Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Pierre Letouzey
natded
Commits
01b6b4a2
Commit
01b6b4a2
authored
Jul 25, 2020
by
Samuel Ben Hamou
Browse files
Preuve de Succ dans ZF.v
parent
c9f6e71c
Changes
1
Hide whitespace changes
Inline
Side-by-side
ZF.v
View file @
01b6b4a2
...
...
@@ -241,7 +241,7 @@ Proof.
apply
R_Or_i1
;
apply
R_Ax
;
calc
.
Qed
.
Lemma
union
:
IsTheorem
Intuiti
ZF
(
∀∀∃∀
(#
0
∈
#
1
<->
#
0
∈
#
3
\
/
#
0
∈
#
2
)).
Lemma
union
set
:
IsTheorem
Intuiti
ZF
(
∀∀∃∀
(#
0
∈
#
1
<->
#
0
∈
#
3
\
/
#
0
∈
#
2
)).
Proof
.
thm
.
exists
[
pairing
;
union
;
compat_right
;
eq_refl
].
...
...
@@ -256,15 +256,12 @@ Proof.
app_R_All_i
"B"
B
.
inst_axiom
pairing
[
A
;
B
];
simp
.
eapply
R_Ex_e
with
(
x
:=
"C"
);
[
|
exact
H
|
];
calc
.
set
(
C
:=
FVar
"C"
).
simp
.
clear
H
.
set
(
C
:=
FVar
"C"
).
simp
.
clear
H
.
inst_axiom
union
[
C
];
simp
.
eapply
R_Ex_e
with
(
x
:=
"U"
);
[
|
exact
H
|
];
calc
.
set
(
U
:=
FVar
"U"
).
simp
.
clear
H
.
apply
R_Ex_i
with
(
t
:=
U
).
simp
.
app_R_All_i
"x"
x
.
simp
.
apply
R_Ex_i
with
(
t
:=
U
).
simp
.
app_R_All_i
"x"
x
.
simp
.
apply
R_And_i
.
+
apply
R_Imp_i
.
apply
R_Ex_e
with
(
A
:=
#
0
∈
C
/
\
x
∈
#
0
)
(
x
:=
"y"
);
set
(
y
:=
FVar
"y"
).
...
...
@@ -320,10 +317,54 @@ Proof.
Qed
.
Lemma
Succ
:
IsTheorem
Intuiti
ZF
(
∀∃∀
(#
0
∈
#
1
<->
#
0
=
#
2
)
->
∀∀∃∀
(#
0
∈
#
1
<->
#
0
∈
#
3
\
/
#
0
∈
#
2
)
(
(
∀∃∀
(#
0
∈
#
1
<->
#
0
=
#
2
)
)
->
(
∀∀∃∀
(#
0
∈
#
1
<->
#
0
∈
#
3
\
/
#
0
∈
#
2
)
)
->
∀∃
succ
(#
1
)
(#
0
)).
Admitted
.
Proof
.
thm
.
exists
[
].
split
;
auto
.
repeat
apply
R_Imp_i
.
set
(
Un
:=
∀
∀
_
).
set
(
Sing
:=
∀
∃
_
).
set
(
Γ
:=
Un
::
Sing
::
[]).
app_R_All_i
"x"
x
.
simp
.
inst_axiom
Sing
[
x
];
simp
.
eapply
R_Ex_e
with
(
x
:=
"A"
);
[
|
exact
H
|
];
calc
.
set
(
A
:=
FVar
"A"
).
simp
.
clear
H
.
inst_axiom
Un
[
A
;
x
].
simp
.
eapply
R_Ex_e
with
(
x
:=
"U"
);
[
|
exact
H
|
];
calc
.
set
(
U
:=
FVar
"U"
).
simp
.
clear
H
.
apply
R_Ex_i
with
(
t
:=
U
).
simp
.
app_R_All_i
"y"
y
.
simp
.
apply
R_And_i
.
-
apply
R_Imp_i
.
apply
R_Or_e
with
(
A
:=
y
∈
A
)
(
B
:=
y
∈
x
).
+
set
(
Ax
:=
∀
_
∈
U
<->
_
).
inst_axiom
Ax
[
y
].
simp
.
apply
R_And_e1
in
H
.
apply
R_Imp_e
with
(
A
:=
y
∈
U
)
in
H
;
[
intuition
|
apply
R
'_
Ax
].
+
apply
R_Or_i1
.
set
(
Ax
:=
∀
_
∈
A
<->
_
).
inst_axiom
Ax
[
y
].
simp
.
apply
R_And_e1
in
H
.
apply
R_Imp_e
with
(
A
:=
y
∈
A
)
in
H
;
[
intuition
|
apply
R
'_
Ax
].
+
apply
R_Or_i2
.
apply
R
'_
Ax
.
-
apply
R_Imp_i
.
apply
R_Imp_e
with
(
A
:=
y
∈
A
\
/
y
∈
x
).
+
set
(
Ax
:=
∀
_
∈
U
<->
_
).
inst_axiom
Ax
[
y
].
simp
.
apply
R_And_e2
in
H
.
assumption
.
+
apply
R
'_
Or_e
.
*
apply
R_Or_i1
.
set
(
Ax
:=
∀
_
∈
A
<->
_
).
inst_axiom
Ax
[
y
].
simp
.
apply
R_And_e2
in
H
.
apply
R_Imp_e
with
(
A
:=
y
=
x
)
in
H
;
[
intuition
|
apply
R
'_
Ax
].
*
apply
R_Or_i2
.
apply
R
'_
Ax
.
Qed
.
Lemma
Successor
:
IsTheorem
Intuiti
ZF
(
∀∃
succ
(#
1
)
(#
0
)).
Admitted
.
\ No newline at end of file
Proof
.
apply
ModusPonens
with
(
A
:=
∀∀∃∀
#
0
∈
#
1
<->
#
0
∈
#
3
\
/
#
0
∈
#
2
);
[
|
apply
unionset
].
apply
ModusPonens
with
(
A
:=
∀∃∀
#
0
∈
#
1
<->
#
0
=
#
2
);
[
apply
Succ
|
apply
singleton
].
Qed
.
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment