]
    \begin{center}
      Merci pour votre attention !
      \end{center}
    \end{frame}
Leonard Guetta's avatar
Leonard Guetta committed
1023
\end{document}
Leonard Guetta's avatar
Leonard Guetta committed
1024
 
Leonard Guetta's avatar
Leonard Guetta committed
1025
1026
1027
1028
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End: