Peano.v 13 KB
Newer Older
1

2
3
4
5
6
7
(** * The Theory of Peano Arithmetic and its Coq model *)

(** The NatDed development, Pierre Letouzey, 2019.
    This file is released under the CC0 License, see the LICENSE file *)

Require Import Defs NameProofs Mix Meta Theories PreModels Models.
8
9
10
11
Import ListNotations.
Local Open Scope bool_scope.
Local Open Scope eqb_scope.

12
13
14
15
(** The Peano axioms *)

Definition PeanoSign := Finite.to_infinite peano_sign.

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
Definition Zero := Fun "O" [].
Definition Succ x := Fun "S" [x].

Notation "x = y" := (Pred "=" [x;y]) : formula_scope.
Notation "x + y" := (Fun "+" [x;y]) : formula_scope.
Notation "x * y" := (Fun "*" [x;y]) : formula_scope.

Module PeanoAx.
Local Open Scope formula_scope.

Definition ax1 :=  (#0 = #0).
Definition ax2 := ∀∀ (#1 = #0 -> #0 = #1).
Definition ax3 := ∀∀∀ (#2 = #1 /\ #1 = #0 -> #2 = #0).

Definition ax4 := ∀∀ (#1 = #0 -> Succ (#1) = Succ (#0)).
Definition ax5 := ∀∀∀ (#2 = #1 -> #2 + #0 = #1 + #0).
Definition ax6 := ∀∀∀ (#1 = #0 -> #2 + #1 = #2 + #0).
Definition ax7 := ∀∀∀ (#2 = #1 -> #2 * #0 = #1 * #0).
Definition ax8 := ∀∀∀ (#1 = #0 -> #2 * #1 = #2 * #0).

Definition ax9 :=  (Zero + #0 = #0).
Definition ax10 := ∀∀ (Succ(#1) + #0 = Succ(#1 + #0)).
38
Definition ax11 :=  (Zero * #0 = Zero).
39
40
41
42
43
44
Definition ax12 := ∀∀ (Succ(#1) * #0 = (#1 * #0) + #0).

Definition ax13 := ∀∀ (Succ(#1) = Succ(#0) -> #1 = #0).
Definition ax14 :=  ~(Succ(#0) = Zero).

Definition axioms_list :=
45
 [ ax1; ax2; ax3; ax4; ax5; ax6; ax7; ax8;
46
47
    ax9; ax10; ax11; ax12; ax13; ax14 ].

48
49
50
(** Beware, [bsubst] is ok below for turning [#0] into [Succ #0], but
    only since it contains now a [lift] of substituted terms inside
    quantifiers.
51
52
53
    And the unconventional [] before [A[0]] is to get the right
    bounded vars (Hack !). *)

54
55
56
Definition induction_schema A_x :=
  let A_0 := bsubst 0 Zero A_x in
  let A_Sx := bsubst 0 (Succ(#0)) A_x in
57
  nForall
58
59
    (Nat.pred (level A_x))
    ((( A_0) /\ ( (A_x -> A_Sx))) ->  A_x).
60
61
62
63
64
65

Local Close Scope formula_scope.

Definition IsAx A :=
  List.In A axioms_list \/
  exists B, A = induction_schema B /\
66
            check PeanoSign B = true /\
67
68
            FClosed B.

69
Lemma WfAx A : IsAx A -> Wf PeanoSign A.
70
71
72
73
74
75
76
Proof.
 intros [ IN | (B & -> & HB & HB')].
 - apply Wf_iff.
   unfold axioms_list in IN.
   simpl in IN. intuition; subst; reflexivity.
 - repeat split; unfold induction_schema; cbn.
   + rewrite nForall_check. cbn.
77
     rewrite !check_bsubst, HB; auto.
78
79
80
   + red. rewrite nForall_level. cbn.
     assert (level (bsubst 0 Zero B) <= level B).
     { apply level_bsubst'. auto. }
81
82
     assert (level (bsubst 0 (Succ(BVar 0)) B) <= level B).
     { apply level_bsubst'. auto. }
83
84
85
86
87
     omega with *.
   + apply nForall_fclosed. red. cbn.
     assert (FClosed (bsubst 0 Zero B)).
     { red. rewrite bsubst_fvars.
       intro x. rewrite Names.union_spec. cbn. red in HB'. intuition. }
88
89
90
91
92
     assert (FClosed (bsubst 0 (Succ(BVar 0)) B)).
     { red. rewrite bsubst_fvars.
       intro x. rewrite Names.union_spec. cbn - [Names.union].
       rewrite Names.union_spec.
       generalize (HB' x) (@Names.empty_spec x). intuition. }
93
94
95
96
97
     unfold FClosed in *. intuition.
Qed.

End PeanoAx.

98
Local Open Scope string.
99
100
Local Open Scope formula_scope.

101
Definition PeanoTheory :=
102
 {| sign := PeanoSign;
103
104
105
    IsAxiom := PeanoAx.IsAx;
    WfAxiom := PeanoAx.WfAx |}.

106
(** Useful lemmas so as to be able to write proofs that take less than 1000 lines. *)
Samuel Ben Hamou's avatar
Samuel Ben Hamou committed
107

108
109
Import PeanoAx.

110
Lemma Symmetry : forall logic A B Γ, BClosed A -> BClosed B -> In ax2 Γ -> Pr logic (Γ  A = B) -> Pr logic (Γ  B = A).
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
Proof.
  intros.
  apply R_Imp_e with (A := A = B); [ | assumption ].
  assert (AX2 : Pr logic (Γ  ax2)).
  { apply R_Ax. exact H1. }
  unfold ax2 in AX2.
  apply R_All_e with (t := A) in AX2; [ | assumption ].
  apply R_All_e with (t := B) in AX2; [ | assumption ].
  cbn in AX2.
  assert (bsubst 0 B (lift A) = A).
  { assert (lift A = A). { apply lift_nop. exact H. } rewrite H3. apply bclosed_bsubst_id. exact H. }
  rewrite H3 in AX2.
  exact AX2.
Qed.

Lemma Transitivity : forall logic A B C Γ, BClosed A -> BClosed B -> BClosed C -> In ax3 Γ -> Pr logic (Γ  A = B) -> Pr logic (Γ  B = C) -> Pr logic (Γ  A = C).
Proof.
  intros.
  apply R_Imp_e with (A := A = B /\ B = C); [ | apply R_And_i; assumption ].
  assert (AX3 : Pr logic (Γ  ax3)).
  { apply R_Ax. exact H2. }
  unfold ax3 in AX3.
  apply R_All_e with (t := A) in AX3; [ | assumption ].
  apply R_All_e with (t := B) in AX3; [ | assumption ].
  apply R_All_e with (t := C) in AX3; [ | assumption ].
  cbn in AX3.
  assert (bsubst 0 C (lift B) = B).
  { assert (lift B = B). {apply lift_nop. assumption. } rewrite H5. apply bclosed_bsubst_id. assumption. }
  rewrite H5 in AX3.
  assert (bsubst 0 C (bsubst 1 (lift B) (lift (lift A))) = A).
  { assert (lift A = A). { apply lift_nop. assumption. } rewrite H6. rewrite H6.
    assert (lift B = B). { apply lift_nop. assumption. } rewrite H7.
    assert (bsubst 1 B A = A). { apply bclosed_bsubst_id. assumption. } rewrite H8.
    apply bclosed_bsubst_id. assumption. }
  rewrite H6 in AX3.
  assumption.
Qed.

Lemma Hereditarity : forall logic A B Γ, BClosed A -> BClosed B -> In ax4 Γ -> Pr logic (Γ  A = B) -> Pr logic (Γ  Succ A = Succ B).
Proof.
  intros.
  apply R_Imp_e with (A := A = B); [ | assumption ].
  assert (AX4 : Pr logic (Γ  ax4)).
  { apply R_Ax. assumption. }
  unfold ax4 in AX4.
  apply R_All_e with (t := A) in AX4; [ | assumption ].
  apply R_All_e with (t := B) in AX4; [ | assumption ].
  cbn in AX4.
  assert (bsubst 0 B (lift A) = A).
  { assert (lift A = A). { apply lift_nop. assumption. } rewrite H3.
    apply bclosed_bsubst_id. assumption. }
  rewrite H3 in AX4.
  assumption.
Qed.

Lemma AntiHereditarity : forall logic A B Γ, BClosed A -> BClosed B -> In ax13 Γ -> Pr logic (Γ  Succ A = Succ B) -> Pr logic (Γ  A = B).
Proof.
  intros.
  apply R_Imp_e with (A := Succ A = Succ B); [ | assumption ].
  assert (AX13 : Pr logic (Γ  ax13)).
  { apply R_Ax. assumption. }
  unfold ax13 in AX13.
  apply R_All_e with (t := A) in AX13; [ | assumption ].
  apply R_All_e with (t := B) in AX13; [ | assumption ].
  cbn in AX13.
  assert (bsubst 0 B (lift A) = A).
  { assert (lift A = A). { apply lift_nop. assumption. } rewrite H3.
    apply bclosed_bsubst_id. assumption. }
  rewrite H3 in AX13.
  assumption.
Qed.

183
184
185
186
Ltac axiom ax name :=
  match goal with
    | |- Pr ?l (?ctx  _) => assert (name : Pr l (ctx  ax)); [ apply R_Ax; compute; intuition | ]; unfold ax in name
  end.
187

188
Ltac app_R_All_i t := apply R_All_i with (x := t); [ rewrite<- Names.mem_spec; now compute | ].
189
Ltac eapp_R_All_i := eapply R_All_i; [ rewrite<- Names.mem_spec; now compute | ].
190
191
192

Ltac sym := apply Symmetry; [ auto | auto | compute; intuition | ].

193
Ltac ahered := apply Hereditarity; [ auto | auto | compute; intuition | ].
194

195
Ltac hered := apply AntiHereditarity; [ auto | auto | compute; intuition | ].
196

197
Ltac trans b := apply Transitivity with (B := b); [ auto | auto | auto | compute; intuition | | ].
198
199
200

Ltac thm := unfold IsTheorem; split; [ unfold Wf; split; [ auto | split; auto ] | ].

201
202
203
204
205
206
207
208
Ltac change_succ :=
  match goal with
  | |- context[ Fun "S" [?t] ] => change (Fun "S" [t]) with (Succ (t)); change_succ
  | _ => idtac
  end.

Ltac cbm := cbn; change (Fun "O" []) with Zero; change_succ.

209
210
211
212
213
214
Ltac parse term :=
  match term with
  | (_ -> ?queue)%form => parse queue
  | ( ?formula)%form => formula
  end.

215
Ltac rec :=
216
  match goal with
217
218
219
  | |- exists axs, (Forall (IsAxiom PeanoTheory) axs /\ Pr ?l (axs  ?A))%type => 
    let form := parse A in  
    exists (induction_schema form :: axioms_list); set (Γ := induction_schema form :: axioms_list); set (rec := induction_schema form); split;
220
      [ apply Forall_forall; intros x H; destruct H;
221
        [ simpl; unfold IsAx; right; exists form ; split;
222
          [ auto | split; [ auto | auto ]] | 
223
224
          simpl; unfold IsAx; left; assumption ] |
        repeat apply R_Imp_i;
225
        eapply R_Imp_e;
226
        [ apply R_Ax; unfold induction_schema; cbm; intuition | simpl; apply R_And_i; cbn ]
227
228
      ]; cbm
    (* | _ => idtac *)
229
  end.
230

231
            
232
233
(** Some basic proofs in Peano arithmetics. *)

Samuel Ben Hamou's avatar
Samuel Ben Hamou committed
234
Lemma ZeroRight : IsTheorem Intuiti PeanoTheory ( (#0 = #0 + Zero)).
235
236
237
Proof.
 thm.
 rec.
238
 + app_R_All_i "y". cbm.
239
240
241
242
243
244
245
246
247
248
249
250
251
252
   sym.
   axiom ax9 AX9.
   apply R_All_e with (t := Zero) in AX9; auto.
 + app_R_All_i "y". cbm.
   apply R_Imp_i. set (H1 := FVar _ = _).
   sym.
   trans (Succ ((FVar "y") + Zero)).
   - axiom ax10 AX10.
     apply R_All_e with (t := FVar "y") in AX10; auto.
     apply R_All_e with (t := Zero) in AX10; auto.
   - ahered.
     sym.
     apply R_Ax.
     apply in_eq.
253
Qed.
Samuel Ben Hamou's avatar
Samuel Ben Hamou committed
254

255
Lemma SuccRight : IsTheorem Intuiti PeanoTheory (∀∀ (Succ(#1 + #0) = #1 + Succ(#0))).
Samuel Ben Hamou's avatar
Samuel Ben Hamou committed
256
Proof.
257
258
  thm.
  rec.
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
  + app_R_All_i "x".
    app_R_All_i "y".
    cbm.
    sym.
    trans (Succ (FVar "y")).
    - axiom ax9 AX9.
      apply R_All_e with (t := Succ (FVar "y")) in AX9; auto.
    - ahered.
      sym.
      axiom ax9 AX9.
      apply R_All_e with (t := FVar "y") in AX9; auto.
  + app_R_All_i "x".
    cbm.
    apply R_Imp_i.
    app_R_All_i "y".
    cbm.
    set (hyp :=  Succ _ = _).
    trans (Succ (Succ (FVar "x" + FVar "y"))).
    - ahered.
      axiom ax10 AX10.
      apply R_All_e with (t := FVar "x") in AX10; auto.
      apply R_All_e with (t := FVar "y") in AX10; auto.
    - trans (Succ (FVar "x" + Succ (FVar "y"))).
      * ahered.
        axiom hyp Hyp.
        apply R_All_e with (t := FVar "y") in Hyp; auto.
      * axiom ax10 AX10.
        sym.
        apply R_All_e with (t := FVar "x") in AX10; auto.
        apply R_All_e with (t := Succ (FVar "y")) in AX10; auto.
289
290
Qed.
 
291
292
Lemma Comm :
  IsTheorem Intuiti PeanoTheory
293
294
            (( #0 = #0 + Zero) -> (∀∀ Succ(#1 + #0) = #1 + Succ(#0)) ->
               (∀∀ #0 + #1 = #1 + #0)).
295
Proof.
296
  thm.
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
  rec; set (Γ' := _ :: _ :: Γ).
  + app_R_All_i "x".
    cbm.
    app_R_All_i "x".
    cbm.
    trans (FVar "x").
    - sym.
      assert (Pr Intuiti (Γ'   # 0 = # 0 + Zero)). { apply R_Ax. simpl in *; intuition. }
      apply R_All_e with (t := FVar "x") in H; auto.
    - sym.
      axiom ax9 AX9.
      apply R_All_e with (t := FVar "x") in AX9; auto.
  + app_R_All_i "y".
    cbm.
    apply R_Imp_i.
    app_R_All_i "x".
    cbm.
    trans (Succ (FVar "x" + FVar "y")).
    - sym.
      assert (Pr Intuiti (( # 0 + FVar "y" = FVar "y" + # 0) :: Γ'    Succ (#1 + #0) = #1 + Succ (#0))). { apply R_Ax. simpl in *; intuition. }
      apply R_All_e with (t := FVar "x") in H; auto.
      apply R_All_e with (t := FVar "y") in H; auto.
    - trans (Succ (FVar "y" + FVar "x")).
      * ahered.
        assert (Pr Intuiti (( #0 + FVar "y" = FVar "y" + #0) :: Γ'   #0 + FVar "y" = FVar "y" + #0)). { apply R_Ax. apply in_eq. }
                                                                                                           apply R_All_e with (t := FVar "x") in H; auto.
      * sym.
        axiom ax10 AX10.
        apply R_All_e with (t := FVar "y") in AX10; auto.
        apply R_All_e with (t := FVar "x") in AX10; auto.
Qed.
Samuel Ben Hamou's avatar
Samuel Ben Hamou committed
328

329
330
331
332
333
334
335
336
337
Lemma Commutativity : IsTheorem Intuiti PeanoTheory (∀∀ #0 + #1 = #1 + #0).
Proof.
  apply ModusPonens with (A := (∀∀ Succ(#1 + #0) = #1 + Succ(#0))).
  + apply ModusPonens with (A :=  #0 = #0 + Zero).
    * apply Comm.
    * apply ZeroRight.
  + apply SuccRight.
Qed.
      
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
(** A Coq model of this Peano theory, based on the [nat] type *)

Definition PeanoFuns : modfuns nat :=
  fun f =>
  if f =? "O" then Some (existT _ 0 0)
  else if f =? "S" then Some (existT _ 1 S)
  else if f =? "+" then Some (existT _ 2 Nat.add)
  else if f =? "*" then Some (existT _ 2 Nat.mul)
  else None.

Definition PeanoPreds : modpreds nat :=
  fun p =>
  if p =? "=" then Some (existT _ 2 (@Logic.eq nat))
  else None.

Lemma PeanoFuns_ok s :
 funsymbs PeanoSign s = get_arity (PeanoFuns s).
Proof.
 unfold PeanoSign, peano_sign, PeanoFuns. simpl.
 unfold eqb, eqb_inst_string.
 repeat (case string_eqb; auto).
Qed.

Lemma PeanoPreds_ok s :
 predsymbs PeanoSign s = get_arity (PeanoPreds s).
Proof.
 unfold PeanoSign, peano_sign, PeanoPreds. simpl.
 unfold eqb, eqb_inst_string.
 case string_eqb; auto.
Qed.

Definition PeanoPreModel : PreModel nat PeanoTheory :=
 {| someone := 0;
    funs := PeanoFuns;
    preds := PeanoPreds;
    funsOk := PeanoFuns_ok;
    predsOk := PeanoPreds_ok |}.

Lemma PeanoAxOk A :
  IsAxiom PeanoTheory A ->
  forall genv, interp_form PeanoPreModel genv [] A.
Proof.
 unfold PeanoTheory. simpl.
 unfold PeanoAx.IsAx.
 intros [IN|(B & -> & CK & CL)].
 - compute in IN. intuition; subst; cbn; intros; subst; omega.
 - intros genv.
   unfold PeanoAx.induction_schema.
   apply interp_nforall.
   intros stk Len. rewrite app_nil_r. cbn.
   intros (Base,Step).
   (* The Peano induction emulated by a Coq induction :-) *)
   induction m.
   + specialize (Base 0).
     apply -> interp_form_bsubst_gen in Base; simpl; eauto.
   + apply Step in IHm.
     apply -> interp_form_bsubst_gen in IHm; simpl; eauto.
     now intros [|k].
Qed.

Definition PeanoModel : Model nat PeanoTheory :=
 {| pre := PeanoPreModel;
    AxOk := PeanoAxOk |}.